1,811 research outputs found

    Workload Equity in Vehicle Routing Problems: A Survey and Analysis

    Full text link
    Over the past two decades, equity aspects have been considered in a growing number of models and methods for vehicle routing problems (VRPs). Equity concerns most often relate to fairly allocating workloads and to balancing the utilization of resources, and many practical applications have been reported in the literature. However, there has been only limited discussion about how workload equity should be modeled in VRPs, and various measures for optimizing such objectives have been proposed and implemented without a critical evaluation of their respective merits and consequences. This article addresses this gap with an analysis of classical and alternative equity functions for biobjective VRP models. In our survey, we review and categorize the existing literature on equitable VRPs. In the analysis, we identify a set of axiomatic properties that an ideal equity measure should satisfy, collect six common measures, and point out important connections between their properties and those of the resulting Pareto-optimal solutions. To gauge the extent of these implications, we also conduct a numerical study on small biobjective VRP instances solvable to optimality. Our study reveals two undesirable consequences when optimizing equity with nonmonotonic functions: Pareto-optimal solutions can consist of non-TSP-optimal tours, and even if all tours are TSP optimal, Pareto-optimal solutions can be workload inconsistent, i.e. composed of tours whose workloads are all equal to or longer than those of other Pareto-optimal solutions. We show that the extent of these phenomena should not be underestimated. The results of our biobjective analysis are valid also for weighted sum, constraint-based, or single-objective models. Based on this analysis, we conclude that monotonic equity functions are more appropriate for certain types of VRP models, and suggest promising avenues for further research.Comment: Accepted Manuscrip

    Advanced Route Planning in Transportation Networks

    Get PDF
    We present fast and efficient algorithms for routing in road and public transit networks. An algorithm for public transit can handle very large and poorly structured networks in a fully realistic scenario. Algorithms to answer flexible shortest path queries consider additional query parameters, such as edge weight or restrictions. Finally, specialized algorithms compute sets of related shortest path distances for time-dependent distance table computation, ride sharing and closest POI location

    Solving continuous replenishment inventory routing problems

    Get PDF
    This research investigates the problem of resupplying points of dispensing (PODs), which will dispense medications to millions of people in case of a bioterrorist attack such as anthrax. After receiving an initial but limited supply of medication, the PODs will operate continuously. Vehicles will resupply the PODs continuously from a central depot that has a stockpile of medication. Each vehicle will repeatedly follow the same route and will deliver at each POD enough medication to replace what was consumed since the last visit. Because the number of drivers and trucks may be limited during an emergency, we wish to minimize the number of vehicles used to resupply the PODs. This thesis presents heuristics and a branch-and-bound approach for solving this NP-hard problem and evaluates their performance. We also analyze a special case in which all of the PODs have the same demand

    Optimization of route choice, speeds and stops in time-varying networks for fuel-efficient truck journeys

    Get PDF
    A method is presented for the real-time optimal control of the journey of a truck, travelling between a pair of pick-up/drop-off locations in a time-varying traffic network, in order to reduce fuel consumption. The method, when applied during the journey, encapsulates the choice of route, choice of speeds on the links, and choice of stop locations/durations; when applied pre-trip, it additionally incorporates choice of departure time. The problem is formulated by using a modified form of space-time extended network, in such a way that a shortest path in this network corresponds to an optimal choice of not only route, stops and (when relevant) departure time, but also of speeds. A series of simple illustrative examples are presented to illustrate the formulation. Finally, the method is applied to a realistic-size case study
    • …
    corecore