382 research outputs found

    Solving a robust airline crew pairing problem with column generation

    Get PDF
    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness in this case is related to the ability of accommodating these extra flights at the time of operation by disrupting the original plans as minimally as possible. We focus on the crew pairing aspect of robustness and prescribe that the planned crew pairings incorporate a number of predefined recovery solutions for each potential extra flight. These solutions are implemented only if necessary for recovery purposes and involve either inserting an extra flight into an existing pairing or partially swapping the flights in two existing pairings in order to cover an extra flight. The resulting mathematical programming model follows the conventional set covering formulation of the airline crew pairing problem typically solved by column generation with an additional complication. The model includes constraints that depend on the columns due to the robustness consideration and grows not only column-wise but also row-wise as new columns are generated. To solve this dicult model, we propose a row and column generation approach. This approach requires a set of modifications to the multi-label shortest path problem for pricing out new columns (pairings) and various mechanisms to handle the simultaneous increase in the number of rows and columns in the restricted master problem during column generation. We conduct computational experiments on a set of real instances compiled from a local airline in Turkey

    Forecast based traffic signal coordination using congestion modelling and real-time data

    Get PDF
    This dissertation focusses on the implementation of a Real-Time Simulation-Based Signal Coordination module for arterial traffic, as proof of concept for the potential of integrating a new generation of advanced heuristic optimisation tools into Real-Time Traffic Management Systems. The endeavour represents an attempt to address a number of shortcomings observed in most currently marketed on-line signal setting solutions and provide better adaptive signal timings. It is unprecedented in its use of a Genetic Algorithm coupled with Continuous Dynamic Traffic Assignment as solution evaluation method, only made possible by the recently presented parallelisation strategies for the underlying algorithms. Within a fully functional traffic modelling and management framework, the optimiser is developed independently, leaving ample space for future adaptations and extensions, while relying on the best available technology to provide it fast and realistic solution evaluation based on reliable real-time supply and demand data. The optimiser can in fact operate on high quality network models that are well calibrated and always up-to-date with real-world road conditions; rely on robust, multi-source network wide traffic data, rather than being attached to single detectors; manage area coordination using an external simulation engine, rather than a na¨ıve flow propagation model that overlooks crucial traffic dynamics; and even incorporate real-time traffic forecast to account for transient phenomena in the near future to act as a feedback controller. Results clearly confirm the efficacy of the proposed method, by which it is possible to obtain relevant and consistent corridor performance improvements with respect to widely known arterial bandwidth maximisation techniques under a range of different traffic conditions. The computational efforts involved are already manageable for realistic real-world applications, and future extensions of the presented approach to more complex problems seem within reach thanks to the load distribution strategies already envisioned and prepared for in the context of this work

    Bloody fast blood collection

    Get PDF
    This thesis consists of four parts: The first part contains an introduction, the second presents approaches for the evaluation of waiting times at blood collection sites, the third uses these to present approaches that improve waiting times at blood collection sites. The final part shows the application of two of the approaches to data from real blood collection sites, followed by the conclusions that can be drawn from this thesis. Part I: Introduction, contains two chapters. Chapter 1 introduces the context for this thesis: blood banks in general, the Dutch blood bank Sanquin and blood collection sites. The chapter sketches some of the challenges faced with respect to blood collection sites. As blood donors are voluntary and non-remunerated, delays and waiting times within blood collection sites should be kept at acceptable levels. However, waiting times are currently not incorporated in staff planning or in other decisions with respect to blood collection sites. These blood collection sites will be the primary focus of this thesis. This thesis provides methods that do take waiting times into account, aiming to decrease waiting times at blood collection sites and leveling work pressure for staff members, without the need for additional staff. Chapter 2 then presents a technical methods that will be used most of the chapters in this thesis: uniformization. Uniformization can be used to transform Continuous Time Markov Chains (CTMCs) — that are very hard to analyze — into Discrete Time Markov Chains (DTMCs) — that are much easier to analyze. The chapter shows how the method works, provides an extensive overview of the literature related to the method, the (technical) intuition behind the method as well as several extensions and applications. Although not all of the extensions and applications are necessary for this thesis, it does provide an overview of one of the most valuable methods for this thesis. Part II: Evaluation, contains two chapters that propose and adapt several methods to compute waiting times and queues at blood collection sites. A blood collection site is best modeled as a time-dependent queueing network, requiring non-standard approaches. Chapter 3 considers a stationary, i.e. not time-dependent model of blood collection sites as a first step. A blood collection site consists of three main stations: Registration, Interview and Donation. All three of the stations can have their own queue. This means that even the stationary model is non-trivial for some computations. However, for the stationary model, an analytic so-called product form expression is derived. Based on this product form, two more results are shown. The first result is that the standard waiting time distributions from M|M|s queues are applicable, as if the queue is in isolation. It is then concluded that no closed form expression exist for the total waiting or delay time distribution, as the distributions of the three stations in tandem are not independent. Therefore a numerical approach is presented to compute the total delay time distribution of a collection site. All of the results are supported by numerical examples based on a Dutch blood collection site. The approach for the computation of the total delay time distribution can also be combined with the approach from Chapter 4 for an extension to a time-dependent setting. Chapter 4 shows an approach to deal with these time-dependent aspects in queueing systems, as often experienced by blood collection sites and other service systems, typically due to time-dependent arrivals and capacities. Easy and quick to use queueing expressions generally do not apply to time-dependent situations. A large number of computational papers has been written about queue length distributions for time-dependent queues, but these are mostly theoretical and based on single queues. This chapter aims to combine computational methods with more realistic time-dependent queueing networks, with an approach based on uniformization. Although uniformization is generally perceived to be too computationally prohibitive, we show that our method is very effective for practical instances, as shown with an example of a Dutch blood collection site. The objective of the results is twofold: to show that a time-dependent queueing network approach can be beneficial and to evaluate possible improvements for Dutch blood collection sites that can only be properly assessed with a time-dependent queueing method. Part III: Optimization, contains four chapters that aim to improve service levels at Sanquin. The first three chapters focus on three different methods to decrease queues at blood collection sites. Chapters 5 and 6 focus on improving the service by optimizing staff allocation to shifts and stations. Chapter 7 focuses on improving the arrival process with the same goal. Chapter 8 is focused at improving inventory management of red blood cells. Donors do not arrive to blood collection sites uniformly throughout the day, but show clear preferences for certain times of the day. However, the arrival patterns that are shown by historical data, are not used for scheduling staff members at blood collection sites. As a first significant step to shorten waiting times we can align staff capacity and shifts with walk-in arrivals. Chapter 5 aims to optimize shift scheduling for blood collection sites. The chapter proposes a two-step procedure. First, the arrival patterns and methods from queueing theory are used to determine the required number of staff members for every half hour. Second, an integer linear program is used to compute optimal shift lengths and starting times, based on the required number of staff members. The chapter is concluded with numerical experiments that show, depending on the scenario, a reduction of waiting times, a reduction of staff members or a combination of both. At a blood collection site three stations (Registration, Interview and Donation) can roughly be distinguished. Staff members at Dutch blood collection sites are often trained to work at any of these stations, but are usually allocated to one of the stations for large fractions of a shift. If staff members change their allocation this is based on an ad hoc decision. Chapter 6 aims to take advantage of this mostly unused allocation flexibility to reduce queues at blood collection sites. As a collection site is a highly stochastic process, both in arrivals and services, an optimal allocation of staff members to the three stations is unknown, constantly changing and a challenge to determine. Chapter 6 provides and applies a so-called Markov Decision Process (MDP) to compute optimal staff assignments. Extensive numerical and simulation experiments show the potential reductions of queues when the reallocation algorithm would be implemented. Based on Dutch blood collection sites, reductions of 40 to 80% on the number of waiting donors seem attainable, depending on the scenario. Chapter 7 also aims to align the arrival of donors with scheduled staff, similarly to Chapter 5. Chapter 7 tries to achieve this by changing the arrivals of donors. By introducing appointments for an additional part of donors, arrivals can be redirected from the busiest times of the day to quiet times. An extended numerical queueing model with priorities is introduced for blood collection sites, as Sanquin wants to incentive donors to make appointments by prioritizing donors with appointments over donors without appointments. Appointment slots are added if the average queue drops below certain limits. The correct values for these limits, i.e. the values that plan the correct number of appointments, are then determined by binary search. Numerical results show that the method succeeds in decreasing excessive queues. However, the proposed priorities might result in unacceptably high waiting times for donors without appointments, and caution is therefore required before implementation. Although this thesis mainly focuses on blood collection sites, many more logistical challenges are present at a blood bank. One of these challenges arises from the expectation that Sanquin can supply hospitals with extensively typed red blood cell units directly from stock. Chapter 8 deals with this challenge. Currently, all units are issued according to the first-in-first-out principle, irrespective of their specific typing. These kind of issuing policies lead to shortages for rare blood units. Shortages for rare units could be avoided by keeping them in stock for longer, but this could also lead to unnecessary wastage. Therefore, to avoid both wastage and shortages, a trade-off between the age and rarity of a specific unit in stock should be made. For this purpose, we modeled the allocation of the inventory as a circulation flow problem, in which decisions about which units to issue are based on both the age and rarity of the units in stock. We evaluated the model for several settings of the input parameters. It turns out that, especially if only a few donors are typed for some combinations of antigens, shortages can be avoided by saving rare blood products. Moreover, the average issuing age remains unchanged. Part IV: Practice and Outlook concludes this thesis. The first of two chapters in this part shows the combined application of two approaches from this thesis to data from three collection sites in the Netherlands. The final chapter of this thesis presents the conclusions that can be drawn from this thesis and discusses an outlook for further research. Chapter 9 shows the combined application of the methods in Chapters 5 and 6 to three real collection sites in Dutch cities: Nijmegen, Leiden and Almelo. The collection sites in Nijmegen and Leiden are both large fixed collection sites. The collection site in Almelo is a mobile collection site. The application of each one of the methods individually reduce waiting times significantly, and the combined application of the methods reduces waiting times even further. Simultaneously, small reductions in the number of staff hours are attainable. The results from Chapter 9 summarize the main message of this thesis: waiting time for blood donors at blood collection sites can be reduced without the need for more staff members when the working times of staff members are used more effectively and efficiently, and controlling the arrival process of donors. The approaches presented in this thesis can be used for this purpose. This is not only beneficial for blood donors, but will also result in more balanced workload for staff members, as fluctuations in this workload are reduced significantly

    Design de réseaux de distribution à deux échelons sous incertitude

    Get PDF
    With the high growth of e-commerce and the continuous increase in cities population contrasted with the rising levels of congestion, distribution schemes need to deploy additional echelons to offer more dynamic adjustment to the requirement of the business over time and to cope with all the random factors. In this context, a two-echelon distribution network is nowadays investigated by the practitioners.In this thesis, we first present a global survey on distribution network design problems and point out many critical modeling features, namely the two-echelon structure, the multi-period setting, the uncertainty and solution approaches. The aim, here, is to propose a comprehensive framework for the design of an efficient two-echelon distribution network under multi-period and stochastic settings in which products are directed from warehouse platforms (WPs) to distribution platforms (DPs) before being transported to customers. A temporal hierarchy characterizes the design level dealing with facility-location and capacity decisions over a set of design periods, while the operational level involves transportation decisions on a daily basis.Then, we introduce the comprehensive framework for the two-echelon distribution network design problem under uncertain demand, and time-varying demand and cost, formulated as a multi-stage stochastic program. This work looks at a generic case for the deployment of a retailer's distribution network. Thus, the problem involves, at the strategic level, decisions on the number and location of DPs along the set of design periods as well as decisions on the capacity assignment to calibrate DP throughput capacity. The operational decisions related to transportation are modeled as origin-destination arcs. Subsequently, we propose alternative modeling approaches based on two-stage stochastic programming with recourse, and solve the resulting models using a Benders decomposition approach integrated with a sample average approximation (SAA) technique.Next, we are interested in the last-mile delivery in an urban context where transportation decisions involved in the second echelon are addressed through multi-drop routes. A two-echelon stochastic multi-period capacitated location-routing problem (2E-SM-CLRP) is defined in which facility-location decisions concern both WPs and DPs. We model the problem using a two-stage stochastic program with integer recourse. To solve the 2E-SM-CLRP, we develop a Benders decomposition algorithm. The location and capacity decisions are fixed from the solution of the Benders master problem. The resulting subproblem is a capacitated vehicle-routing problem with capacitated multi-depot (CVRP-CMD) and is solved using a branch-cut-and-price algorithm.Finally, we focus on the multi-stage framework proposed for the stochastic multi-period two-echelon distribution network design problem and evaluate its tractability. A scenario tree is built to handle the set of scenarios representing demand uncertainty. We present a compact formulation and develop a rolling horizon heuristic to produce design solutions for the multi-stage model. It provides good quality bounds in a reasonable computational times.Avec la forte croissance du e-commerce et l'augmentation continue de la population des villes impliquant des niveaux de congestion plus élevés, les réseaux de distribution doivent déployer des échelons supplémentaires pour offrir un ajustement dynamique aux besoins des entreprises au cours du temps et faire face aux aléas affectant l’activité de distribution. Dans ce contexte, les praticiens s'intéressent aux réseaux de distribution à deux échelons.Dans cette thèse, nous commençons par présenter une revue complète des problèmes de design des réseaux de distribution et souligner des caractéristiques essentielles de modélisation. Ces aspects impliquent la structure à deux échelons, l’aspect multi-période, l’incertitude et les méthodes de résolution. Notre objectif est donc, d’élaborer un cadre complet pour le design d’un réseau de distribution efficace à deux échelons, sous incertitude et multi-périodicité, dans lequel les produits sont acheminés depuis les plateformes de stockage (WP) vers les plateformes de distribution (DP) avant d'être transportés vers les clients. Ce cadre est caractérisé par une hiérarchie temporelle entre le niveau de design impliquant des décisions relatives à la localisation des plateformes et à la capacité allouée aux DPs sur une échelle de temps annuelle, et le niveau opérationnel concernant des décisions journalières de transport. Dans une première étude, nous introduisons le cadre complet pour le problème de design de réseaux de distribution à deux échelons avec une demande incertaine, une demande et un coût variables dans le temps. Le problème est formulé comme un programme stochastique à plusieurs étapes. Il implique au niveau stratégique des décisions de localisation des DPs ainsi que des décisions d'affectation des capacités aux DPs sur plusieurs périodes de design, et au niveau opérationnel des décisions de transport sous forme d'arcs origine-destination. Ensuite, nous proposons deux modèles alternatifs basés sur la programmation stochastique à deux étapes avec recours, et les résolvons par une approche de décomposition de Benders intégrée à une technique d’approximation moyenne d’échantillon (SAA).Par la suite, nous nous intéressons à la livraison du dernier kilomètre dans un contexte urbain où les décisions de transport dans le deuxième échelon sont caractérisées par des tournées de véhicules. Un problème multi-période stochastique de localisation-routage à deux échelons avec capacité (2E-SM-CLRP) est défini, dans lequel les décisions de localisation concernent les WPs et les DPs. Le modèle est un programme stochastique à deux étapes avec recours en nombre entier. Nous développons un algorithme de décomposition de Benders. Les décisions de localisation et de capacité sont déterminées par la solution du problème maître de Benders. Le sous-problème résultant est un problème multi-dépôt de tournées de véhicule avec des dépôts et véhicules capacitaires qui est résolu par un algorithme de branch-cut-and-price.Enfin, nous étudions le cadre à plusieurs étapes proposé pour le problème stochastique multi-période de design de réseaux de distribution à deux échelons et évaluons sa tractabilité. Pour ceci, nous développons une heuristique à horizon glissant qui permet d’obtenir des bornes de bonne qualité et des solutions de design pour le modèle à plusieurs étapes

    Stochastic optimal control with learned dynamics models

    Get PDF
    The motor control of anthropomorphic robotic systems is a challenging computational task mainly because of the high levels of redundancies such systems exhibit. Optimality principles provide a general strategy to resolve such redundancies in a task driven fashion. In particular closed loop optimisation, i.e., optimal feedback control (OFC), has served as a successful motor control model as it unifies important concepts such as costs, noise, sensory feedback and internal models into a coherent mathematical framework. Realising OFC on realistic anthropomorphic systems however is non-trivial: Firstly, such systems have typically large dimensionality and nonlinear dynamics, in which case the optimisation problem becomes computationally intractable. Approximative methods, like the iterative linear quadratic gaussian (ILQG), have been proposed to avoid this, however the transfer of solutions from idealised simulations to real hardware systems has proved to be challenging. Secondly, OFC relies on an accurate description of the system dynamics, which for many realistic control systems may be unknown, difficult to estimate, or subject to frequent systematic changes. Thirdly, many (especially biologically inspired) systems suffer from significant state or control dependent sources of noise, which are difficult to model in a generally valid fashion. This thesis addresses these issues with the aim to realise efficient OFC for anthropomorphic manipulators. First we investigate the implementation of OFC laws on anthropomorphic hardware. Using ILQG we optimally control a high-dimensional anthropomorphic manipulator without having to specify an explicit inverse kinematics, inverse dynamics or feedback control law. We achieve this by introducing a novel cost function that accounts for the physical constraints of the robot and a dynamics formulation that resolves discontinuities in the dynamics. The experimental hardware results reveal the benefits of OFC over traditional (open loop) optimal controllers in terms of energy efficiency and compliance, properties that are crucial for the control of modern anthropomorphic manipulators. We then propose a new framework of OFC with learned dynamics (OFC-LD) that, unlike classic approaches, does not rely on analytic dynamics functions but rather updates the internal dynamics model continuously from sensorimotor plant feedback. We demonstrate how this approach can compensate for unknown dynamics and for complex dynamic perturbations in an online fashion. A specific advantage of a learned dynamics model is that it contains the stochastic information (i.e., noise) from the plant data, which corresponds to the uncertainty in the system. Consequently one can exploit this information within OFC-LD in order to produce control laws that minimise the uncertainty in the system. In the domain of antagonistically actuated systems this approach leads to improved motor performance, which is achieved by co-contracting antagonistic actuators in order to reduce the negative effects of the noise. Most importantly the shape and source of the noise is unknown a priory and is solely learned from plant data. The model is successfully tested on an antagonistic series elastic actuator (SEA) that we have built for this purpose. The proposed OFC-LD model is not only applicable to robotic systems but also proves to be very useful in the modelling of biological motor control phenomena and we show how our model can be used to predict a wide range of human impedance control patterns during both, stationary and adaptation tasks

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies
    corecore