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Survivable Virtual Infrastructure Mapping in
Virtualized Data Centers

Jielong Xu, Jian Tang, Kevin Kwiat, Weiyi Zhang and Guoliang Xue

Abstract—In a virtualized data center, survivability can be
enhanced by creating redundant VMs as backup for VMs such
that after VM or server failures, affected services can be quickly
switched over to backup VMs. To enable flexible and efficient
resource management, we propose to use a service-aware ap-
proach in which multiple correlated Virtual Machines (VMs) and
their backups are grouped together to form a Survivable Virtual
Infrastructure (SVI) for a service or a tenant. A fundamental
problem in such a system is to determine how to map each
SVI to a physical data center network such that operational
costs are minimized subject to the constraints that each VM’s
resource requirements are met and bandwidth demands between
VMs can be guaranteed before and after failures. This problem
can be naturally divided into two sub-problems: VM Placement
(VMP) and Virtual Link Mapping (VLM). We present a general
optimization framework for this mapping problem. Then we
present an efficient algorithm for the VMP subproblem as well
as a polynomial-time algorithm that optimally solves the VLM
subproblem, which can be used as subroutines in the framework.
We also present an effective heuristic algorithm that jointly solves
the two subproblems. It has been shown by extensive simulation
results based on the real VM data traces collected from the
green data center at Syracuse University that compared with
the First Fit Descending (FFD) and single shortest path based
baseline algorithm, both our VMP+VLM algorithm and joint
algorithm significantly reduce the reserved bandwidth, and yield
comparable results in terms of the number of active servers.

Index Terms—Cloud computing, data center, service-aware,
survivability, virtual machine management.

I. INTRODUCTION

Cloud computing has evolved as an important computing
model, which enables information, software, and shared re-
sources to be provisioned over the network as services in an
on-demand manner. Data centers that consolidate computing
and storage capabilities have emerged as the major infrastruc-
ture for supporting cloud computing. Virtualization has and
will continue to play a key role in cloud computing. In a
virtualized data center, Virtual Machines (VMs) are created
and configured to host applications and execute computing
tasks for cloud service users. Each (physical) server can host
multiple VMs as long as it has sufficient resources (i.e. CPU,
memory, bandwidth, etc).

Servers are prone to failures caused by cyber attacks (to the
hypervisor) or hardware/software faults. The Amazon’s recent
cloud crash made the whole world realize how important sur-
vivability is to cloud computing. A survivable cloud computing
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system must be able to quickly recover from failures without
any service disruption. However, scant research attention has
been paid to survivability issues in cloud computing. Further-
more, most existing VM management methods treat each VM
individually and do not consider bandwidth demands between
VMs [8], [15], [16]. However, it has been shown by recent
research [6] that traffic between VMs in a typical Internet data
center accounts for about 80% of its total traffic. To enable
more flexible and efficient resource management, we propose a
service-aware approach in which multiple correlated VMs are
grouped together to form a Survivable Virtual Infrastructure
(SVI) for a service or a tenant. In each SVI, backup VMs
are also created and synchronized with active VMs such that
after failures, affected services can be quickly switched over
to backup VMs. Note that our approach aims at those critical
applications or services that cannot tolerate any disruption
or performance degradation. It is certainly not necessary to
create a backup for each VM in a data center. Commercial
virtualization software, VMware vSphere 5 [18], for example,
supports such a feature. Each data center can host a number
of SVIs for various services or multiple tenants.

An SVI can be modeled as a virtual graph, where each
vertex corresponds to a VM (primary or backup) and there
is an edge connecting a pair of vertices if the corresponding
VMs need to communicate with each other. We call such
edges virtual links.
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Fig. 1. SVI-physical mapping

A fundamental problem in such a system is to find a map-
ping from each SVI to the physical data center network such
that each VM is mapped to a server and each virtual link in the
virtual graph is mapped to one or multiple paths between cor-
responding servers in the physical network as shown in Fig. 1,
such that: 1) Computing resource requirements and bandwidth
demands are satisfied on servers and links respectively. 2)
Bandwidth is reserved on links such that after any single server
failure, each failed VM can be replaced by its backup and
it can have sufficient link bandwidth to communicate with
other VMs. Note that we take into account both bandwidth
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demands between primary VMs and between primary and
backup VMs (for synchronization). This problem shares some
similarities with the Network Virtualization (NV) problems,
which have been studied by a few recent papers [9], [13], [22],
[24]. The key idea of NV is to build a diversified Internet
to support a variety of network services and architectures
through a shared substrate (physical) network by assigning
physical resources (such as node, link, bandwidth, etc) to
multiple virtual networks in an on-demand manner. However,
survivability has not been well studied in the context of NV.
To support survivability, resources (such as link bandwidth)
need to be reserved to guarantee successful failover operations.
However, reserved resources need to be shared since servers
in a data center normally will not simultaneously fail. It is
very difficult to find the most efficient way to share reserved
resources while still guaranteeing zero-disruption and zero-
degradation recovery. Furthermore, one-to-one node mapping
(i.e., every virtual node must be mapped to a distinct physical
node) has been considered for NV while in our problem,
multiple VMs are allowed to be placed on (mapped to) a
common server, which makes our mapping problem much
harder. Therefore, none of the existing NV algorithms can be
directly applied here.

In this paper, we consider an SVI mapping problem with
the objective of minimizing operational costs. We find that
the problem can naturally be divided into subproblems: VM
Placement (VMP) (determine how to place VMs on servers)
and Virtual Link Mapping (VLM) (determine how to map each
virtual link in the virtual graph to routing paths in the physical
network and how to allocate bandwidth along those paths). To
the best of our knowledge, we are the first to address this
survivable mapping problem in the context of virtualized data
centers. Our contributions are summarized as follows:

1) We present a general optimization framework for the
SVI mapping problem such that different VMP and VLM
algorithms can be incorporated into it.

2) We present a polynomial-time optimal algorithm to solve
the VLM subproblem, which can guarantee sufficient link
bandwidth for failover traffic after any single server failure
with minimum reserved bandwidth. An efficient heuristic
algorithm is presented for the VMP problem.

3) Extensive simulation results are presented to justify the
effectiveness of the proposed algorithms, using the real VM
data traces collected from the green data center at Syracuse
University [5].

II. RELATED WORK

VM management has attracted research attention from both
industry and academia due to its potential for reducing oper-
ation costs of data centers. A few commercial software tools
(such as VMware Capacity Planner [17]) have been developed
to determine VMP according to resources at hosting servers
such as CPU, memory, etc. The problems of determining how
to place VMs with the objective of minimizing server power
consumption have been studied in [8], [15], [16]. In [8], Li
et al. proposed a power efficient approach named EnaCloud,
which uses application scheduling and VM live migration to

minimize the number of running servers. In [15], mathematical
programming formulations were presented for various VMP
problems and heuristic algorithms were presented to solve
them. Extensive simulations were conducted based on a large
set of real server load data from a data center. In [16], Verma et
al. presented the design, implementation and evaluation of
a power-aware application placement controller, pMapper,
in virtual server clusters. They presented multiple ways to
formulate the cost-aware VMP problem and present simple and
practical algorithms to solve them. In [10], Meng et al. , for the
first time, considered VMP with the objective of minimizing
the communication cost. The problem was showed to be NP-
hard. The authors designed a two-tier heuristic algorithm to
solve it.

The mapping problem studied in this paper shares some
similarities with the NV problems, which have been studied
in recent works [9], [13], [22], [24]. In [24], the authors
developed heuristic algorithms for two versions of the prob-
lem: Virtual Network (VN) assignment without reconfiguration
and VN assignment with reconfiguration. In [22], Yu et al.
presented heuristic algorithms to solve an NV problem which
allows the substrate (physical) network to split a virtual link
over multiple substrate paths and employ path migration to
periodically re-optimize the utilization of the physical network.
In [9], a fast VN mapping algorithm based on subgraph
isomorphism detection was presented, which maps nodes and
links during the same stage. The authors of [13], for the first
time, presented heuristic algorithms to solve a survivable NV
problem, in which a certain percentage of bandwidth of each
link is reserved to support survivability.

The closest work is a very recent paper [7], in which an NV
architecture called SecondNet was designed and evaluated for
virtualized data centers. SecondNet introduces a centralized
resource allocation algorithm for bandwidth guaranteed virtual
to physical mapping. Moreover, it implements the proposed
approach using source routing and the Multi-Protocol Label
Switching (MPLS) [11]. In addition, in [21], the authors
considered the problem of efficiently allocating resources in
a virtualized physical infrastructure for VIs with reliabil-
ity constraints and presented a mixed integer programming
formulation. In [23], Yu et al. presented a mixed integer
linear programming formulation and two heuristic algorithms
for a VI mapping problem in a federated computing and
networking system with multiple data centers under single
regional failures.

The differences between our work and these related works
are summarized as follows: 1) The commercial software
tools [17] and most of the recent works on VM manage-
ment [8], [15], [16] did not consider bandwidth demands
between VMs. 2) As described in the first section, our mapping
problem is different from the NV problems [9], [13], [22],
[24] since multiple VMs are allowed to be placed on a
common server. 3) Survivability has not been addressed in NV
works [9], [22], [24] or other closely related works [7], [10].
4) Unlike heuristic algorithms presented in [13], [23] which
cannot provide any performance guarantees, our algorithms
can ensure sufficient link bandwidth for failover traffic after
any single server failure. Moreover, inter-data-center resource
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allocation and regional failures were considered in [23]. This
work, however, deals with intra-data-center issues and con-
siders a different failure model. 5) Unlike [21] which tried
to find the relationship between reliability and the amount of
redundant resources, we aim at minimizing backup resources
while guaranteeing no-disruption no-degradation failover. So
we consider a different optimization problem. In addition, only
an integer programming formulation was presented in [23].
We, however, present fast and effective algorithms to solve
the optimization problems.

III. PROBLEM DEFINITION

TABLE I
MAJOR NOTATIONS

Cl The available bandwidth of link l ∈ L
G/GX /GP Virtual graph/enhanced virtual graph/physical graph
L/N/NR The set of physical links/servers/switches

in the data center
P The set of all server-server paths

V /E The set of vertices/virtual links on G

VX /EX /ÊX The set of vertices/virtual active links
/virtual inactive links on GX

We consider a data center with servers connected by high
capacity switch/routers and links via Local Area Networks
(LANs). We model the (physical) data center network using
a directed graph GP (N

∪
NR, L), where each vertex in N

corresponds to a server, each vertex in NR corresponds to
a switch/router and each edge in L corresponds to a phys-
ical link. We also label servers in GP from 1 to |N | and
switches/routers from |N | + 1 to |N | + |NR|, respectively.
Furthermore, we consider a realistic routing model where a set
Pij of candidate routing paths are given for each server pair
(i, j) in advance, which can be found by a standard multipath
routing protocol, such as Open Shortest Path First-Equal-Cost
MultiPath (OSPF-ECMP) [14] which can find equal cost paths
for each source-destination pair in terms of fixed measures
such as line speed or hop count and has been widely used
in data center networks [6]. Since a data center usually has a
special tree-like or hypercube-like topology, paths or shortest
paths (in terms of hop count) between any pair of servers can
be easily enumerated and the total number is very limited.

In a data center, virtualization software, such as
VMware [18] and Xen [20], is used to create and manage
VMs. Usually, each VM hosts a guest operating system and
application program(s). Multiple VMs can be placed on a
common server as long as for each kind of resource (such
as CPU, memory, etc), its total utilization does not exceed
the capacity of that server. One or multiple redundant VMs
can be created to serve as backup for an active VM. They
need to be perfectly synchronized with the primary VMs. VM
synchronization can be achieved using existing methods [4]
and it is also supported by commercial virtualization software,
such as VMware vSphere 5 [18].

As mentioned above, multiple correlated VMs (primary or
backup) are grouped together to form an SVI for a service
or a tenant. We model each SVI using a directed virtual
graph G(V,E), where each vertex in E corresponds to a
VM (primary or backup) and there is an edge connecting a

pair of such vertices if corresponding VMs have interactions.
Essentially, there are edges connecting vertices corresponding
to primary VMs that need to communicate with each other
and there are also edges connecting backup VMs with their
primary VMs since information needs to be exchanged fre-
quently for synchronization. We call these edges in a virtual
graph virtual links, each of which is assigned a weight to
indicate its bandwidth demand. In this graph, there is also a
special vertex corresponding to the external network (i.e., the
Internet in most cases) and edges connecting this special vertex
with all other vertices if their corresponding VMs send/receive
packets to/from the external network.

Every time when an SVI mapping request arrives, a map-
ping algorithm will be used to determine: how to place its
VMs; how to allocate bandwidth on links to route traffic
between VMs; and how to reserve bandwidth on physical
links for failover traffic. Every time when an SVI leaves,
corresponding VMs are removed from servers and reserved
bandwidth is released from links. A mapping of an SVI is
said to be feasible if the following conditions are satisfied: 1)
For each kind of resource (CPU, memory, etc), the available
capacity of each server is no smaller than the total demands
of VMs placed on that server. Moreover, conflicting VMs
are placed on different servers (e.g., a primary VM and its
backup must be placed on two different servers). 2) Each link
has sufficient available bandwidth to carry traffic for regular
communications between primary VMs, and between primary
VMs and their backups. 3) Bandwidth is reserved on links
such that after any single server failure, each failed VM can
be replaced by its backup and there is sufficient link bandwidth
to communicate with other VMs. Now we are ready to define
our mapping problem.

Definition 1 (SVIM): Given a SVI G(V,E) and a data
center network GP (N

∪
NR, L), available resources on each

server and available bandwidth on each link, the Survivable
Virtual Infrastructure Mapping (SVIM) problem seeks a
feasible mapping M : G 7→ (N ′, f , f̂) (where N ′ ⊆ N, f =
[· · · , fk

p , · · · ], p ∈ Pk, k ∈ {1, · · · , |E|}, f̂ = [· · · , f̂l, · · · ], l ∈
L) with minimum operational costs.

Note that the SVIM problem can be naturally divided into
two subproblems: Virtual Machine Placement (VMP) (find
M(v) ∈ N for each v ∈ V ) and Virtual Link Mapping
(VLM) (determine the amount of bandwidth fk

p that needs to
be allocated on path p ∈ Pk to route traffic for each virtual link
ek ∈ E and the amount of bandwidth that needs to be reserved
on each link l ∈ L to carry failover traffic, where Pk is the set
of paths between servers to which two ending vertices (VMs)
of virtual link ek are mapped). Note that since the candidate
path set Pk is assumed to be given for any pair of servers, the
VLM is essentially a bandwidth allocation problem.

Our primary goal is to minimize operational costs. The
costs of operating a data center mainly come from energy
consumption. IT devices, especially servers, are major energy
consumers. One of the most efficient methods for power
savings is to consolidate servers by packing VMs on a mini-
mum number of servers such that idle servers, which usually
consume more than 70% of peak power [2], can be shut off
or put into a low power sleeping model. For simplicity, we
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aim at minimizing the number of active servers in this work.
However, the algorithms presented here can be easily extended
to other cost functions. In addition, bandwidth needs to be
reserved and shared on links to support survivability. Hence,
our secondary goal is to minimize the total reserved bandwidth
thereby allow the data center to accommodate more SVIs.

The SVIM problem is obviously NP-hard since without
even considering bandwidth demands or survivability, the
VMP problem (with the objective of minimizing the number
of active servers) is basically the well-known bin-packing
problem [19], which has been shown to be NP-hard.

IV. THE PROPOSED MAPPING ALGORITHMS

In this section, we discuss the proposed mapping algorithms.
First, we present a general optimization framework that solves
the SVIM problem in two steps. Second, we present an
efficient heuristic algorithm for the VMP subproblem as well
as an LP-based algorithm that solves the VLM subproblem
optimally. Both algorithms can be used as subroutines in
the proposed framework. In addition, we present an effective
algorithm to jointly solve the two subproblems.

A. A General Optimization Framework

Here, we present a general optimization framework for
the SVIM problem, into which different VMP and VLM
algorithms can be incorporated.

Algorithm 1 A general framework: Framework(G,GP )
Step 1 Apply an algorithm to find multiple VMP solutions;

flag := FALSE;
Step 2 for each VMP solution

Apply an algorithm to determine the corresponding
VLM and examine its feasibility;
if feasible

Record the corresponding VMP and
link mapping solution as well as its total
reserved bandwidth and active servers;
flag :=TRUE;

endif
endfor

Step 3 if (flag=TRUE)
output the best VMP and VLM solution;

else output ”There is no feasible solution!”;
endif

If the VMP algorithm can enumerate all possible placement
solutions in the first step and in the second step, the link
mapping algorithm can optimally test the feasibility of each
solution, then we will have an optimal algorithm for the SVIM
problem. However, the number of possible VMP solutions is
exponentially large. Therefore, it is acceptable to find a subset
of “good” placement solutions that hopefully lead to low-cost
and feasible solutions for the SVIM problem, which will be
discussed in the next section. In Step 2, feasibility will be
tested according to the constraints described in Section III.

B. Virtual Machine Placement (VMP)

The VMP problem (with the objective of minimizing the
number of active servers) can considered as the bin packing
problem [19] with VMs as items and servers as bins. However,
the well-known bin packing algorithms, such as the First Fit
Descending (FFD), does not work well for our VMP sub-
problem because of its bandwidth constraints. Our simulation
results verified this mismatch. Our algorithm to solve our
VMP subproblem is a back-tracking algorithm that performs a
Depth First Search (DFS)-like search to enumerate a subset of
possible VMP solutions. The algorithm is formally presented
as follows.

Algorithm 2 The VMP algorithm: VMP(V sub, V sub, G,GP )
Step 1 if (m = M ) return; endif
Step 2 V sub := Ø; V sub := Ø; QM := Ø;

if (V sub = Ø)
Q := V ×N

else Q := V sub ×N ;
endif
Remove infeasible mapping tuples from Q;

Step 3 for ((v, v′) ∈ Q)
if ((v, v′) is feasible)

QM := QM + {v, v′};
V sub := V sub + {v};
Update V sub with v;
if (V sub = V )

m := m+ 1; output QM ;
else VMP(V sub, V sub, G,GP );
endif
Restore QM , V sub, V sub;

endif
if (m = M ) return; endif

endfor

In the algorithm, m is a global variable, which is defined
outside this function. Even though the total number of VMP
solutions may be exponentially large, the algorithm generates
up to M VMP solutions to avoid exponentially long running
time. After quite a few trials, we found out that setting
M = 30 leads to good performance and reasonable running
time. So we used this setting in our simulation. It is possible to
enumerate all possible VMP solutions for small scale networks
by removing the if statements corresponding to M in the
algorithm. QM is used to store a VMP solution and it is
built progressively during the procedure of the algorithm. In
the algorithm, V sub ⊆ V consists of vertices (VMs) in the
virtual graph that have been mapped, however, V sub contains
vertices in V−V sub that are associated with either an incoming
edge from a vertex u ∈ V sub or an outgoing edge to a
vertex u ∈ V sub. When generating node mapping tuples, a
vertex (server) in N should not be removed after it is used
since multiple VMs are allowed to be placed on a common
server (as long as it has sufficient resources). In Step 2,
a preliminary testing is conducted for each node mapping
tuple (v, v′), v ∈ V, v′ ∈ N to make sure that the server
(corresponding to v′) has sufficient available resources (CPU,
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memory, etc) to host the VM corresponding to v. Infeasible
node mapping tuples will be removed from the list Q to further
reduce running time.

In Step 3, node mapping pairs are examined one by one and
their feasibilities are further checked by verifying if server v′

still has enough resources to host VM v after placing VMs
in the current QM . In addition, another preliminary testing is
conducted for link bandwidth to making sure links directly
connecting servers with the rest of the network has sufficient
bandwidth to support the bandwidth demand between the
newly placed VM and the other VMs in the current QM . Even
though feasibility is checked here, a VMP solution generated
by this algorithm may still be infeasible for the given SVIM
problem instance. The actual feasibility can be determined by
the VLM algorithm presented later. However, if the mapping
solution fails testing here, then it must be infeasible. Therefore,
feasibility testing can reduce time complexity. If a node
mapping pair passes the testing, it will be added into the node
mapping (VMP) solution QM . Recursive calls are also made
in Step 3 to back-track all possible mappings.

C. Virtual Link Mapping (VLM)

After the VMP is determined, we create a directed enhanced
virtual graph GX(VX , EX

∪
ÊX), where each vertex in VX

corresponds to a server on which one or multiple VMs are
placed (according the obtained VMP solution) and there is an
edge connecting a pair of such servers if the corresponding
VMs have interactions. We call the set of such edges active
virtual links, which are denoted as EX and are labeled from
1 to |EX |. There is also an edge connecting a server where
the backup of a primary VM vi is placed with a server where
another primary VM that vi interacts with is placed, or a server
where the backup of another primary VM vj is placed (if
M(vi) = M(vj) and M(backup(vi)) ̸= M(backup(vj))).
We call the set of such edges inactive virtual links, which are
denoted as ÊX and are labeled from |EX |+1 to |EX |+ |ÊX |.
These virtual links may become active after a server failure.

Next, we show that once the VMP is given, the VLM
subproblem can be optimally solved by solving an LP problem
which is formally presented as follows. In this formulation,
Pk is the set of candidate path between two servers to which
the two ending vertices (VMs) of virtual link ek ∈ EX are
mapped. Cl is the available bandwidth on link l ∈ L. Bk is the
aggregated bandwidth demands corresponding to virtual link
ek which is the summation of bandwidth demands of all VM
pairs placed on two servers corresponding to ek. Ei ⊆ EX

is the set of active virtual links whose corresponding VMs
are placed on server i. These links will not exist after the
failure of server i. Similarly, Êi ⊆ ÊX is the set of inactive
links whose corresponding backup VMs will be used to replace
failed primary VMs after the failure of server i. These links
will become active after the failure.
LP-VLM:
Unknown decision variables:
1) fk

p ≥ 0: The amount of bandwidth allocated along path p ∈
Pk for active virtual link ek in EX (k ∈ {1, . . . , |EX |}).

2) f̂k
p ≥ 0: The amount of bandwidth reserved along path
p ∈ Pk for inactive virtual link ek in ÊX (k ∈ {|EX | +

1, . . . , |EX |+ |ÊX |}).
3) fl ≥ 0: The total amount of bandwidth allocated to physical

link l ∈ L for active virtual links in EX .
4) f̂l ≥ 0: The total amount of bandwidth reserved on link

l ∈ L for failover traffic after a single server failure.

min
∑
l∈L

f̂l (1)

Subject to: ∑
p∈Pk

fk
p = Bk, k ∈ {1, . . . , |EX |}; (2)∑

p∈Pk

f̂k
p = Bk, k ∈ {|EX |+ 1,

. . . , |EX |+ |ÊX |}; (3)

fl =

|EX |∑
k=1

(
∑

p∈Pk:l∈p

fk
p ), ∀l ∈ L; (4)

f̂l ≥
|EX |+|ÊX |∑
k=|EX |+1

(
∑

ek∈Êi,
p∈Pk:l∈p

f̂k
p )−

|EX |∑
k=1

(
∑

ek∈Ei,p∈Pk:l∈p

fk
p ), ∀i ∈ {1, · · · , |N |},

∀l ∈ L; (5)
fl + f̂l ≤ Cl, ∀l ∈ L. (6)

Proposition 1: If the VMP solution is given, the LP-VLM
can be used to test whether this placement solution can yield
a feasible SVI mapping. If feasible, then solving it can give
a corresponding VLM with minimum reserved bandwidth in
polynomial time.

Proof: In this formulation, Constraints (2) make sure
that bandwidth demands of primary VM pairs and primary-
backup pairs are satisfied. Constraints (3) ensure that after
the failure of a primary VM, sufficient bandwidth is reserved
for communications between its backup VM and other VMs.
Variable fl calculates the aggregated bandwidth demands on
link l for active communications (before a failure). Sufficient
bandwidth needs to be reserved on each link l to carry failover
traffic after any single server failure, which is guaranteed by
Constraints (5). Due to the assumption that only one server
(and its VMs) will fail at a particular time, reserved bandwidth
needs to be shared to improve resource (reserved bandwidth)
utilization, i.e., the reserved bandwidth on each link (f̂l)
should be set to the maximum (instead of the summation
of) bandwidth needed to carry failover traffic after a single
server failure. Moreover, after a failure, link bandwidth that
was previously used to carry traffic related to the failed
server can be re-used to carry failover traffic, which is also
ensured by Constraints (5). In this way, resource utilization
can be further improved. The objective in expression (1) is
to minimize the total reserved bandwidth, which results in a
VLM with minimum reserved bandwidth. This LP problem
includes (|EX | + |ÊX |) ∗ |P | + 2|L| variables and only
|EX |+ |ÊX |+2|L|+ |N ||L| constraints, where P is the set of
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all server-server paths. Therefore, it can be efficiently solved
by existing algorithms [1] in polynomial time. This completes
the proof.

D. A Joint Mapping Algorithm

Unlike the proposed framework, the algorithm presented
here jointly solves the two subproblems. This algorithm deals
with the mapping of links one by one and determines a feasible
VMP (node mapping) concurrently. We create a |N | × |N |
matrix CE and an |L| vector C to keep track of the end-to-end
available bandwidth between a pair of servers and the available
bandwidth on each link respectively. Note that CE

ii = ∞
because if two VMs are placed on the same server then we
assume they have infinite bandwidth between them.

Algorithm 3 The joint mapping algorithm: Joint (G,GP )
Step 1 Sort active virtual links in E in the descending

order of their bandwidth demands and store them in
the list ES ;
flag:= TRUE;

Step 2 for (ek ∈ ES)
Find a pair of server (imax, jmax) such that
(imax, jmax) = Bij among all server pairs
(i, j) that are feasible to host VMs corresponding
to ek and need to turn on minimum number of
servers.
if (imax, jmax) does not exist)

flag:= FALSE; break;
endif
Solve the LP-BA to determine bandwidth
allocation (fk

p , p ∈ Pimax,jmax );
Update matrix CE and vector C;
Mark new servers that need to be turned on;
if (no feasible solution)

flag:= FALSE; break;
endif

endfor
Step 3 if (flag=TRUE)

Solve the LP-VLM to determine reserved
bandwidth on each link (f̂l, l ∈ L)
by using the values of fk

p obtained above;
if (there exists a feasible solution)

output the VMP and VLM solution;
return;

endif
endif
output “There is no feasible solution!”;

The joint mapping algorithm is formally presented as Al-
gorithm 3. The basic idea of this algorithm is to view the
SVIM problem as a virtual link packing problem, i.e, the
problem of packing virtual links in the virtual graph G(V,E)
into the physical network GP (N + NR, L). Sorting in Step
1 ensures that difficult cases will be dealt with first, which
usually leads to good performance. Since the primary goal
is to minimize the number of active servers, the selection of
the server pair (imax, jmax) for packing each active virtual

link should, if at all possible, avoid turning on new servers.
Note that in a server pair (i, j) considered here, i, j may be
the same. Moreover, multiple tests need to be performed to
check the feasibility of using this server pair: 1) We need
to check whether the two servers have sufficient capacities
to host the corresponding VMs. 2) If two virtual links share
a common vertex in the virtual graph G, the shared vertex
(VM) must be mapped to a common server. 3) The selected
server pair (imax, jmax) must have sufficient bandwidth to
accommodate virtual link ek, i.e, CE

imax,jmax
≥ Bk, where Bk

is the bandwidth demand of virtual link ek. After determining
the server pair for packing virtual link ek, we can figure out
how to allocate bandwidth along paths between the two servers
by solving the LP-BA. The LP aims at finding a feasible
bandwidth allocation with balanced link loads by minimizing
maximum link load. In addition, after determining both VMP
and VLM, reserved bandwidth can be easily computed by
solving the LP-VLM presented above using the flow values of
active virtual links (fk

p ) obtained before. The available end-
to-end bandwidth matrix CE needs to be updated following
the packing of a virtual link. This can be done by solving a
maximum-flow-like LP similar to the LP-BA except that its
objective function is to maximize end-to-end flow and there is
no bandwidth demand constraint for each pair of servers. We
omit it due to space limitation.
LP-BA:
Unknown decision variables:
1) fk

p ≥ 0: The amount of bandwidth allocated along path
p ∈ Pk for virtual link ek in E (k ∈ {1, . . . , |E|}).

2) fl ≥ 0: The total amount of bandwidth allocated to link
l ∈ L.

minβ (7)

Subject to: ∑
p∈Pk

fk
p = Bk, k ∈ {1, . . . , |E|}; (8)

fl =

|E|∑
k=1

(
∑

p∈Pk:l∈p

fk
p ) ≤ β, ∀l ∈ L; (9)

fl ≤ Cl, ∀l ∈ L. (10)

V. SIMULATION RESULTS

Our simulation runs were conducted based on the real
VM data traces collected from the green data center at
Syracuse University [5]. Specifically, we have measured the
CPU utilization, memory utilization and network bandwidth
utilization of 100 typical VMs hosting various services in our
data center every 5 minutes for over one month (3/7/2011-
4/11/2011). Similar to [15], a quantile approach was used
to pre-process the raw data and generate inputs for our
algorithms. Specifically, we considered a day as an observation
period and an hour as an observation interval. In the data trace,
given a VM and a resource type, there are 12 consecutive
sample utilization values corresponding to a particular hour,
and there are 12 × 36 = 432 such values corresponding to
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that hour during that month which are aggregated together to
form a set. Therefore, for a particular type of resource on each
VM, there are a total of 24 such data sets. In each data set,
the 90th percentile is chosen to represent the utilization of that
kind of resource on that VM. In addition, in the data center,
most servers are IBM 3850X5 servers, each of which has 40
CPU cores (each at 2.4GHz) and 1TB memory.

In each simulation run, we randomly selected 10 VMs from
the set of 100 VMs and added 10 backup VMs (with the same
sizes as their primary VMs) to form an SVI. The virtual graph
was assumed to be a complete graph, i.e., every VM needs
to communicate with every other. For physical data center
networks, we used two typical network topologies, fat-tree [12]
and VL2 [6]. Both topologies have three layers. The capacities
of links on the bottom layer and on the top two layers were
set to 1Gbps and 10Gbps respectively, which are typical in
data center with off-the-shelf Ethernet switches.

Since we are the first to study such a survivable mapping
problem, we used a baseline algorithm for comparison. In this
algorithm, the FFD algorithm was used for VMP because it is
known to perform well in terms of minimizing the number
of active servers (bins) [19]. For link mapping, all traffic
between a pair of VMs is routed via a shortest path, and
moreover, bandwidth is reserved according to the bandwidth
needed by all inactive links in the enhanced virtual graph. In
the simulation, we compared our 2-step mapping algorithm
(denoted as VMP+VLM) and the joint mapping algorithm
(denoted as Joint) against the baseline algorithm (denoted as
Baseline) in terms of the number of active servers and the
total reserved bandwidth. In both of our algorithms, all shortest
(minimum hop-count) paths between any pair of servers were
enumerated to serve as inputs.

We performed simulation runs on two network topologies
(fat-tree and VL2) for a non-busy hour (light resource uti-
lizations) and a busy hour (heavy resource utilizations). The
simulation results are presented in Figs. 2–5.

We made the following observations from these results:
1) As expected, on average, the total reserved bandwidth

given by our VMP+VLM and the joint algorithms is only
1.48% and 3.57% of that given by the baseline algorithm,
respectively. This is because our LP-based VLM algorithm
(used by both algorithms) finds the best way to share reserved
bandwidth for each SVI. From the simulation results, we can
also observe that the total reserved bandwidth increases very
slowly with the number of SVIs because sometimes after a
server failure, link bandwidth that is released for failed primary
VMs may be re-used for backup VMs such that no additional
link bandwidth needs to be reserved for failover traffic.

2) In terms of the number of active servers, the performance
of our algorithms are comparable to that of the baseline algo-
rithm, which uses the FFD to handle VMP. The FFD is known
to be one of the best algorithms for VMP [19]. Specifically, the
average differences between our algorithms and the baseline
algorithm are only 1.44% and 1.15% respectively. In addition,
no matter which algorithm is used, the number of active
servers increases slowly with the number of SVIs because the
primary objectives of all the algorithms are to minimize the
number of active servers and all the algorithm only turn on
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Fig. 2. Performance on a fat tree network with light workloads
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Fig. 3. Performance on a fat tree network with heavy workloads

new servers when absolutely necessary.

3) The two typical data center topologies are similar: they
both have a tree-like topology with 3 layers. Therefore, every
algorithm yields similar performance on these two network
topologies with regards to both metrics.
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Fig. 4. Performance on a VL2 network with light workloads
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Fig. 5. Performance on a VL2 network with heavy workloads

VI. CONCLUSIONS

In this paper, we proposed to use a service-aware approach
for resource management in virtualized data centers and con-
sider a related optimization problem, SVIM. We found that the
SVIM problem can be naturally divided into two subproblems:
VMP and VLM. We present a general optimization framework
based on such an observation. We also presented a polynomial-

time optimal algorithm for the VLM subproblem and an
efficient heuristic algorithm for the VMP subproblem, which
can be used as subroutines in the framework to solve the
SVIM problem. In addition, we present an effective algorithm
to solve the two subproblems jointly. It has been shown by
extensive simulation results based on the real VM data traces
collected from the green data center at Syracuse University
that compared with the FFD and single shortest path based
baseline algorithm, both our VMP+VLM and joint algorithms
significantly reduce the reserved bandwidth, and yield compa-
rable results in terms of the number of active servers.
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