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1 Predictive Group Maintenance for Multi-System Multi-

2 Component Networks

3 Abstract

4 Predictive maintenance has become highly popular in recent years due to the emergence of novel 

5 condition monitoring and data analysis techniques. However, the application of predictive maintenance 

6 at the network-level has not seen much attention in the literature. This paper presents a model for 

7 predictive group maintenance for multi-system multi-components networks (MSMCN). These 

8 networks are composed of multiple systems that are, in turn, composed of multiple components. In 

9 particular, the hierarchical structure of the MSMCN enables different representations of dependences 

10 at the network and system levels. The key novelty in the paper is that the designed approach combines 

11 analytical and numerical techniques to optimize the predictive group maintenance policy for MSMCNs. 

12 Moreover, we introduce a genetic algorithm with agglomerative mutation (GA-A) that enables a more 

13 effective evolution of the predictive group maintenance policy. Application of this model on a case 

14 study of a two-bridge network made of 23 different components shows a potential 11.27% reduction in 

15 maintenance cost, highlighting the model’s practical significance. 

16 Keywords: Maintenance, Decision Support, Multi-System Multi-Component Network, Predictive 

17 Group Maintenance, Dependence. 

18 1 Introduction

19 Predictive maintenance is a proactive maintenance policy that recommends a maintenance action based 

20 on predicted service life (or remaining useful life). Such predictions are based on evidence gathered 

21 through regular inspections or sensor-based condition monitoring. The increasing popularity of 

22 predictive maintenance stems from its potential to improve the reliability of systems and to reduce the 

23 whole-life cost and risks of the asset. The advantages of predictive maintenance could, however, be 

24 further magnified at a system-level if it is orchestrated by a systemic maintenance policy that aims to 

25 optimize system-wide maintenance solutions rather than solutions for the constituent assets or 

26 components. Up to now, systemic maintenance policies have been extensively studied in the context of 

27 preventive/planned maintenance, but the combination of such policies and predictive maintenance 

28 warrants more attention.

29 Systemic maintenance policies include three categories, namely selective maintenance, opportunistic 

30 maintenance, and group maintenance. Selective maintenance mainly serves the system with inactive 

31 periods between missions. This policy aims to select the components that should be repaired to 

32 guarantee the reliability of the system until the next inactive period. For instance, Liu and Huang [1] 

33 employed universal generating function to formulate a selective maintenance policy for a multi-state 
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1 system considering imperfect maintenance. Dao and Zuo [2] designed a selective maintenance policy 

2 for a multi-state series system considering s-dependence amongst components. Liu et al. [3] developed 

3 novel selective maintenance to maximize the probability of success of the next mission and optimized 

4 using a tailored ant colony algorithm.

5 Opportunistic maintenance policies aim to maintain components that satisfy specific criteria (usually 

6 described by age or number of experienced failures) during the opportunity created by the maintenance 

7 of other components. Compared to a preventive maintenance policy applied to the individual 

8 components (at their individually optimal maintenance time), opportunistic maintenance policies result 

9 in a lower cost for the system and helps improve system performance by reducing total downtime [4]. 

10 Such policies are seen to be effective even in the case of partial opportunities where the duration of the 

11 opportunity is shorter than the required maintenance duration of the selected components [5]. Xia et al. 

12 [6] presented a bi-level maintenance strategy to make real-time scheduling for batch production by 

13 connecting a multi-attribute model in the machine level and production-driven opportunistic 

14 maintenance in the system-level. Aizpurua et al. [7] designed prognostic-enhanced maintenance for 

15 complex dynamic systems with critical and non-critical assets by integrating stochastic activity 

16 networks and dynamic fault tree. It allows the maintenance of all failed non-critical components when 

17 a critical component fails.

18 Group maintenance policies aim to reduce the cost of maintenance by combining multiple maintenance 

19 activities with a shared setup cost or system downtime. Approaches for group maintenance policies can 

20 be classified into two categories: exact algorithms for series-parallel systems; and rolling-horizon 

21 approach for dynamic group maintenance. For deriving exact algorithms, Sheu and Jhang [8] proposed 

22 a generalized two-phase group maintenance policy for identical units and finds the optimal temporal 

23 separation between two phases and the ideal number of units for group maintenance that minimizes the 

24 expected long-run cost per unit time. Scarf and Cavalcante [9] formulated a hybrid block replacement 

25 and inspection policies for a -identical component series system, where the deterioration of 𝑛

26 components is modeled as a three-state failure model with a mixed Weibull distributed defect arrival 

27 time. The model was implemented in traction motor bearings on commuter trains. Ahmadi [10] jointly 

28 optimized the inspection, replacement, and maintenance for the maintenance schedule for deteriorating 

29 complex multi-component systems with proportional intensity model and age reduction model. Park 

30 and Yoo [11] modeled and analyzed the performance of three different types of group replacement 

31 policies with the minimum repair. Barron [12] has derived a closed-form expression for -failure, age 𝑚 𝑇

32 and  group replacement policies for multi-component cold standby systems composed by units (𝑚,𝑇,𝜏)

33 with phase-type distributed operation time. Yoo [13] presented a systematic method to optimize the 

34 cost rate for failure counting group maintenance. Barron and Yechiali [14] developed generalized 

35 control-limit preventive repair policies using dynamic programming and applied to a 1-out-of-N system 

36 with identical units whose lifetimes are modeled using phase-type distribution. Chalabi et al. [15] 
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1 developed a preventive maintenance grouping strategy for a series production system and optimized the 

2 availability and cost of the system using a particle swarm algorithm. Barron [16] derived a recursive 

3 algorithm from analyzing the availability of -out-of-N systems with multiple repairmen and phase-𝑅

4 distributed repair time. Ruiz-Castro [17] modeled a complex multi-state warm standby system with 

5 repairable and nonrepairable failure that are protected by preventive maintenance using a discrete 

6 marked Markov arrival process.

7 In the late 90s, Dekker et al. [18] and Wildeman et al. [19] opened up a successful way for developing 

8 dynamic policies for group maintenance activities using a rolling horizon approach for group 

9 replacement of a multi-component system. Do Van et al. [20] formulated a dynamic group maintenance 

10 policy with a view of the inactive periods of the system that gives rise to maintenance opportunities. 

11 The cost-effectiveness of the maintenance opportunities was demonstrated in a numerical example of a 

12 system constituted by five serially connected components. Genetic Algorithm (GA) is seen to be 

13 popular and effective to address dynamic group maintenance scheduling. Vu et al. [21] presented a 

14 group maintenance strategy for systems that constituted by serial, parallel, or k-out-of-n structures. A 

15 robust maintenance strategy was obtained for a 16-component system within a reasonable computing 

16 time by utilizing a rolling horizon. Do et al. [22] designed a group maintenance approach for serially 

17 connected systems with availability and repairmen constraints. GA and MULTIFIT were used to 

18 optimize the maintenance plan on a rolling horizon. Van Horenbeek and Pintelon [23] investigated the 

19 performance of a dynamic preventive maintenance policy for multi-component systems with economic 

20 dependence, structural dependence, and stochastic dependence. The approach showed a significant cost 

21 saving compared to conventional maintenance policies. Vu et al. [24] optimized the dynamic grouping 

22 strategy for complex multi-component systems using GA. Both corrective maintenance and preventive 

23 maintenance are formulated with a fixed duration. The model demonstrated that the maintenance 

24 duration has a more significant impact in the series-connected system than the parallel-connected 

25 system. 

26 In extant literature, the mainstream focuses on developing and improving group maintenance policies 

27 at a system-level, where the system consists of multiple components. However, developing a 

28 maintenance strategy at the network scale is more challenging because the systems within the network 

29 often have a considerable degree of heterogeneity stemming from their constituent components. 

30 Moreover, the economic dependence in hierarchical network configurations is diversified and may 

31 mainfest on the system level as well as the network level. A practical example of this is a network of 

32 bridges. More often than not, a bridge network encompasses of various types of bridges whose 

33 constituted components are different in quantity and type. Together with field experts, we have 

34 identified two opportunities for reducing the maintainence cost for such bridge networks: (i) sharing of 

35 setup cost by simultaneously maintaining components within the same bridge, and (ii) grouping 

36 maintenance activities across different bridges to reduce the downtime of the traffic in the network. In 
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1 this paper, we define ‘multi-system multi-component networks’ (MSMCN) as a network consisting of 

2 multiple systems that are, in turn, composed of multiple components. The MCMSN is an extension of 

3 multi-component systems. It has a hierarchical structure that is composed of three different levels, 

4 namely component-level, system-level, and network-level. The main objective of the paper is to 

5 exploiting the potential of group maintenance teamed with predictive maintenance in the MSMCN. The 

6 main contributions of the paper are listed as follows:

7 (1) We present a predictive group maintenance policy to proactively seek the potential benefits that 

8 could be gained by sharing the setup cost at the system-level as well as grouping downtime at 

9 the network-level (dual positive economic dependence). 

10 (2) Due to the dual-positive economic dependence, the overall maintenance cost function may 

11 contain deep local optima. To effectively break away from such local optimum, a novel GA-A 

12 algorithm is developed to improve the performance of optimization.

13 (3) The model formulates different types of operation interruptions caused by maintaining 

14 components with different criticalities. 

15 (4) The model emphasizes the heterogeneity amongst components that enables differentiated 

16 parameter setting for deterioration rates, maintenance costs, number of components, and their 

17 operating conditions. 

18 (5) Deterioration of the components is modeled as a continuous-time multi-state stochastic process. 

19 The deterioration model also highlights the influence of declining operating environment. 

20 The rest of the paper is organized as follows. An overview of the network characteristics and the 5-

21 stage rolling-horizon approach are described in Section 2. In section 3, we formulate a deterioration 

22 model for MSMCNs that considers different types of dependences at the system-level and network-

23 level. Furthermore, we design and optimize a predictive group maintenance policy by customizing a 

24 GA explicitly for such type of networks. In section 4, the model is applied to a case study of the 

25 predictive maintenance of bridge networks. The concluding remarks are summarized in section 5. 

26 2 Model characteristics

27 2.1 Problem description 

28 Notation 

 𝜆 (𝑣)
𝑛,𝑢(𝑖,0)

Deterioration rate of the component  in the system  at condition  under the rated 𝑢 𝑣 𝑖

operating environment

 𝜆 (𝑣)
𝑑,𝑢(𝑖,𝑗)

Deterioration rate of the component  in the system  from condition  under the 𝑢 𝑣 𝑖

level  detrimental influence of the operating environment𝑗𝑡ℎ
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 𝜆 (𝑣)
𝑓,𝑢(𝑖,𝑗)

Decline rate of operating environmental factor  for the component  in the system  𝑗 𝑢 𝑣

at condition 𝑖

 𝜆(𝑣)𝑖𝑛,𝑢 Rate of periodical inspection for the component  in the system 𝑢 𝑣

 1 𝜇(𝑣)𝑖𝑛,𝑢 Duration of inspection for the component  in the system 𝑢 𝑣

 𝐶(𝑣)𝑖𝑛,𝑢 Cost of inspection for the component  in the system 𝑢 𝑣

 1 𝜇(𝑣)𝑅,𝑢 Duration of replacement for the component  in the system 𝑢 𝑣

 𝐶(𝑣)𝑅,𝑢 Cost of replacement for the component  in the system 𝑢 𝑣

 1 𝜇(𝑣)𝑀,𝑢 Duration of major maintenance for the component  in the system 𝑢 𝑣

 𝐶(𝑣)𝑀,𝑢 Cost of major maintenance for the component  in the system 𝑢 𝑣

 1 𝜇(𝑣)𝑐,𝑢 Duration of minor maintenance for the component  in the system 𝑢 𝑣

 𝐶(𝑣)𝑐,𝑢 Cost of minor maintenance for the component  in the system 𝑢 𝑣

 𝐶(𝑣)𝑠 Set-up cost for major maintenance of components in the system 𝑣

 𝐶(𝑣)𝑙 Per unit time penalty cost of level operating interruption in the system 𝑙 𝑣

 𝑏(𝑣)𝑢 Major maintenance threshold of the component  in the system 𝑢 𝑣

 𝑓𝑎(𝑡|𝛼(𝑣)𝑢 ) Probability density distribution of absorbing time for the component  in the system 𝑢

given the initial condition state 𝛼(𝑣)𝑢

 𝐹𝑠(𝑡|𝛼(𝑣)𝑢 ) Cumulative distribution of surviving from the absorption for the component  in the 𝑢

system given the initial condition state 𝛼(𝑣)𝑢

 𝜏(𝑣)𝑢 Expected service life of the component  in the system 𝑢 𝑣

 𝛬(𝑣)𝑢 Transition rate matrix of amongst transitive states

 𝑇ℎ Finite planning horizon 

  ℋ(𝑡,𝛼(𝑣)𝑢 ) Expected cost of the component  in the system  over a  time period with initial 𝑢 𝑣 𝑡

condition state 𝛼(𝑣)𝑢

 𝒫(𝑣)
𝑢 ( ∙ ) Penalty cost function of the component  in the system 𝑢 𝑣

 𝐺(𝑣)𝑖
A set of maintenance events occur at the in the 𝑖𝑡ℎ unique maintenance timing 

system 𝑣
 𝒞𝑠(𝑮) Setup cost reduction by applying group maintenance strategy 𝑮

B Operational dependence matrix amongst the network 
 Γ𝑙(𝑡) Operational interruption cost in the network
 𝒞𝑙(𝑮) Operational interruption cost reduction by applying maintenance strategy 𝑮

 ℱ( ∙ ) Fitness function of the genetic algorithm 

1 The main objective of the paper is to design an approach to optimize the dynamic maintenance 

2 scheduling in MCMSNs by fully utilizing the dual positive economic dependence at the system-level 

3 and the network-level. 
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1 At the component-level, individual components deteriorate stochastically, and this is modeled using 

2 continuous-time Markov chain (CTMC). CTMC assumes the sojourn time at each state is exponentially 

3 distributed. The parameterization of the model mainly relies on the knowledge of the expected time of 

4 staying in each condition state. For instance, in the case of bridges, such information is assessible from 

5 regular inspections. Components of bridges are reliable, and have few records of failures. Thus, their 

6 failure rates might be regarded as ‘unobservable.’ Moreover, their lifetime distribution could be 

7 modified by preventive maintenance actions. 

8 For systems constituted by components with long designed lifetime, the risk of deterioration being 

9 subject to a declining operating environment is non-negligible. For instance, excessive chloride-ion and 

10 moisture in the environment beyond a certain threshold will cause accelerated chloride-induced 

11 deterioration on reinforced concrete. In our model, the operating environment is modeled as an external 

12 factor, and condition of components is conditionally independent, given the observation of the external 

13 factor. 

14 A condition-based maintenance (CBM) policy with periodic inspection is designed for components. 

15 The policy recommends a suitable maintenance action based on the information obtained through 

16 periodic inspection [25]. Two types of maintenance could be carried out based on the condition: major 

17 maintenance and minor maintenance. Major maintenance can eliminate the accumulated damage in the 

18 component and restore its condition to as good as new state. The downtime caused by major 

19 maintenance can result in different levels of interruptions in the system depending on the criticality and 

20 functionality of components. For example, major maintenance on a bearing of a bridge can result in 

21 lane closure, while major maintenance on the spandrel wall can result in hard-shoulder closure (less 

22 impact on traffic). The cost of major maintenance contains three parts, which are set up cost, 

23 maintenance cost, and downtime cost. Minor maintenance, such as anti-corrosion printing, refines the 

24 operating environment or improves the resistance against environmental hazards. Unlike major 

25 maintenance, it does not disrupt the operation of the system. If the component is left unattended, it will 

26 fail, upon which it will be replaced. The major maintenance activity and replacement are “renewal” 

27 activities, since they set the condition of the component back to as good as new state. 

28 Setup cost can be shared if multiple components within the same system are maintained simultaneously. 

29 This represents a positive economic dependence at the system level. If the system is subject to different 

30 levels of operation interruptions, the highest-level operation interruption will have a dominated effect 

31 over other level of operation interruptions over its effective period. The downtime of a system may also 

32 influence the operation of other systems. For instance, the lane closure of a bridge may completely or 

33 partially influence the traffic of other bridges depending on the network configuration. Thus, a positive 

34 economic dependence is attainable through reducing the overall traffic interruption amongst the 
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1 network by a mean of superimposing the downtime durations caused by maintenance activities in 

2 different systems. 

3 The overall structure of the MSMCN is illustrated in Figure 1.
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5 Figure 1: Structure of the MSMCN where  indicates the  system in the network and  refers to 𝑆𝑣 𝑣𝑡ℎ 𝑐(𝑣)𝑢

6 the component  in the  system  𝑢 𝑣𝑡ℎ

7 The assumptions of the model are listed below:

8 (1) Deterioration of components is modeled as a continuous-time multi-state stochastic process. 

9 The sojourn time at each state is exponentially distributed.

10 (2) Operating environment declines over time in a stochastic manner that may result in an excessive 

11 deterioration of components. The operating environment could be discretized into an arbitrary 

12 finite level. 

13 (3) Minor maintenance improves the resistance of the component against the detrimental effect of 

14 the declined operating environment. Major maintenance restores the condition of the 

15 component to as good as new state.

16 (4) Downtime of components could cause different levels of operation interruption in the 

17 superordinate system that may influence or partially influence the operation of other systems.

18 (5) The setup cost is shareable for components within the same system. 

19 (6) In the same system, the higher-level operation interruption dominates the lower level operation 

20 interruption.
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1 (7) Penalty function of components follows the long-term shift assumption. It implies that 

2 postponing/advancing a maintenance timing will result in a postponing/advancing of sequential 

3 maintenance timings so that the expected service life of the component remains the same.

4 2.2 Overview of the modeling approach

5 We have structured our modeling approach into 5 stages. 

6 Stage 1: Maintenance model for components. Stage 1 formulates the deterioration of components and 

7 optimizes the CBM threshold with respect to the long-term average cost. In particular, this stage delivers 

8 the optimal condition-based maintenance policy, i.e., the optimal states for the minor and major 

9 maintenance actions to be carried out. We use a continuous-time Markov chain (CTMC) to formulate 

10 the deterioration of components due to its practicality, mathematical tractability as well as 

11 generalizability when combined with a phase-type approximation. The deterioration rates of 

12 components can be quantified by the sojourn time in a particular condition state, which can be observed 

13 by general inspection. This stage requires recalculation only when the parameter setting of the 

14 deteriorating components needs to be readjusted.

15 Stage 2: Phase-type prediction. Stage 2 predicts the optimal time to maintenance for each component, 

16 based on its latest inspection and outputs from stage 1. Due to the stochastic nature of components’ 

17 deterioration, a component may deteriorate faster or slower than expected. Phase-type prediction is 

18 applied in stage 2 to predict the time to major maintenance and replacement, as well as their probability 

19 densities. Due to the Markov property, stage 2 only needs to be recalculated when a change in condition 

20 state is detected by inspections. 

21 Stage 3: Calculation of the penalty cost function. Because of the dependence within the MSMCN, it is 

22 more favorable to collaboratively plan maintenance activities at the network-level. Thus, the optimal 

23 maintenance timing for the network may deviate from the optimal maintenance timing of each 

24 component calculated from stage 2. This stage derives the penalty function that will be used to compute 

25 the cost of advancing or postponing a maintenance activity in stage 4. 

26 Stage 4: Group maintenance. Group maintenance takes advantage of the positive economic dependence 

27 at both the system-level and the network-level. It allows shifting the tentatively planned maintenance 

28 timing of components into a joint execution of activities to reduce setup cost and operation interruption. 

29 However, the shifts in maintenance timing are penalized according to the penalty function in stage 3. 

30 Hence, this stage essentially evaluates the trade-off between the penalty cost and the benefit of grouping 

31 due to lower costs of setup or operational disruption. Group maintenance is aimed at finding the most 

32 cost-effective way of combining different maintenance activities. 

33 Stage 5: Rolling horizon. Rolling horizon is a well-established approach to reduce the computational 

34 complexity of scheduling [26]. It is an iterative process that decomposes long-term scheduling into 
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1 multiple planning periods and integrates them in a rolling horizon manner. In each iteration, it imposes 

2 the maintenance schedule only for the current planning horizon. The condition states of components at 

3 the end of the current planning horizon will be estimated and updated to schedule the maintenance in 

4 the next planning horizon by repeating stage 2, 3, and 4. By applying this process, we can explore 

5 maintenance planning in a long time span with low computational complexity.

6 3 Model formulation

7 We now present the mathematical formulation of the predictive group maintenance approach stage by 

8 stage. Illustrative examples are employed to provide a better understanding of each stage and 

9 demonstrate the intermediate results.

10 3.1 Modeling the deterioration and maintenance of components 

11 To pinpoint all the non-identical components and systems in the network, we use subscript  and 𝑢

12 superscript  to for indexing the components and systems respectively. The condition of a component 𝑣

13 is characterized by both indices  and  with a state-space . 𝑖 𝑗 𝕊(𝑣)
𝑢 ∈ {(0(𝑣),0(𝑣)),…,(𝑖(𝑣),𝑗(𝑣)),…,(𝑘(𝑣)

𝑢 ,𝑚(𝑣)
𝑢 )}

14 The index , where indicates that the component is in ‘as good as new’ 𝑖 ∈ {0(𝑣),1(𝑣),…, 𝑘(𝑣)
𝑢 } 𝑖 = 0(𝑣) 

15 state;  denotes the failure state, and the other values of  represent the progressively deteriorating 𝑖 = 𝑘(𝑣)
𝑢 𝑖

16 condition of the component prior to failure. Additionally,  is a comprehensive factor that represents 𝑗

17 different deterioration mechanisms caused by the declining environment, increasing loading or 

18 deteriorating of other components. We assume  can be discretized as , and given  𝑗 𝑗 ∈ {0(𝑣),1(𝑣),…, 𝑚(𝑣)
𝑢 }

19 j the deteriorations of different components are d-separated. The state transition diagram is illustrated 

20 in Figure 3. Comparing with the standard Markovian model for the multi-state system, the model has 

21 explanatory power for characterizing the heterogeneity of deterioration rates caused by different 

22 deterioration mechanisms under different operating environments. In our model, deterioration 

23 mechanisms are formulated as deterioration paths. The transition between deterioration paths may 

24 happen in a stochastic manner. The deterioration rate of components is therefore related to the 

25 deterioration paths, which manifest a non-memoryless deteriorating behaviour.



10

1  

...

...

...

.

.

.

.

.

.

.

.

.

.

.

.

( ) ( )0 ,0v v ( ) ( ),0v v
uk( ) ( )1 ,0v v

( ) ( )0 ,1v v ( ) ( )1 ,1v v ( ) ( ),1v v
uk

( )( )0 , v
u

v m ( )( )1 , v
u

v m ( ) ( ),v v
u uk m

( )
, (0,0)
v

n u� ( )
, (1,0)
v

n u� ( )
, ( 1,0)u

v
n u k� 

( )
, (0,0)
v

f u� ( )
, (1,0)
v

f u� ( )
, ( 1,0)u

v
f u k� 

( )
, (0,1)
v

d u� ( )
, (1,1)
v

d u�

( )
, ( 1,1)u

v
f u k� 

( )
, (1,1)
v

f u�( )
, (0,1)
v

f u�

( )
, ( 1,1)u

v
d u k� 

( )
, (1, )u

v
d u m�( )

, (0, )u

v
d u m� ( )

, ( 1, )u u

v
d u k m� 

( ) ( )1,0v v
uk 

( ) ( )1,1v v
uk 

( ) ( )1,v v
u uk m

2 Figure 3: State transition diagram for components

3 We assume the sojourn times of each state are exponentially distributed. Thus, the deterioration process 

4 is formulated as a CTMC. In the case of non-exponentially distributed sojourn times, some treatments 

5 such as phase-type approximation can be applied to offer an approximated solution [27], [28] and [29]. 

6 We represent the deterioration rate of the component at the rated operating condition and under 

7 detrimental influences by  and  respectively. The decline rate of the external factor is 𝜆 (𝑣)
𝑛,𝑢(𝑖,𝑗) 𝜆 (𝑣)

𝑑,𝑢(𝑖,𝑗)

8 represented by . All  states are absorbing states and represent the deterioration failure 𝜆 (𝑣)
𝑓,𝑢(𝑖,𝑗) (𝑘(𝑣)

𝑢 ,𝑗)∀𝑗
9 states. Without loss of generality, all absorbing states can be aggregated into a single state. When the 

10 component reaches the failure state, a replacement will be applied immediately to bring the component 

11 to as good as new state. The duration and cost of replacement are  and  respectively. To 1 𝜇(𝑣)
𝑅,𝑢 𝐶(𝑣)

𝑅,𝑢

12 preserve the serviceability of the component, CBM with periodic inspections is employed. Figure 4 

13 represents the state transition diagram of the CBM policy for the component whose deterioration can 

14 be described as Figure 3.

15 Components are inspected periodically with a rate . If the condition of the component has passed 𝜆 (𝑣)
𝑖𝑛, 𝑢

16 a predefined threshold, major maintenance will be applied to bring back the condition of the asset to as 

17 good as new state. The cost of major maintenance is  with a duration . Every major 𝐶 (𝑣)
𝑀, 𝑢

1 𝜇 (𝑣)
𝑀, 𝑢

18 maintenance and replacement entail a setup cost. The setup cost  is only charged once for major 𝐶(𝑣)
𝑠

19 maintenances at the same timing and within the same system. During the time of major maintenance or 

20 replacement of a component, it may cause different types of operation disruptions at the system and 

21 network-level. We denote the per unit time penalty cost of operation interruption caused by the 

22 downtime of a component in system  as . 𝑣 𝑐(𝑣)
𝑙

23 To prolong the service life of components, minor maintenance can be implemented to protect the 

24 components against the external factor (e.g., declining environmental conditions). The cost of minor 
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1 maintenance is  with a duration . Minor maintenance can mitigate the detrimental effect of 𝐶(𝑣)
𝑐, 𝑢

1 𝜇(𝑣)
𝑐, 𝑢

2 external factors or increase the protection level against the external risks so that the deterioration rate 

3 of the component will be restored to a normal pace. This model is, in essence, the same as that presented 

4 in Liang and Parlikad [30]. We have briefly summarised the model formulation here for clarity. In 

5 particular, we have used the transition rates between the different deterioration paths to represent the 

6 declining rate of operating environment. The state transition diagram of the model for component  in 𝑢

7 system  is illustrated in Figure 4.𝑣
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9 Figure 4: State transition diagram including maintenance for component  in system 𝑢 𝑣

10 The objective of this stage is to find the optimal condition threshold  to minimize the long-term 𝑏(𝑣) ∗
𝑢

11 average cost of the CBM. Using equation (1), we can calculate the long-term time-average cost for a 

12 component with any given .𝑏(𝑣)
𝑢
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𝐶(𝑣)
𝑢 (𝑏(𝑣)

𝑢 ) = 𝐶 (𝑣)
𝑖𝑛,𝑢𝜇 (𝑣)

𝑖𝑛,𝑢

𝑘(𝑣)
𝑢 ‒ 1

∑
𝑖 = 0

2

∑
𝑗 = 1

𝜋(𝑖(𝑣)
𝑢 ,𝑚(𝑣)

𝑢 + 𝑗) + 𝐶(𝑣)
𝑐,𝑢𝜇(𝑣)

𝑐,𝑢

𝑏(𝑣)
𝑢

∑
𝑖 = 0

𝜋(𝑖(𝑣)
𝑢 ,𝑚(𝑣)

𝑢 + 3)

+ [𝑐(𝑣)
𝑙 + (𝐶(𝑣)

𝑠 + 𝐶 (𝑣)
𝑀,𝑢)𝜇 (𝑣)

𝑀,𝑢]
𝑘(𝑣)
𝑢 ‒ 1

∑
𝑖 = 𝑏(𝑣)

𝑢 + 1

𝜋(𝑖(𝑣)
𝑢 ,𝑚(𝑣)

𝑢 + 3) + [𝑐(𝑣)
𝑙 + (𝐶(𝑣)

𝑠 + 𝐶(𝑣)
𝑅,𝑢)𝜇(𝑣)

𝑅,𝑢]𝜋(𝑘

(𝑣)
𝑢 ,0(𝑣))

(1)

1

2 The lifecycle cost rate of components is a sum of four parts – inspection cost, minor maintenance cost, 

3 costs induced by major maintenance and replacement. The costs induced by major maintenance and 

4 replacement have a similar structure, which consists of the operation interruption cost, setup cost, and 

5 major maintenance/replacement cost.

6 Here  indicates the steady-state probability of staying in condition state  that can be calculated 𝜋(𝑖,𝑗) (𝑖,𝑗)

7 by solving the system equilibrium as shown in the appendix B. As demonstrated in the [30], the steady-

8 state probabilities could be expressed analytically in a recursive manner. In [31], Liang and Parlikad 

9 have shown that even some systems with stochastic dependence can be converted to this configuration 

10 through state aggregation and then solved analytically. Based on equation (1), the long-term time-

11 average cost with different major maintenance thresholds  can be calculated. We refer the minimum 𝑏(𝑣)
𝑢

12 long-term maintenance cost at the optimized threshold as . The minimized long-term maintenance 𝐶(𝑣) ∗
𝑢

13 cost is utilized as a part of the penalty cost function to mitigate the instability caused by the changing 

14 of the planning horizon. 

15 3.2 Phase-type prediction

16 Phase-type prediction is performed to estimate the time of maintenance based on the latest inspection 

17 for each component. As the deterioration and maintenance model is formulated by a CTMC, we use 

18 phase-type distribution for prediction and optimization. The maintenance model in Figure 4 contains 

19  states. To calculate the time to major maintenance and replacement, we express the 𝑘(𝑣)
𝑢 (𝑚(𝑣)

𝑢 + 4) + 1

20 states  as absorbing states and the rest of the states as transient states. {(𝑘(𝑣)
𝑢 ,0(𝑣))⋃𝑘(𝑣)

𝑢 ‒ 1
𝑖 = 𝑏(𝑣)

𝑢 + 1(𝑖,𝑚(𝑣)
𝑢 + 3)}

21  contains the information of transition rates amongst all transient states. In our model, the number 𝛬(𝑣)
𝑢

22 of transitive states  is . Hence,  is a  matrix, whose diagonal 𝑛𝑇 𝑘(𝑣)
𝑢 𝑚(𝑣)

𝑢 + 3𝑘(𝑣)
𝑢 + 𝑏(𝑣)

𝑢 + 2 𝛬(𝑣)
𝑢 𝑛𝑇 × 𝑛𝑇

23 elements are negative and non-diagonal elements are non-negative. Thus, the holding time at each state 

24 is exponentially distributed with a rate that is equal to the diagonal elements.  and  are vectors 𝛬 (𝑣)
𝑀,𝑢 𝛬(𝑣)

𝐹,𝑢

25 that contain the information about the absorbing rates to major maintenance states and replacement state 

26 respectively. Note that , where  is a vector of 1’s with the matching dimension.𝛬 (𝑣)
𝑀,𝑢 + 𝛬(𝑣)

𝐹,𝑢 =‒ 𝛬(𝑣)
𝑢 𝟏 𝟏

27 Vector  is a vector that represents the inspected condition of the component  in the system . 𝛼(𝑣)
𝑢 𝑢 𝑣

28 Apparently, this approach is applicable to both perfect information and imperfect information. If the 
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1 information from the inspection is perfect, the vector  will contain a singular 1 and rest are 0. If the 𝛼(𝑣)
𝑢

2 inspection contains uncertainty, then  could contain multiple non-zero probabilities with a sum 𝛼(𝑣)
𝑢

3 equal to 1. Under this formulation, the probability density of absorbing time is given by:

𝑓𝑎(𝑡│𝛼(𝑣)
𝑢 ) = 𝛼(𝑣)

𝑢 𝑒
𝛬(𝑣)

𝑢 𝑡(𝛬 (𝑣)
𝑀,𝑢 + 𝛬(𝑣)

𝐹,𝑢) =‒ 𝛼(𝑣)
𝑢 𝑒

𝛬(𝑣)
𝑢 𝑡(𝛬(𝑣)

𝑢 𝟏) (2)

4 The cumulative distribution of surviving from the absorption is calculated as:

𝐹𝑆(𝑡│𝛼(𝑣)
𝑢 ) = 1 ‒∫𝑡

0
𝑓𝑎(𝑡│𝛼(𝑣)

𝑢 )𝑑𝑡 = 𝛼(𝑣)
𝑢 𝑒

𝛬(𝑣)
𝑢 𝑡𝟏

(3)

5 The expected service life of the component  can be calculated with a similar approach.𝜏(𝑣)
𝑢

𝜏(𝑣)
𝑢 =∫∞

0
𝑡𝑓𝑎(𝑡│𝛼0)𝑑𝑡 (4)

6 where  indicates that the component starts at as good as new state. To clarify, we provide 𝛼0 = [1,0,0,…]

7 a simple illustrative example, when ,  and . The absorbing Markov chain of this 𝑏 = 0 𝑚 = 1, k = 2

8 example is illustrated in Figure 5. 

9
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10 Figure 5: An illustrative case for phase-type prediction

11 Based on Figure 5, we can construct the matrix , , and  as:𝛬(𝑣)
𝑢 𝛬 (𝑣)

𝑀,𝑢 𝛬(𝑣)
𝐹,𝑢

12 𝛬(𝑣)
𝑢 =

13 , [
‒ (𝜆 (𝑣)

𝑛,𝑢(0,0) + 𝜆 (𝑣)
𝑓,𝑢(0,0) + 𝜆 (𝑣)

𝑖𝑛,𝑢) 𝜆 (𝑣)
𝑓,𝑢(0,0) 𝜆 (𝑣)

𝑖𝑛,𝑢 0 0 𝜆 (𝑣)
𝑛,𝑢(0,0) 0 0

0 ‒ (𝜆 (𝑣)
𝑑,𝑢(0,1) + 𝜆 (𝑣)

𝑖𝑛,𝑢) 0 𝜆 (𝑣)
𝑖𝑛,𝑢 0 0 𝜆 (𝑣)

𝑑,𝑢(0,1) 0
𝜇 (𝑣)
𝑖𝑛,𝑢 0 ‒ 𝜇 (𝑣)

𝑖𝑛,𝑢 0 0 0 0 0
0 0 0 ‒ 𝜇 (𝑣)

𝑖𝑛,𝑢 𝜇 (𝑣)
𝑖𝑛,𝑢 0 0 0

𝜇(𝑣)
𝑐,𝑢 0 0 0 ‒ 𝜇(𝑣)

𝑐,𝑢 0 0 0
0 0 0 0 0 ‒ (𝜆 (𝑣)

𝑛,𝑢(1,0) + 𝜆 (𝑣)
𝑓,𝑢(1,0) + 𝜆 (𝑣)

𝑖𝑛,𝑢) 𝜆 (𝑣)
𝑓,𝑢(1,0) 𝜆 (𝑣)

𝑖𝑛,𝑢
0 0 0 0 0 0 ‒ (𝜆 (𝑣)

𝑑,𝑢(1,1) + 𝜆 (𝑣)
𝑖𝑛,𝑢) 𝜆 (𝑣)

𝑖𝑛,𝑢
0 0 0 0 0 0 0 ‒ 𝜇 (𝑣)

𝑖𝑛,𝑢

]
14  and . With the parameter setting, 𝛬 (𝑣)

𝑀,𝑢 = [0,0,0,0,0,0,0,𝜇 (𝑣)
𝑖𝑛,𝑢]𝑇 𝛬(𝑣)

𝐹,𝑢 = [0,0,0,0,0,𝜆 (𝑣)
𝑛,𝑢(1,0),𝜆 (𝑣)

𝑑,𝑢(1,1),0]𝑇 𝑓𝑎
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1 ,  and  can be calculated by using equation (2) to (4) and output to stage 3 for (𝑡│𝛼(𝑣)
𝑢 ) 𝐹𝑆(𝑡│𝛼(𝑣)

𝑢 ) 𝜏(𝑣)
𝑢

2 calculating the penalty cost function. 

3 3.3 Calculation of the penalty cost function 

4 Stage 3 computes the penalty cost of deviating from the predictive optimal maintenance timing. For 

5 each component, the penalty cost function is calculated within a predefined finite time horizon . In 𝑇ℎ

6 this stage, we assume that a shift of the first predicted maintenance timing will not influence the 

7 succeeding CBM policy and the optimized major maintenance threshold stays the same. As a result, the 

8 timing of subsequent maintenance will be changed accordingly to ensure that the expected service time 

9 of the component  remain unchanged. Such an assumption is similar to the long-term shift 𝜏(𝑣)
𝑢

10 assumption used in [19]. An illustration of this long-term shift is shown in Figure 6.

11  
0 t

Phase-type prediction

Long-term shift

: Major maintenance

hT

hT

t

t

( )v
u�� ( )v

u��

( )v
u��

( )v
u��

12 Figure 6: Long-term shift of component in a finite planning horizon 𝑇ℎ

13 It is ideal to have a penalty cost function that is compact and robust in the context of a changing planning 

14 horizon. To this end, we have designed a novel penalty cost function complemented by the optimized 

15 CBM policy. First, we separately construct cost functions for components in  under two scenarios. 𝑇ℎ

16 Scenario 1 represents the expected cost when the first lifecycle is ended and is followed by a major 

17 maintenance activity, while scenario 2 represents the first lifecycle is terminated and is followed by a 

18 replacement.

19 Scenario 1: In scenario 1, the expected cost is a sum of three parts. The first is the expected inspection 

20 and minor maintenance cost before the first renewal time t. The second expresses the cost of major 

21 maintenance, setup cost, and operation interruption cost caused by the major maintenance. The third 

22 part is the cost incurred between the finishing time of the first major maintenance and the end of the 

23 planning horizon, assuming continued implementation of the optimal CBM maintenance policy 

24 developed in stage 1. More formally, the expected cost function of scenario 1 can be expressed as 

25 follows:
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𝒽1(𝑡,𝑎) ≡ 𝑡[𝐶 (𝑣)
𝑖𝑛,𝑢𝜇 (𝑣)

𝑖𝑛,𝑢

𝑏(𝑣) ∗
𝑢

∑
𝑖 = 𝑎

2

∑
𝑗 = 1

𝜋(𝑖,𝑚(𝑣)
𝑢 + 𝑗) + 𝐶(𝑣)

𝑐,𝑢𝜇(𝑣)
𝑐,𝑢

𝑏(𝑣) ∗
𝑢

∑
𝑖 = 𝑎

𝜋(𝑖,𝑚(𝑣)
𝑢 + 3)] + (𝐶 (𝑣)

𝑀,𝑢 + 𝐶(𝑣)
𝑠 +

𝑐(𝑣)
𝑙

𝜇 (𝑣)
𝑀,𝑢

)
+ (𝑇ℎ ‒ 𝑡 ‒ 1

𝜇 (𝑣)
𝑀,𝑢

)𝐶(𝑣) ∗
𝑢

(5)

1 where  indicates the condition revealed by the latest inspected condition. Due to the long-term shift 𝑎

2 assumption, the calculation of the third part is a straightforward product of the time to planning horizon 

3 and the optimized long-term time-average cost obtained from stage 1. By designing the penalty cost 

4 function in such fashion, the optimization no longer yields solutions in favour of postponing major 

5 maintenance activities immediately after the planning horizon, which are harmful for the reliability of 

6 the network in the next planning horizon. Hence, the solution will be more robust to the moving 

7 planning horizon. 

8 Scenario 2: Scenario 2 indicates that the first renewal is a replacement at time . The expected cost in 𝑡

9 scenario 2 given the component fails at  is expressed in equation (6)𝑡

𝒽2(𝑡,𝑎) ≡ 𝑡[𝐶 (𝑣)
𝑖𝑛,𝑢𝜇 (𝑣)

𝑖𝑛,𝑢

𝑏(𝑣) ∗
𝑢

∑
𝑖 = 𝑎

2

∑
𝑗 = 1

𝜋(𝑖,𝑚(𝑣)
𝑢 + 𝑗) + 𝐶(𝑣)

𝑐,𝑢𝜇(𝑣)
𝑐,𝑢

𝑏(𝑣) ∗
𝑢

∑
𝑖 = 𝑎

𝜋(𝑖,𝑚(𝑣)
𝑢 + 3)] + (𝐶(𝑣)

𝑅,𝑢 + 𝐶(𝑣)
𝑠 +

𝑐(𝑣)
𝐿

𝜇(𝑣)
𝑅,𝑢

)
+ (𝑇ℎ ‒ 𝑡 ‒ 1

𝜇(𝑣)
𝑅,𝑢

)𝐶(𝑣) ∗
𝑢

(6)

10 Differences between scenarios 1 and 2 are mainly manifest in three aspects: 

11 (1) In scenario1, the first renewal cycle is terminated by the major maintenance, but the second 

12 scenario is ended by the replacement. 

13 (2) The costs at the end of the first renewal cycle are different. The cost in the first scenario is 

14 associated with the major maintenance cost. The cost in the second scenario is associated with 

15 the replacement cost.

16 (3) Because the duration of the major maintenance and the replacement are different, the remaining 

17 times to the planning horizon are also different.

18 Mathematically speaking, replacement and major maintenance are both renewals. Using equations (5) 

19 and (6), the expected cost within the planning horizon ( ) when the first renewal action happens 𝑡 ≤ 𝑇ℎ

20 at time  is expressed as follows:𝑡

ℋ(𝑡,𝛼(𝑣)
𝑢 ) ≡∫𝑡

0
𝑓𝑎(𝜏│𝛼(𝑣)

𝑢 )[𝜑1𝒽1(𝜏,𝛼(𝑣)
𝑢 ) + 𝜑2𝒽2(𝜏,𝛼(𝑣)

𝑢 )]𝑑𝜏 + 𝐹𝑠(𝑡│𝛼(𝑣)
𝑢 )𝒽1(𝑡,𝛼(𝑣)

𝑢 ) (7)

21 where  and . We denote the 𝜑1 = 𝟏 ∙ 𝛬 (𝑣)
𝑀,𝑢[𝟏 ∙ 𝛬 (𝑣)

𝑀,𝑢 + 𝟏 ∙ 𝛬(𝑣)
𝐹,𝑢] ‒ 1 𝜑2 = 𝟏 ∙ 𝛬(𝑣)

𝐹,𝑢[𝟏 ∙ 𝛬 (𝑣)
𝑀,𝑢 + 𝟏 ∙ 𝛬(𝑣)

𝐹,𝑢] ‒ 1

22 anticipated optimal time to the first major maintenance that minimizes  as . It is worth ℋ(𝑡,𝛼(𝑣)
𝑢 ) 𝑡 ∗
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1 highlighting that minimizing the  function based on the component’s current condition is identical to ℋ

2 predicting the timing of major maintenance for optimizing the lifecycle cost.

3 If the component will only experience one renewal incident (either major maintenance or replacement) 

4 in the planning horizon, then the of penalty cost of shifting  from  can be computed as:∆𝑡1 𝑡 ∗

5 𝒫(𝑣)
𝑢 (∆𝑡1) = ℋ(𝑡 ∗ + ∆𝑡1,𝛼(𝑣)

𝑢 ) ‒ℋ(𝑡 ∗ ,𝛼(𝑣)
𝑢 )

6 If the planning horizon is significantly longer than the expected service lifetime, the component may 

7 undergo multiple major maintenance actions. In this case, we need to calculate the penalty function as 

8 a sequence of time shifts in different service lifecycles. We express the sequence of time shifts as . ∆𝒕

9 The time shift required for the th renewal cycle within the finite planning horizon is represented by . 𝑖 ∆𝑡𝑖

10 Due to the assumption of the long-term shift assumption, the change of  on the time to the th major ∆𝑡𝑖 𝑖

11 maintenance will also cause subsequent shifts on later major maintenances. Therefore, we can calculate 

12 the overall penalty cost for a component that is subject to a sequence of maintenance timing shifts within 

13 the planning horizon as: 

𝒫(𝑣)
𝑢 (∆𝒕) =

Θ

∑
𝑖 = 1

𝒫(𝑣)
𝑢 ( 𝑖

∑
𝑗 = 1

∆𝑡𝑗) (8)

14 where  is the number of maintenances within the planning horizon  is a ceiling function that Θ 𝑇ℎ

15 expresses as . The penalty cost function for each component will be passed to stage 4 for ⌊𝑇ℎ ‒ 𝑡 ∗𝜏(𝑣)
𝑢
⌋

16 evaluating the cost of group maintenance policies. 

17 3.4 Group maintenance

18 Group maintenance is carried out to group different predicted timings of major maintenance into a joint 

19 execution to gain an overall cost reduction in system-level or network-level through the positive 

20 economic dependence. As group maintenance may shift the time of component maintenance away from 

21 the optimal predicted time of the individual component, the penalty cost of this action in the finite 

22 planning horizon needs to be evaluated. Whether the positive economic dependence can offset the 

23 penalty cost is an essential benchmark for group maintenance. Two types of positive economic 

24 dependences are formulated: setup dependence at the system-level and operation interruption 

25 dependence at the network-level. We aim to predictively group different maintenance activities to fully 

26 exploit the positive economic dependences. 

27 3.4.1 Setup dependence 

28 For the MSMCN, we need to formulate the dependence at both the system-level and the network-level. 

29 Setup cost represents the expenditure on designing of the maintenance process and preparing of 

30 maintenance resources. By simultaneously maintaining multiple components within the same system, 
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1 the setup cost can be shared by designing and preparing jointly. First, we denote a set  that contains 𝑮

2 the information of the starting time of all the maintenance activities in the network within the planning 

3 horizon.  indicates the  unique timing of maintenance. If two or more maintenance activities in the 𝐺𝑖 𝑖𝑡ℎ

4 same system have the same timing, it implies they are grouped.  contains a collection of the 𝐺(𝑣)
𝑖

5 maintenance events of all components in the  system that occurs at the  unique maintenance timing. 𝑣𝑡ℎ 𝑖𝑡ℎ

6 If more than one component from the system  requires maintenance at the same time, then the reduction 𝑣

7 of setup cost will be equal to the number of maintenance activities minus one. If we denote the setup 

8 cost in the system  as , then the overall setup cost reduction with the group maintenance strategy 𝑣 𝐶(𝑣)
𝑠

9  can be expressed as follows:𝑮

𝒞𝑠(𝑮) =
‖𝑮‖

∑
𝑖 = 1

𝑉

∑
𝑣 = 1

[𝐶(𝑣)
𝑠 (‖𝐺(𝑣)

𝑖 ‖ ‒ 1)] (9)

10 where  represents the cardinality of .‖𝑮‖ 𝑮

11 3.4.2 Penalty cost caused by operation interruption

12 In the network-level, the penalty cost caused by operation interruption is calculated by integrating the 

13 temporal profiles of systems’ downtime under three different scenarios. Two assumptions are applied 

14 to simplify the calculation. First, the high-level operation interruption dominates low-level operation 

15 interruption in the same system. For instance, if a bridge requires both contraflow or lane closure at the 

16 same time, the calculation will only consider the contraflow. Second, the setup cost is significantly 

17 larger than the penalty cost of shifting maintenance timing in a scale of maintenance duration. This 

18 implies that for a group of maintenance with overlapped durations, it is always beneficial to start all 

19 maintenance activities at the same time. 

20  indicates all possible levels of operation interruptions in the network. Without ℒ = {𝑙𝑖| 1 ≤ 𝑖 ≤ 𝐿,𝑖 ∈ ℕ}

21 loss of generality, we relabel and rank  in descending order of level of operation interruptions as ℒ 𝑙1 > 𝑙2

22 . For each , the associated cost per unit time caused by the downtime in the system  is . … > 𝑙𝐿 𝑙𝑖 𝑣 𝑐(𝑣)
𝑙𝑖

23 Hence, the overall downtime cost of the system  can be expressed as: 𝑣

24 𝑐(𝑣)
𝑙 = 𝑐(𝑣)

𝑙1 ( 1
𝜇(𝑣)
1,𝑀

) +
𝐿

∑
𝑖 = 2

{𝑐(𝑣)
𝑙𝑖 [ 1
𝜇(𝑣)
𝑖,𝑀

‒ max ( 1
𝜇(𝑣)
𝑗,𝑀

|∀1 < 𝑗 < 𝑖,𝑗 ∈ 𝕫)]}1 +

25 where  is a step function as:1 +

26 1 + = {1,  
1
𝜇(𝑣)
𝑖,𝑀

‒ 𝑚𝑎𝑥 ( 1
𝜇(𝑣)
𝑗,𝑀

|∀1 < 𝑗 < 𝑖,𝑗 ∈ 𝕫) > 0

0,  
1
𝜇(𝑣)
𝑖,𝑀

‒ 𝑚𝑎𝑥 ( 1
𝜇(𝑣)
𝑗,𝑀

|∀1 < 𝑗 < 𝑖,𝑗 ∈ 𝕫) ≤ 0
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1 To bring the mathematical expression back to life, we provide an example as illustrated in Figure 7(a).

2
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t

t

Component 2
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(a) (b)

b13 b31

b12 b21

b23 b32

3 Figure 7: An illustrative example of synthesizing operation interruption in a three-component system 

4 (a) and a three-system network (b)

5 Figure 7(a) demonstrates group maintenance of three components in system 1. In this case, the overall 

6 downtime cost of the system in Figure 7(a) is: 

7 𝑐(𝑣)
𝑙 = 𝑐(𝑣)

𝑙1 ( 1
𝜇(𝑣)
1,𝑀

) + 𝑐(𝑣)
𝑙2 ( 1
𝜇(𝑣)
2,𝑀

‒
1
𝜇(𝑣)
1,𝑀

)
8 Moreover, knowing the expression of downtime cost of maintenance and its duration, the temporal 

9 profile can be obtained and represented as .𝛾(𝑣)
𝑙 (𝑡)

10 We can now compute the downtime cost of the network by considering the effect of operational 

11 interruption. We assume the temporal profile of each system determines the cost of operational 

12 interruption in the network. The objective of this section is to calculate the operational interruption 

13 across the network within the planning horizon based on the downtime information at the system-level. 

14 For all the systems within the network, the timing of the start and end of different operational 

15 interruptions can be identified by examining the temporal profile of the systems in the network. For 

16 clarity, an illustrative example of 3-system network is illustrated in Figure 7(b). Each system may 

17 subject to three different levels of operation interruptions, namely ,  and . We denote the set that 𝑙1 𝑙2 𝑙3

18 contains the information about the start and end times of operational interruptions amongst the systems 

19 in the network as . Without loss of generality, we can list the timings Ξ≔{𝜉𝑖|∀𝑖 ∈ ℤ⋀𝜉𝑖 < 𝑇ℎ⋀0 ≤ 𝑖 ≤ 𝐼}

20 in chronological order. Then, we investigate three different scenarios for modeling the partial 

21 dependence in the network. We denote a matrix  to represent the operational 𝐵 = [𝑏𝑖𝑗]‖𝑉‖ × ‖𝑉‖

22 dependence of the network, where  indicates the effect of operational interruption in system  on the 𝑏𝑖𝑗 𝑖

23 operation of system . If  is positive, it indicates the operation interruption in system  will add an 𝑗 𝑏𝑖𝑗 𝑖

24 additional cost on the operation of system . If  is 0, it means no operation dependence between 𝑗 𝑏𝑖𝑗
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1 system  and system . If  is negative, it suggests the operation interruption of system  will reduce 𝑖 𝑗 𝑏𝑖𝑗 𝑖

2 the operation cost of system .𝑗

3 Scenario 1: Additive partial dependence is a representative case for the scenario where one system’s 

4 operational interruption has a known and quantifiable influence on other systems. In this case,  𝑏𝑖𝑗

5 represents the additional cost of operational interruption of system  due to the operational interruption 𝑗

6 of system . We assume that  is known and deterministic. In this setting, the overall cost of operational 𝑖 𝑏𝑖𝑗

7 interruption in the network can be expressed as:

8 Γ𝑙(𝑡) = ∑
𝑖∈ 1,…,𝑉

[𝛾(𝑖)
𝑙 (𝑡) + ∑

𝑗∈ 1,…,𝑉\𝑖
𝑏𝑗,𝑖𝛾(𝑗)

𝑙 (𝑡)]
9 However, it is worthwhile to note that the additive partial dependence implies there is no benefit in 

10 performing group maintenance at the network-level. 

11 Scenario 2: If the operational interruption of the network is determined by the most severe operational 

12 interruption amongst the systems, we can express the network interruption cost as: 

13 Γ𝑙(𝑡) = max{𝛾(𝑖)
𝑙 (𝑡) + ∑

𝑗∈ {1,…,𝑉}\𝑖
𝑏𝑗,𝑖𝛾(𝑗)

𝑙 (𝑡)│∀𝑖 ∈ {1,…,𝑉}}
14 This is a practical model where the system with the most severe operational interruption is a bottleneck 

15 in a serially connected network, and hence the cost of interruption is determined by this system. 

16 Scenario 3: If we consider the operational interruption of systems is expressed by the sum of the highest 

17 cost by either itself or from other systems. Due to a system may subject to different levels of the 

18 operation interruption such consideration is valid. Then, we can express the cost of operational 

19 interruption as:

20 Γ𝑙(𝑡) = ∑
𝑖∈ {1,…,𝑉}

max{𝛾(𝑖)
𝑙 (𝑡) ∪ {𝑏𝑗,𝑖𝛾(𝑗)

𝑙 (𝑡)│𝑗 ∈ {1,…,𝑉}\𝑖}}

21 In the illustrated example, as shown in Figure 7, the different expressions of network costs under the 

22 three different scenarios are tabulated in Table 1.

23 Table1: Calculation of the network cost under three different scenarios

Scenario Network cost

1
𝛤𝑙(𝑡) = 𝛾(1)

𝑙 (𝑡) + 𝑏2,1𝛾(2)
𝑙 (𝑡) + 𝑏2,1𝛾(3)

𝑙 (𝑡) + 𝛾(2)
𝑙 (𝑡) + 𝑏1,2𝛾(1)

𝑙 (𝑡) + 𝑏3,2𝛾(3)
𝑙 (𝑡) +

 𝛾(2)
𝑙 (𝑡) + 𝑏1,2𝛾(1)

𝑙 (𝑡) + 𝑏3,2𝛾(3)
𝑙 (𝑡)

2
𝛤𝑙(𝑡) = 𝑚𝑎𝑥
{𝛾(1)

𝑙 (𝑡) + 𝑏2,1𝛾(2)
𝑙 (𝑡) + 𝑏2,1𝛾(3)

𝑙 (𝑡),𝛾(2)
𝑙 (𝑡) + 𝑏1,2𝛾(1)

𝑙 (𝑡) + 𝑏3,2𝛾(3)
𝑙 (𝑡),𝛾(2)

𝑙 (𝑡) + 𝑏1,2𝛾(1)
𝑙 (𝑡) + 𝑏3,2𝛾(3)

𝑙 (𝑡)}
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3
𝛤𝑙(𝑡) = 𝑚𝑎𝑥{𝛾(1)

𝑙 (𝑡),𝑏2,1𝛾(2)
𝑙 (𝑡),𝑏2,1𝛾(3)

𝑙 (𝑡)} + 𝑚𝑎𝑥{𝛾(2)
𝑙 (𝑡),𝑏1,2𝛾(1)

𝑙 (𝑡),𝑏3,2𝛾(3)
𝑙 (𝑡)}

 + 𝑚𝑎𝑥{𝛾(3)
𝑙 (𝑡),𝑏1,3𝛾(1)

𝑙 (𝑡),𝑏2,3𝛾(2)
𝑙 (𝑡)}

1 We can compute the reduction of operational interruption cost due to group maintenance in the network 

2 as: 

𝒞𝑙(𝑮) =
𝑉

∑
𝑣 = 1
∑
𝜉𝑖 ∈ 𝛯

𝜉𝑖 + 1

∫
𝜉𝑖

𝜏𝛾(𝑣)
𝑙 (𝜏)(1 + ∑

𝑗∈ {1,…,𝑉}\𝑣
𝑏𝑣,𝑗)𝑑𝜏 ‒ ∑

𝜉𝑖 ∈ 𝛯

𝜉𝑖 + 1

∫
𝜉𝑖

𝜏𝛤𝑙(𝜏)𝑑𝜏 (10)

3 3.4.3 Optimal group maintenance policy

4 The optimal solution of the group maintenance policy involves a time complexity of , which can 𝒪(2𝑛)
5 be reduced to  if every group has consecutive activities  [19]. However, such assumption requires 𝒪(𝑛2)
6 unique properties of the penalty cost function that can hardly be met in our case. For optimizing the 

7 maintenance schedule of stochastic aging assets, GA is a prevalent choice that provides robust results. 

8 The extant papers in the related area are [32], [33], and [34]. In this paper, to search for the optimal 

9 group maintenance policy in a computationally effective way, we introduce a GA with an agglomerative 

10 mutation operator (GA-A). 

11 GA is an evolutionary algorithm that is inspired by natural selection to provide high-quality solutions 

12 for optimization and searching problems through mutation, crossover, and selection [35]. In GA, the 

13 mutation is the main way to escape from the trap of local minimum. In our model, each gene encoded 

14 in the chromosome  represents the time of each maintenance activities. Due to the positive economic 𝑋𝑗

15 dependence caused by shared setup cost and system downtime, the fitness function will drive preference 

16 towards a grouping of maintenance activities. Once the initial groups are formed, an independent bit 

17 mutation will be inefficient for escaping the local optimal. However, if we increase the mutation rate to 

18 a sufficiently large number, the algorithm will take an extremely long time to converge. To overcome 

19 this dilemma, we have designed an agglomerative mutation operator. It is a customized group mutation 

20 process that we have designed to improve the performance of the GA for optimizing group maintenance. 

21 The designed mutation process in GA-A optimization contains three stages. The first stage is an 

22 independent mutation. Similar to the standard mutation function, it allows the genes to mutate 

23 independently. After some initial groups are formed, such type of mutation will be inefficient to improve 

24 the performance of the population. Hence, we designed a second stage mutation, which changes 

25 multiple bits to the same value. It implies a formation of a maintenance group, which can benefit from 

26 the positive economic dependence and has a higher survival rate in the selection phase. It is relatively 

27 efficient to change the structure of groups. The second stage is therefore aimed at finding the ideal 

28 groups. The third stage is group mutation, which enables all bits within a group to mutate to a random 

29 value. The third stage is designed to accelerate the searching for ideal group maintenance timing. All 

30 three stages may act simultaneously to create a desirable performance. We denote the mutation rates of 
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1 the three stages as ,  and  respectively. An index  is induced to indicate the improvement of the 𝜀1 𝜀2 𝜀3 𝛥

2 population. It  has  generations of memory and is expressed as a weighted sum of the difference  𝑌

3 between the current selected population  and the selected population in previous generations 𝕩𝑑

4 . If  is larger than the predefined threshold , it implies the current mutation is sufficient (𝕩𝑑 ‒ 1,...𝕩𝑑 ‒ 𝑌) 𝛥 𝜖

5 for improving the population. If  is smaller than , we will increase the chance of agglomerative 𝛥 𝜖

6 mutation to improve the escaping rate of local minimum caused by the formation of the initial 

7 maintenance groups. We denote , , , and  as predefined threshold ratios to trigger and terminate 𝜌1 𝜌2 𝜌3 𝜌4

8 stage 2 and 3 mutation that follows . The actual thresholds will be further 0 ≤ 𝜌1, 𝜌3 < 𝜌2, 𝜌4 ≤ 1

9 controlled by  with a weighted parameter . To avoid the fluctuation caused by mutations, elitism is 𝛥 𝑧

10 applied to pass multiple copies of the best solutions  from the previous generation directly to the 𝑋 ∗
𝑑

11 population of the current generation. Also, exponential decay functions with rates , , and  are 𝛿1 𝛿2 𝛿3

12 applied to each stage of mutation to help the algorithm converge. 

13 To improve the efficiency of GA-A, the optimal major maintenance timings for individual components 

14 are encoded in  as one of the elitists in the population of the first generation . In each iteration, an 𝑋 ∗
1 𝕏1

15 offspring population  is generated by the crossover operator. The size of  is control by the breeding 𝕩 '
𝑑 𝕩 '

𝑑

16 rate . The evaluation is based on the fitness function as expressed in equation (11):𝜔

ℱ(∆𝒕,𝑮) =∑
∀𝑣
∑
∀𝑢

[ℋ(𝑡,𝛼(𝑣)
𝑢 ) + 𝒫(𝑣)

𝑢 (∆𝒕)] ‒ 𝒞𝐿(𝑮) ‒ 𝒞𝑠(𝑮) (11)

17 The algorithm will terminate either after  generations or upon convergence. We are using a single-𝐷

18 point crossover, and the scalability for such type of GA can be approximated to  [36], which 𝒪(𝑛2)
19 indicates reasonable scalability for applying to a large network of asset systems. A holistic view of the 

20 GA-A is illustrated in Figure 8. 
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1

2 Figure 8: GA-A for optimizing group maintenance scheduling
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1 To demonstrate the advantage of the GA-A, we compare its performance to a standard GA with only 

2 independent mutations in a numerical example. Figure 9 compares the result of the two approaches 

3 using the same initial population in 1000 generations. 

4
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5 Figure 9: Comparison of evolution performances over 1000 generations using GA and GA-A 

6 In Figure 9, the best solution for each generation is plotted in the two scenarios. The result indicates 

7 that the customized GA-A leads to a better solution with a lower cost compared to a GA. The results 

8 imply that the GA with only independent mutation trapped at the local minimum after the formation of 

9 initial maintenance groups after 120 generations. Clearly, our designed approach is more effective in 

10 escaping the local minimum through regrouping and reallocating with the agglomerative mutation. 

11 3.5 Rolling horizon 

12 Since our penalty function considers multiple maintenance cycles, unlike most existing approaches, we 

13 do not need to restrict our planning horizon such that the components have only one maintenance cycle. 

14 However, it is still both practically and computationally reasonable to have a relatively small planning 

15 horizon. For long-term maintenance scheduling, previous research has shown that a rolling horizon 

16 reduces the computation complexity significantly and induce a negligible error [18]. 

17 To apply the rolling horizon approach, we denote  that contains the information 𝕋ℎ ≡ {𝑇ℎ,1,𝑇ℎ,2,𝑇ℎ,3,...}

18 of all epochs of rolling horizons. The time span between  and  may or may not be 𝑇ℎ,𝑖 𝑇ℎ,𝑖 + 1

19 homogeneous. According to the optimized maintenance timing  of each component, we separate all 𝑡 ∗

20 components into two sets. The first set  that contains the set of components whose  lies in between 𝕦𝑖 𝑡 ∗

21  and . If a component experiences multiple renewal cycles in the planning horizon, we refer 𝑇ℎ,𝑖 𝑇ℎ,𝑖 + 1

22 the last renewal time in the planning horizon as . The other set  represents the set of components 𝑡𝐿 𝕌𝑐𝑖

23 which do not require major maintenance between  and . The algorithm of the rolling horizon 𝑇ℎ,𝑖 𝑇ℎ,𝑖 + 1

24 approach is demonstrated in Figure 10.
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1

2 Figure 10: Rolling horizon approach

3 4 Case study: Maintenance of a bridge network 

4 In this section, we apply this approach to a network of two bridges (I & Ⅱ) that are composed of eight 

5 and fifteen heterogenous components respectively. All the components in the network are inspected 

6 periodically every two years (this is called a General Inspection). The information gathered through 

7 inspection is managed and analyzed by the Structures Asset Management Planning Toolkit [37]. The 

8 aging process of the components is described as a stochastic process with five condition states, where 

9 1 indicates ‘as good as new’ state and 5 represents the failure of the component. The bridge engineers 

10 who designed the data collection decided the number of condition states.

11 Three different exposure levels are considered: mild, moderate, and severe. In the lifetime of the two 

12 road bridges, the exposure levels may worsen as a result of extreme weather condition, freeze-thaw 

13 action, de-icing salts, and flooding. The detailed information regarding the deterioration of different 

14 components is provided in the appendix (Tables A1 and A3). Maintenance of components within the 

15 same system with a joint execution time can save setup cost. Maintenance and replacement of different 

16 components can cause three types of traffic interruptions, which are denoted as ,  and  to indicate 𝑙1 𝑙2 𝑙3

17 contraflow, lane closure and other insignificant traffic interruption (hard shoulder closure) respectively. 

18 The detailed information regarding maintenance and replacement is provided in the appendix (Tables 
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1 A2 and A4). The traffic interruption of the network at a given time is determined by the highest level 

2 of interruption. Setup cost for major maintenance and replacement is £2000. The aim is to predict and 

3 group maintenance activities for a 20-year planning horizon.

4 Based on equation (1), we can calculate the long-term time-average cost when major maintenance is 

5 executed at different maintenance thresholds. In our notation,  indicates the condition state that 𝑏 + 1

6 requires major maintenance (to avoid the impractical scenario of carrying out major maintenance when 

7 the element is as good as new). The results are shown in Table 2 and Table 3, the minimized stationary 

8 maintenance cost at optimal condition threshold are highlighted in the table. 

9 Table 2: Optimal lifecycle cost of CBM for components in bridge Ⅰ

Component name  (£/year)풃 = 1  (£/year)풃 = 2  (£/year)풃 = 3

Primary Deck Element 2372.9 1829.1 1727.5
Spandrel wall 113.35 86.108 82.250
Foundations 3012.5 2453.8 2952.7
Embankments 111.12 84.423 81.120
Carriageway 723.01 580.42 643.28
Handrail parapet 2091.4 1814.3 1903.8
Wingwall 1184.8 952.40 1076.5
River training works 3478.9 2526.4 2869.8

10

11 Table 3: Optimal lifecycle cost of CBM for components in bridge Ⅱ

Component name  (£/year)풃 = 1  (£/year)풃 = 2  (£/year)풃 = 3

Abutments 2644.1 2084.6 2144.9
Primary Deck Element 819.59 671.13 678.47
Parapet beam 235.36 195.66 183.24
Bearing Plinth 657.54 580.15 562.80
Foundations 3012.5 2453.8 2952.7
Joint 1095.6 1044.9 1219.1
Substructure 6950.1 4544.5 3873.4
Embankments 111.13 84.424 81.120
Carriageway 723.01 580.42 643.27
Footway 197.04 133.77 120.27
Bearing 376.66 354.72 402.76
Handrail parapet 1560.0 1512.5 1539.2
Wingwall 1184.8 952.40 1076.5
Approach rails 746.71 613.74 613.89
Waterproofing 2448.7 2217.3 2776.9

12
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1 By substituting the intermediate results into equation (7), we can calculate the optimal maintenance 

2 timing using phase-type prediction for each component. 

3 Table 4: Phase-type prediction for components in bridge Ⅰ

Component name Current condition Optimized time to 
maintenance (Month)

Primary Deck Element 1 >240
Spandrel wall 2 >240
Foundation 1 131
Embankments 1 >240
Carriageway 1 >240
Handrail parapet 1 >240
Wingwall 1 118
River training works 3 1

4

5 Table 5: Phase-type prediction for components in bridge Ⅱ

Component name Current condition Time to maintenance
(Month)

Abutments 3 1
Primary Deck Element 1 >240
Parapet beam 1 >240
Bearing Plinth 2 >240
Foundation 1 131
Joint 3 1
Substructure 3 23
Embankments 1 >240
Carriageway 3 1
Footway 2 >240
Bearing 2 >240
Handrail parapet 1 >240
Wingwall 2 6
Approach rails 2 29
Waterproofing 1 153

6

7 The predictive maintenance plan for components in bridge Ⅰ and Ⅱ can also be visualized in Figure 

8 11 and 12 respectively.
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1 Figure 12: Predictive maintenance plans for components in bridge Ⅱ

2 In Figure 11 and 12, the y-axis indicates the estimated cost of the component within the planning 

3 horizon. The x-axis denotes the time of the first scheduled major maintenance in the planning horizon. 

4 The predictive plans for components can be classified into three different categories: (1) Monotonic 

5 increase, such as the abutment in bridge Ⅱ. It would be beneficial to maintain the components 

6 immediately. (2) Monotonic decrease, such as the primary deck element in bridge Ⅰ. No maintenance 

7 is required in the planning horizon. (3) Contain a minimum, such as wingwall in bridge Ⅰ. It is 

8 beneficial to maintain components in this category at the time of the minimum. It can be seen that 11 

9 out of 23 components within the two bridges will be maintained in the next 20 years. Using GA-A, we 

10 can calculate the optimal group maintenance schedule in both scenarios. We use a collection of 

11 optimized predictive maintenance timing for an individual component to construct an initial input for 

12 the GA-A. Due to the elitism, the calculated group maintenance will be no worse than the sum of the 

13 optimized maintenance strategies of individual components. The performance of the GA-A approach is 

14 illustrated in Figure 13. 
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2 Figure 13: Performance of the GA-A 

3 Figure 13 plots the total cost of the best group maintenance strategy in each generation. As it can be 

4 seen, the total cost in 20 years is reduced from £850750 (optimized independent maintenance strategy) 

5 to £764580 (optimized group maintenance strategy). It implies that by using group maintenance, we 

6 can reduce the total cost by 11.27%. It is worthwhile to notice that even our objective function contains 

7 many local minimums caused by the benefit of grouping maintenance, the GA-A can effective 

8 converged to the minimum solution after 56 generations. 

9 We have tested our group maintenance strategy on two different scenarios: one directly sets the planning 

10 horizon to 20 years, the other one applies the rolling horizon approach with two 10 years epochs. The 

11 results are tabulated in Table 6 and 7:

12 Table 6: Group maintenance strategy for components within the 20 years’ planning horizon

System Component name Group 
Optimal group 
maintenance 
(Month)

Traffic 
management 
type

Bridge Ⅰ River training 1 𝑙3
Bridge Ⅱ Abutments 1 𝑙1
Bridge Ⅱ Joint 1 𝑙1
Bridge Ⅱ Substructure 1 𝑙1
Bridge Ⅱ Carriageway 1 𝑙2
Bridge Ⅱ Wingwall 1 𝑙2
Bridge Ⅱ Approach rails

Group 1

1 𝑙3
Bridge Ⅰ Wingwall 130 𝑙2
Bridge Ⅰ Foundation 130 𝑙1
Bridge Ⅱ Waterproofing 130 𝑙2
Bridge Ⅱ Foundation

Group 2

130 𝑙1
13
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1 Table 7: Group maintenance strategy for components using a rolling horizon approach with two 10-

2 year epochs 

System Component 
name Group 

Optimal group 
maintenance 
(Month)

Traffic 
management 
type

Bridge Ⅰ Wingwall 1 𝑙2
Bridge Ⅰ River training 1 𝑙3
Bridge Ⅱ Abutments 1 𝑙1
Bridge Ⅱ Joint 1 𝑙1
Bridge Ⅱ Substructure 1 𝑙1
Bridge Ⅱ Carriageway 1 𝑙2
Bridge Ⅱ Wingwall 1 𝑙2
Bridge Ⅱ Approach rails

Group 1

1 𝑙3
Bridge Ⅰ Foundation 138 𝑙1
Bridge Ⅱ Foundation 138 𝑙1
Bridge Ⅱ Waterproofing

Group 2
138 𝑙2

3

4 The total cost of the grouping strategy in Table 6 is £764580. While, with a rolling horizon approach as 

5 shown in Table 7, it leads to a slightly higher total cost, which is £779010. The increase in total cost is 

6 mainly influenced by the 10-year epoch in a rolling horizon approach. For example, the optimal time 

7 for the maintenance of wingwall in bridge Ⅰ is on the 118th months. Based on its penalty function as 

8 plotted in Figure 13, it is ideal to be maintained in the second group, but it is separated by the 10-year 

9 epoch and scheduled to the first group. This change subsequently delays the timing of the second group 

10 maintenance. However, because we have applied the long-term average cost as a part of the objective 

11 function, the increase in total cost is insignificant and is around 1.89%. Moreover, such an increase in 

12 total cost can be further mitigated by adjusting and harmonizing the planning epoch. If we set the 

13 planning epoch between the 30th and the 117th month, results of using a single planning horizon and 

14 rolling horizon will be the same. The overall computation time for the case study is 9 minutes 10 seconds 

15 for using a single planning horizon and 4 minutes 45 seconds for rolling horizon approach with a 2.7 

16 GHz processor and 8GB memory. It is worthwhile to highlight that the overall approach is designed in 

17 a bottom-up manner. The computation of component-level algorithms, such as computing lifecycle cost 

18 and penalty function, is parallelizable. Hence, the scalability of the approach could be enhanced by 

19 parallel computing techniques. Edge computing techniques could also enable redistribution of most of 

20 the processing, analysis, and computation. In this case, the predictive group maintenance algorithm only 

21 plays a role of orchestration based on the results from the component-level. 

22 5 Concluding remarks

23 In practice, systems with heterogeneous components may further integrate into a network. For instance, 

24 a bridge network may contain various types of bridges that are in turn composed of different 
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1 components. Dependence in such hierarchical networks could be diversified. In this paper, a dual-

2 positive economic dependence that encompasses the setup cost dependence in the system-level and 

3 operation downtime dependence in the network-level is considered. We develop a predictive group 

4 maintenance policy to proactively seek the potential benefits of the dual-positive economic dependence. 

5 In the case of bridge network maintenance, a significant reduction on operation cost (11.27%) could be 

6 achieved by the exploiting the setup cost dependence and downtime dependence caused by different 

7 traffic interruptions (hard shoulder closure, lane closure, and contraflow). To improve the practicality 

8 of the model, the risk of the decaying operating environment is highlighted in the component 

9 deterioration model. With this setting, the model is applicable to long-lifetime assets that are exposed 

10 to environmental risks. 

11 Several measures are induced to improve the performance of the approach. First, the deterioration and 

12 CBM model for components are formulated by CTMC that enables an analytical expression of the 

13 lifecycle cost. Thus, the computational complexity could be alleviated. Second, a GA-A algorithm is 

14 developed to effectively break away from the deep local optimums caused by the dual- positive 

15 economic dependence. It allows the algorithm is converging to a better result. Third, a rolling horizon 

16 approach is employed to further reduce computation time. By complementing of the stationary cost, the 

17 result is robust against the changing of the planning horizon. The result demonstrates the rolling horizon 

18 approach could reduce the computation time of the dynamic maintenance scheduling in MSMCNs and 

19 have no significant influence on the operation cost. It agrees with the result of applying the rolling 

20 horizon on systemic maintenance scheduling problems. 

21 In general, the designed approach combines multiple prevalent concepts in reliability engineering, such 

22 as predictive maintenance, lifecycle cost, condition-based maintenance, dependence, and dynamic 

23 maintenance scheduling. We hope this paper may have a positive ripple effect to motivate researchers 

24 and asset managers to explore maintenance strategies beyond the scale of system. There are several 

25 possible extensions of the model. The deterioration of components is modeled by CTMC, which 

26 assumes the holding time at each state is exponentially distributed. This assumption could be relaxed 

27 by using a semi-Markov model or approximated by phase-type distribution. However, it will increase 

28 the computation complexity of the problem. The computational complexity of dynamic scheduling in a 

29 large network is a challenging problem. Future research is devoted to developing complexity reduction 

30 techniques. Under different contexts, the performance of the GA-A algorithm should be further studied. 

31 More practical factors should be included, such as the constraints of maintenance resources and 

32 repairmen. Different types of imperfect maintenances and their resulting type shift in the grouping 

33 policy is to be explored. 
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5 Appendix A: Parameter Setting for Case Study 

6 Table A1: Deterioration information of bridge Ⅰ

Component Material Exposure 
level

State1 
(year)

State2 
(year)

State3 
(year)

State4 
(year)

Accelerated 
exposure level

Primary Deck 
Element Mild 60 60 60 60 N.A.

Moderate 35 25 15 5 10Spandrel 
wall/head wall

Insitu reinforced 
concrete

Severe 15 10 10 5 100
Mild 43.33 33.33 16.667 6.667 N.A
Moderate 26 20 10 4 10Foundations Foundation 

material
Severe 13 10 5 2 100
Protected 5 × 108 3.24 × 108 1.22 × 108 0.54 × 108 N.A
Mild 37 24 9 4 4
Moderate 25 15 7 3 16

Handrail parapet
Other unknown 
handrail/ parapet 
safety fence

Severe 18 8 4 1 64
Mild 13 10 5 2 N.A
Moderate 8.66 6.66 3.33 0.66 5Carriageway 

surfacing
Carriageway 
surfacing

Severe 4.33 3.33 1.667 0.333 25
Wing walls Mild 40 25 15 10 N.A

Moderate 20 15 10 5 10River training 
works

Other unknown 
material

Severe 12 13 10 5 100
Mild 35 25 15 5 N.A
Moderate 30 15 10 5 10Embankments

Other unknown 
embankment 
material Severe 15 10 10 5 100

7 The numbers in columns 4 to 7 indicate the expected holding time at each state. The 8th column demonstrates the 

8 expected time for declining of the exposure level. Under the assumption of exponentially distributed holding time 

9 at each state, state transition probabilities can be calculated.

10 Table A2: Cost information of bridge Ⅰ

Component Minor 
maintenance 
cost (£)

Major 
maintenance 
cost (£)

Major 
maintenance 
duration (day)

Replacement
cost (£)

Replacement 
duration
(day)

Traffic 
management 
type

Primary Deck 
Element 13000 61800 7 117000 14  𝑙1
Spandrel 
wall/head wall 450 1432 3 6237 7  𝑙3

Foundations 15000 60000 5 200000 21  𝑙1
Handrail 
parapet 6000 77000 5 151000 10  𝑙2
Carriageway 
surfacing 1000 3500 2 7000 3  𝑙2

Wing walls 5000 20000 7 96000 9  𝑙2
River training 
works 6800 102000 4 380000 14  𝑙3

Embankments 304 629 2 2000 5  𝑙3

11

12 Table A3: Deterioration information of bridge Ⅱ
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Component Material Exposure 
level

State1 
(year)

State2 
(year)

State3 
(year)

State4 
(year)

Increase the 
exposure 
level

Primary Deck 
Element Mild 60 60 60 60 N.A.

Parapet beam or 
cantilever Moderate 35 25 15 5 10

Abutments
Bearing Plinth

Insitu reinforced 
concrete

Severe 15 10 10 5 100

Mild 43.33 33.33 16.667 6.667 N.A.
Moderate 26 20 10 4 10Foundations Foundation material
Severe 13 10 5 2 100

Protected 5 × 108 3.17 × 108 1.12 × 108 0.66 ×
108 N.A.

Mild 32 20 7 4 10
Moderate 25 14 5 2 100

Bearing Other/unknown 
bearing 

Severe 18 8 4 1 1000

Waterproofing Other/unknown 
waterproofing N.A. 25 10 3 2 N.A.

Mild 17 8 3 2 N.A.
Moderate 10 5 2 1 10Movement/expansio

n joint Buried joint
Severe 7 3 2 1 100
Mild 15 15 15 15 N.A.
Moderate 10 10 10 10 10Finishes: 

substructure
Other/unknown 
finishes 

Severe 5 5 5 5 100

Protected 5 × 108 3.24 × 108 1.22 × 108 0.54 ×
108 N.A.

Mild 37 24 9 4 4
Moderate 25 15 7 3 16

Handrail parapet
Other unknown 
handrail/ parapet 
safety fence

Severe 18 8 4 1 64
Mild 13 10 5 2 N.A.
Moderate 8.66 6.66 3.33 0.66 5Carriageway 

surfacing
Carriageway 
surfacing

Severe 4.33 3.33 1.667 0.333 25
Mild 13 10 5 2 N.A.
Moderate 8.667 6.667 3.333 0.666 5Footway/verge/footb

ridge surfacing Footway surfacing
Severe 4.333 3.333 1.667 0.333 25

Wing walls Mild 40 25 15 10 N.A.
Moderate 20 15 10 5 10Approach rails 

barriers walls 

Other unknown 
material

Severe 12 13 10 5 100
Mild 35 25 15 5 N.A.
Moderate 30 15 10 5 10Embankments

Other unknown 
embankment 
material Severe 15 10 10 5 100

1

2 Table A4: Cost information of bridge Ⅱ

Component Minor 
maintenance 
cost (£)

Major 
maintenance 
cost (£)

Major 
maintenance 
duration (day)

Replacement 
Cost (£)

Replacement 
duration (day)

Traffic 
management 
type

Primary Deck 
Element 5243 12500 7 49175 14  𝑙2

Parapet beam 1539 3176 7 3600 14  𝑙3
Abutments 15000 60000 7 200000 21  𝑙1
Bearing plinth 5350 9000 5 16500 14  𝑙3
Bearing 2800 9000 14 56000 20  𝑙2
Waterproofing 4000 55000 7 128520 14  𝑙2
Joint 4200 6700 2 13800 3  𝑙1
Foundations 15000 60000 5 200000 21  𝑙1
Substructure 18300 76500 6 125000 8  𝑙1
Handrail parapet 7000 15000 5 22000 10  𝑙2
Carriageway 
surfacing 1000 3500 2 7000 3  𝑙2

Footway 100 200 2 220 3  𝑙3
Wing walls 5000 20000 7 96000 9  𝑙2
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Approach rails 
barriers walls 4000 13000 3 30000 7  𝑙3

Embankments 304 629 2 2000 5  𝑙3
1

2 Appendix B: State Equilibrium Equations 

3 For 𝑖 = 0

4

[𝜆 (𝑣)
𝑛, 𝑢(0,0) + 𝜆 (𝑣)

𝑓, 𝑢(0,0) + 𝜆(𝑣)𝑖𝑛,𝑢]𝜋(0(𝑣),0(𝑣) )

= 𝜇(𝑣)𝑅,𝑢𝜋(𝑘(𝑣)𝑢 ,0(𝑣) ) + 𝜇(𝑣)𝑐,𝑢𝜋(0(𝑣), 𝑚(𝑣)
𝑢 + 3) + 𝜇(𝑣)𝑖𝑛,𝑢𝜋(0(𝑣), 𝑚(𝑣)

𝑢 + 1 ) + 𝜇(𝑣)𝑀,𝑢

𝑘(𝑣)𝑢 ‒ 1

∑
𝑖 = 𝑏(𝑣)𝑢 + 1

𝜋(𝑖,𝑚(𝑣)
𝑢

+ 3 ) ,𝑗 = 0

5 [𝜆 (𝑣)
𝑑, 𝑢(0,𝑗) + 𝜆 (𝑣)

𝑓, 𝑢(0,𝑗) + 𝜆(𝑣)𝑖𝑛,𝑢]𝜋(0(𝑣),𝑗 ) = 𝜆 (𝑣)
𝑓, 𝑢(0,𝑗 ‒ 1)𝜋(0(𝑣),𝑗 ‒ 1 ) , ∀ 1 ≤ 𝑗 ≤𝑚(𝑣)

𝑢 𝑗 ∈ ℕ+

6 𝜇(𝑣)𝑖𝑛,𝑢𝜋(0(𝑣),𝑚(𝑣)
𝑢 + 1 ) = 𝜆(𝑣)𝑖𝑛,𝑢𝜋(0(𝑣),0(𝑣) )

7 𝜇(𝑣)𝑖𝑛,𝑢𝜋(0(𝑣),𝑚(𝑣)
𝑢 + 2 ) = 𝜆(𝑣)𝑖𝑛,𝑢

𝑚(𝑣)
𝑢

∑
𝑗 = 1

𝜋(0(𝑣),𝑗 )

8 𝜇(𝑣)𝑐,𝑢𝜋(0(𝑣),𝑚(𝑣)
𝑢 + 3) = 𝜇(𝑣)𝑖𝑛,𝑢𝜋(0(𝑣),𝑚(𝑣)

𝑢 + 2 )

9

10 For 1 < 𝑖 ≤ 𝑏(𝑣)𝑢

11 [𝜆 (𝑣)
𝑛, 𝑢(𝑖,0) + 𝜆 (𝑣)

𝑓, 𝑢(𝑖,0) + 𝜆(𝑣)𝑖𝑛,𝑢]𝜋(𝑖,0(𝑣) ) = 𝜆 (𝑣)
𝑛, 𝑢(𝑖 ‒ 1,0)𝜋(𝑖,0(𝑣) ) + 𝜇(𝑣)𝑐,𝑢𝜋(𝑖, 𝑚(𝑣)

𝑢 + 3) + 𝜇(𝑣)𝑖𝑛,𝑢𝜋(𝑖, 𝑚(𝑣)
𝑢 + 1 )

12 [𝜆 (𝑣)
𝑑, 𝑢(𝑖,𝑗) + 𝜆 (𝑣)

𝑓, 𝑢(𝑖,𝑗) + 𝜆(𝑣)𝑖𝑛,𝑢]𝜋(𝑖,𝑗 ) = 𝜆 (𝑣)
𝑓, 𝑢(𝑖,𝑗 ‒ 1)𝜋(𝑖,𝑗 ‒ 1 ) , ∀ 1 ≤ 𝑗 ≤𝑚(𝑣)

𝑢 𝑗 ∈ ℕ+

13 𝜇(𝑣)𝑖𝑛,𝑢𝜋(𝑖,𝑚(𝑣)
𝑢 + 1 ) = 𝜆(𝑣)𝑖𝑛,𝑢𝜋(𝑖,0(𝑣) )

14 𝜇(𝑣)𝑖𝑛,𝑢𝜋(𝑖,𝑚(𝑣)
𝑢 + 2 ) = 𝜆(𝑣)𝑖𝑛,𝑢

𝑚(𝑣)
𝑢

∑
𝑗 = 1

𝜋(𝑖,𝑗 )

15 𝜇(𝑣)𝑐,𝑢𝜋(𝑖,𝑚(𝑣)
𝑢 + 3) = 𝜇(𝑣)𝑖𝑛,𝑢𝜋(𝑖,𝑚(𝑣)

𝑢 + 2 )

16 For 𝑏(𝑣)𝑢 + 1 < 𝑖 ≤ 𝑘(𝑣)𝑢 ‒ 1

17 [𝜆 (𝑣)
𝑛, 𝑢(𝑖,0) + 𝜆 (𝑣)

𝑓, 𝑢(𝑖,0) + 𝜆(𝑣)𝑖𝑛,𝑢]𝜋(𝑖,0(𝑣) ) = 𝜆 (𝑣)
𝑛, 𝑢(𝑖 ‒ 1,0)𝜋(𝑖,0(𝑣) )

18 [𝜆 (𝑣)
𝑑, 𝑢(𝑖,𝑗) + 𝜆 (𝑣)

𝑓, 𝑢(𝑖,𝑗) + 𝜆(𝑣)𝑖𝑛,𝑢]𝜋(𝑖,𝑗 ) = 𝜆 (𝑣)
𝑓, 𝑢(𝑖,𝑗 ‒ 1)𝜋(𝑖,𝑗 ‒ 1 ) , ∀ 1 ≤ 𝑗 ≤𝑚(𝑣)

𝑢 𝑗 ∈ ℕ+

19 𝜇(𝑣)𝑖𝑛,𝑢𝜋(𝑖,𝑚(𝑣)
𝑢 + 2 ) = 𝜆(𝑣)𝑖𝑛,𝑢

𝑚(𝑣)
𝑢

∑
𝑗 = 0

𝜋(𝑖,𝑗 )

20 𝜇(𝑣)𝑀,𝑢𝜋(𝑖,𝑚(𝑣)
𝑢 + 3) = 𝜇(𝑣)𝑖𝑛,𝑢𝜋(𝑖,𝑚(𝑣)

𝑢 + 2 )

21 For  𝑖 = 𝑘(𝑣)𝑢

22 𝜇(𝑣)𝑅,𝑢𝜋(𝑘(𝑣)𝑢 ,0(𝑣)) = 𝜆 (𝑣)
𝑛, 𝑢(𝑘𝑢 ‒ 1,0)𝜋(𝑘(𝑣)𝑢 ‒ 1,0(𝑣) ) +

𝑚(𝑣)
𝑢

∑
𝑗 = 1

𝜆 (𝑣)
𝑑, 𝑢(𝑘𝑢 ‒ 1,𝑗)𝜋(𝑘

(𝑣)
𝑢 ‒ 1,𝑗 )
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