3,777 research outputs found

    Coalitional Game Theoretic Approach for Cooperative Transmission in Vehicular Networks

    Full text link
    Cooperative transmission in vehicular networks is studied by using coalitional game and pricing in this paper. There are several vehicles and roadside units (RSUs) in the networks. Each vehicle has a desire to transmit with a certain probability, which represents its data burtiness. The RSUs can enhance the vehicles' transmissions by cooperatively relaying the vehicles' data. We consider two kinds of cooperations: cooperation among the vehicles and cooperation between the vehicle and RSU. First, vehicles cooperate to avoid interfering transmissions by scheduling the transmissions of the vehicles in each coalition. Second, a RSU can join some coalition to cooperate the transmissions of the vehicles in that coalition. Moreover, due to the mobility of the vehicles, we introduce the notion of encounter between the vehicle and RSU to indicate the availability of the relay in space. To stimulate the RSU's cooperative relaying for the vehicles, the pricing mechanism is applied. A non-transferable utility (NTU) game is developed to analyze the behaviors of the vehicles and RSUs. The stability of the formulated game is studied. Finally, we present and discuss the numerical results for the 2-vehicle and 2-RSU scenario, and the numerical results verify the theoretical analysis.Comment: accepted by IEEE ICC'1

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Spectrum Leasing as an Incentive towards Uplink Macrocell and Femtocell Cooperation

    Full text link
    The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe. We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay.We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.Comment: 29 pages, 11 figures, accepted at the IEEE JSAC on Femtocell Network

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    Coalition Formation Games for Collaborative Spectrum Sensing

    Full text link
    Collaborative Spectrum Sensing (CSS) between secondary users (SUs) in cognitive networks exhibits an inherent tradeoff between minimizing the probability of missing the detection of the primary user (PU) and maintaining a reasonable false alarm probability (e.g., for maintaining a good spectrum utilization). In this paper, we study the impact of this tradeoff on the network structure and the cooperative incentives of the SUs that seek to cooperate for improving their detection performance. We model the CSS problem as a non-transferable coalitional game, and we propose distributed algorithms for coalition formation. First, we construct a distributed coalition formation (CF) algorithm that allows the SUs to self-organize into disjoint coalitions while accounting for the CSS tradeoff. Then, the CF algorithm is complemented with a coalitional voting game for enabling distributed coalition formation with detection probability guarantees (CF-PD) when required by the PU. The CF-PD algorithm allows the SUs to form minimal winning coalitions (MWCs), i.e., coalitions that achieve the target detection probability with minimal costs. For both algorithms, we study and prove various properties pertaining to network structure, adaptation to mobility and stability. Simulation results show that CF reduces the average probability of miss per SU up to 88.45% relative to the non-cooperative case, while maintaining a desired false alarm. For CF-PD, the results show that up to 87.25% of the SUs achieve the required detection probability through MWCComment: IEEE Transactions on Vehicular Technology, to appea

    Spectrum Allocation Algorithms for Cognitive Radio Mesh Networks

    Get PDF
    Empowered by the cognitive radio technology, and motivated by the sporadic channel utilization, both spatially and temporally, dynamic spectrum access networks (also referred to as cognitive radio networks and next generation wireless networks) have emerged as a solution to improve spectrum utilization and provide more flexibility to wireless communication. A cognitive radio network is composed of wireless users, referred to as secondary users, which are allowed to use licensed spectrum bands as long as their are no primary, licensed, users occupying the channel in their vicinity. This restricted spectrum access strategy leads to heterogeneity in channel availability among secondary users. This heterogeneity forms a significant source of performance degradation for cognitive radio networks, and poses a great challenge on protocol design. In this dissertation, we propose spectrum allocation algorithms that take into consideration the heterogeneity property and its effect on the network performance. The spectrum allocation solutions proposed in this dissertation address three major objectives in cognitive radio mesh networks. The first objective is maximizing the network coverage, in terms of the total number of served clients, and at the same time simplifying the communication coordination function. To address this objective, we proposed a received based channel allocation strategy that alleviates the need for a common control channel, thus simplifying the coordination function, and at the same time maximizes the number of clients served with link reliability guarantees. We show the superiority of the proposed allocation strategy over other existing strategies. The second objective is improving the multicast throughput to compensate for the performance degradation caused by channel heterogeneity. We proposed a scheduling algorithm that schedules multicast transmissions over both time and frequency and integrates that with the use of network coding. This algorithm achieves a significant gain, measured as the reduction in the total multicast time, as the simulation results prove. We also proposed a failure recovery algorithm that can adaptively adjust the schedule in response to temporary changes in channel availability. The last objective is minimizing the effect of channel switching on the end-to-end delay and network throughput. Channel switching can be a significant source of delay and bandwidth wastage, especially if the secondary users are utilizing a wide spectrum band. To address this issue, we proposed an on-demand multicast routing algorithm for cognitive radio mesh networks based on dynamic programming. The algorithm finds the best available route in terms of end-to-end delay, taking into consideration the switching latency at individual nodes and the transmission time on different channels. We also presented the extensibility of the proposed algorithm to different routing metric. Furthermore, a route recovery algorithm that takes into consideration the overhead of rerouting and the route cost was also proposed. The gain of these algorithms was proved by simulation
    corecore