8 research outputs found

    State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Get PDF
    A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots. To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion

    Conceptual Design of a Single DOF Human-Like Eight-Bar Leg Mechanism

    Get PDF
    Abstract Legs are the most important elements for accomplishing human physical work including transportation or displacement. The article presents a mechanical reproduction of the human walking apparatus. Using design rules, a final mechanism configuration is achieved such that the crank is a binary link connected to a binary ground link. The resulting linkage is a single degree-of-freedom (DOF) eight-bar mechanism. The mechanism exemplifies the shape and movement of a human leg. The mechanism is simulated and tested to verify the proposed synthesis

    A review of gait optimization based on evolutionary computation

    Get PDF
    Gait generation is very important as it directly affects the quality of locomotion of legged robots. As this is an optimization problem with constraints, it readily lends itself to Evolutionary Computation methods and solutions. This paper reviews the techniques used in evolution-based gait optimization, including why Evolutionary Computation techniques should be used, how fitness functions should be composed, and the selection of genetic operators and control parameters. This paper also addresses further possible improvements in the efficiency and quality of evolutionary gait optimization, some problems that have not yet been resolved and the perspectives for related future research

    Galloping Trajectory Generation of a Legged Transport Robot Based on Energy Consumption Optimization

    Get PDF
    Legged walking robots have very strong operation ability in the complex surface and they are very suitable for transportation of tools, materials, and equipment in unstructured environment. Aiming at the problems of energy consumption of legged transport robot during the fast moving, a method of galloping trajectory planning based on energy consumption optimization is proposed. By establishing transition angle polynomials of flight phase, lift-off phase, and stance phase and constraint condition between each state phase, the locomotion equations of the ellipse trajectory are derived. The transition angle of each state phase is introduced into the system energy consumption equations, and the energy optimization index based on transition angles is established. Inverse kinematics solution and trajectory planning in one gait cycle are applied to genetic algorithm process to solve the nonlinear programming problem. The results show that the optimized distribution of transition angles of state phases is more reasonable, and joint torques and system energy consumption are reduced effectively. Thus, the method mentioned above has a great significance to realize fast operation outdoors of transport robot

    Intelligent approaches in locomotion - a review

    Get PDF

    Design and control of a soccer-playing humanoid robot

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore