1,039 research outputs found

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Review of Markov models for maintenance optimization in the context of offshore wind

    Get PDF
    The offshore environment poses a number of challenges to wind farm operators. Harsher climatic conditions typically result in lower reliability while challenges in accessibility make maintenance difficult. One of the ways to improve availability is to optimize the Operation and Maintenance (O&M) actions such as scheduled, corrective and proactive maintenance. Many authors have attempted to model or optimize O&M through the use of Markov models. Two examples of Markov models, Hidden Markov Models (HMMs) and Partially Observable Markov Decision Processes (POMDPs) are investigated in this paper. In general, Markov models are a powerful statistical tool, which has been successfully applied for component diagnostics, prognostics and maintenance optimization across a range of industries. This paper discusses the suitability of these models to the offshore wind industry. Existing models which have been created for the wind industry are critically reviewed and discussed. As there is little evidence of widespread application of these models, this paper aims to highlight the key factors required for successful application of Markov models to practical problems. From this, the paper identifies the necessary theoretical and practical gaps that must be resolved in order to gain broad acceptance of Markov models to support O&M decision making in the offshore wind industry

    Condition based maintenance optimization for multi-state wind power generation systems under periodic inspection

    Get PDF
    As the wind power system moves toward more efficient operation, one of the main challenges for managers is to determine a cost effective maintenance strategy. Most maintenance optimization studies for wind power generation systems deal with wind turbine components separately. However, there are economic dependencies among wind turbines and their components. In addition, most current researches assume that the components in a wind turbine only have two states, while condition monitoring techniques can often provide more detailed health information of components. This study aims to construct an optimal condition based maintenance model for a multi-state wind farm under the condition that individual components or subsystems can be monitored in periodic inspection. The results are demonstrated using a numerical example.info:eu-repo/semantics/publishedVersio

    Optimisation of inspection policy for multi-line production systems

    Get PDF
    This paper develops a simulation model to determine the cost-optimum inspection policy for a multi-line production system taking account of simultaneous downtime. The machines in the multi-line system are subject to a two stage failure process that is modelled using the delay-time concept. Our study indicates that: consecutive inspection of lines with priority for failure repair is cost-optimal, with a cost reduction of 61% compared to a ‘run-to-failure’ policy; and maintainers need to be responsive to operational requirements. Our ideas are developed in the context of a case study of a plant with three parallel lines, one of which is on cold-standby. Keywords: maintenance; delay-time model; simulation; production; parallel lines; manufacturing; preventive maintenance

    A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units

    Get PDF
    In this study, a multi-state k-out-of-n: G system subject to multiple events is modeled through a Markovian Arrival Process with marked arrivals. The system is composed initially of n units and is active when at least k units are operational. Each unit is multi-state, each of which is classified as minor or major according to the level of degradation presented. Each operational unit may undergo internal repairable or non-repairable failures, external shocks and/or random inspections. An external shock can provoke extreme failure, while cumulative external damage can deteriorate internal performance. This situation can produce repairable and non-repairable failures. When a repairable failure occurs the unit is sent to a repair facility for corrective repair. If the failure is non-repairable, the unit is removed. When the system has insufficient units with which to operate, it is restarted. Preventive maintenance is employed in response to random inspection. The system is modeled in an algorithmic and computational form. Several interesting measures of performance are considered. Costs and rewards are included in the system. All measures are obtained for transient and stationary regimes. A numerical example is analyzed to determine whether preventive maintenance is profitable, financially and in terms of performance.Junta de Andalucía (Spain) FQM-307Ministerio de Economía y Competitividad (España) MTM2017-88708-PEuropean Regional Development Fund (ERDF

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    DECISION SUPPORT MODEL IN FAILURE-BASED COMPUTERIZED MAINTENANCE MANAGEMENT SYSTEM FOR SMALL AND MEDIUM INDUSTRIES

    Get PDF
    Maintenance decision support system is crucial to ensure maintainability and reliability of equipments in production lines. This thesis investigates a few decision support models to aid maintenance management activities in small and medium industries. In order to improve the reliability of resources in production lines, this study introduces a conceptual framework to be used in failure-based maintenance. Maintenance strategies are identified using the Decision-Making Grid model, based on two important factors, including the machines’ downtimes and their frequency of failures. The machines are categorized into three downtime criterions and frequency of failures, which are high, medium and low. This research derived a formula based on maintenance cost, to re-position the machines prior to Decision-Making Grid analysis. Subsequently, the formula on clustering analysis in the Decision-Making Grid model is improved to solve multiple-criteria problem. This research work also introduced a formula to estimate contractor’s response and repair time. The estimates are used as input parameters in the Analytical Hierarchy Process model. The decisions were synthesized using models based on the contractors’ technical skills such as experience in maintenance, skill to diagnose machines and ability to take prompt action during troubleshooting activities. Another important criteria considered in the Analytical Hierarchy Process is the business principles of the contractors, which includes the maintenance quality, tools, equipments and enthusiasm in problem-solving. The raw data collected through observation, interviews and surveys in the case studies to understand some risk factors in small and medium food processing industries. The risk factors are analysed with the Ishikawa Fishbone diagram to reveal delay time in machinery maintenance. The experimental studies are conducted using maintenance records in food processing industries. The Decision Making Grid model can detect the top ten worst production machines on the production lines. The Analytical Hierarchy Process model is used to rank the contractors and their best maintenance practice. This research recommends displaying the results on the production’s indicator boards and implements the strategies on the production shop floor. The proposed models can be used by decision makers to identify maintenance strategies and enhance competitiveness among contractors in failure-based maintenance. The models can be programmed as decision support sub-procedures in computerized maintenance management systems

    A survey of the machine interference problem

    Get PDF
    This paper surveys the research published on the machine interference problem since the 1985 review by Stecke & Aronson. After introducing the basic model, we discuss the literature along several dimensions. We then note how research has evolved since the 1985 review, including a trend towards the modelling of stochastic (rather than deterministic) systems and the corresponding use of more advanced queuing methods for analysis. We conclude with some suggestions for areas holding particular promise for future studies.Natural Sciences and Engineering Research Council (NSERC) Discovery Grant 238294-200
    • …
    corecore