495 research outputs found

    Survivable Cloud Networking Services

    Get PDF
    Cloud computing paradigms are seeing very strong traction today and are being propelled by advances in multi-core processor, storage, and high-bandwidth networking technologies. Now as this growth unfolds, there is a growing need to distribute cloud services over multiple data-center sites in order to improve speed, responsiveness, as well as reliability. Overall, this trend is pushing the need for virtual network (VN) embedding support at the underlying network layer. Moreover, as more and more mission-critical end-user applications move to the cloud, associated VN survivability concerns are also becoming a key requirement in order to guarantee user service level agreements. Overall, several different types of survivable VN embedding schemes have been developed in recent years. Broadly, these schemes offer resiliency guarantees by pre-provisioning backup resources at service setup time. However, most of these solutions are only geared towards handling isolated single link or single node failures. As such, these designs are largely ineffective against larger regional stressors that can result in multiple system failures. In particular, many cloud service providers are very concerned about catastrophic disaster events such as earthquakes, floods, hurricanes, cascading power outages, and even malicious weapons of mass destruction attacks. Hence there is a pressing need to develop more robust cloud recovery schemes for disaster recovery that leverage underlying distributed networking capabilities. In light of the above, this dissertation proposes a range of solutions to address cloud networking services recovery under multi-failure stressors. First, a novel failure region-disjoint VN protection scheme is proposed to achieve improved efficiency for pre-provisioned protection. Next, enhanced VN mapping schemes are studied with probabilistic considerations to minimize risk for VN requests under stochastic failure scenarios. Finally, novel post-fault VN restoration schemes are also developed to provide viable last-gap recovery mechanisms using partial and full VN remapping strategies. The performance of these various solutions is evaluated using discrete event simulation and is also compared to existing strategies

    Survivable Virtual Infrastructure Mapping in Virtualized Data Centers

    Get PDF
    In a virtualized data center, survivability can be enhanced by creating redundant VMs as backup for VMs such that after VM or server failures, affected services can be quickly switched over to backup VMs. To enable flexible and efficient resource management, we propose to use a service-aware approach in which multiple correlated Virtual Machines (VMs) and their backups are grouped together to form a Survivable Virtual Infrastructure (SVI) for a service or a tenant. A fundamental problem in such a system is to determine how to map each SVI to a physical data center network such that operational costs are minimized subject to the constraints that each VM’s resource requirements are met and bandwidth demands between VMs can be guaranteed before and after failures. This problem can be naturally divided into two sub-problems: VM Placement (VMP) and Virtual Link Mapping (VLM). We present a general optimization framework for this mapping problem. Then we present an efficient algorithm for the VMP subproblem as well as a polynomial-time algorithm that optimally solves the VLM subproblem, which can be used as subroutines in the framework. We also present an effective heuristic algorithm that jointly solves the two subproblems. It has been shown by extensive simulation results based on the real VM data traces collected from the green data center at Syracuse University that compared with the First Fit Descending (FFD) and single shortest path based baseline algorithm, both our VMP+VLM algorithm and joint algorithm significantly reduce the reserved bandwidth, and yield comparable results in terms of the number of active servers
    • …
    corecore