106,587 research outputs found

    The Integration of Process Planning and Shop Floor Scheduling in Small Batch Part Manufacturing

    Get PDF
    In this paper we explore possibilities to cut manufacturing leadtimes and to improve delivery performance in a small batch part manufacturing shop by integrating process planning and shop floor scheduling. Using a set of initial process plans (one for each order in the shop), we exploit a resource decomposition procedure to determine schedules to determine schedules which minimize the maximum lateness, given these process plans. If the resulting schedule is still unsatisfactory, a critical path analysis is performed to select jobs as candidates for alternative process plans. In this way, an excellent due date performance can be achieved, with a minimum of process planning and scheduling effort

    Planning complex engineer-to-order products

    Get PDF
    The design and manufacture of complex Engineer-to-Order products is characterised by uncertain operation durations, finite capacity resources and multilevel product structures. Two scheduling methods are presented to minimise expected costs for multiple products across multiple finite capacity resources. The first sub-optimises the operations sequence, using mean operation durations, then refines the schedule by perturbation. The second method generates a schedule of start times directly by random search with an embedded simulation of candidate schedules for evaluation. The methods are compared for industrial examples

    Customized Pull Systems for Single-Product Flow Lines

    Get PDF
    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage of that line with each preceding stage; optimization of the corresponding simulation model, however, shows which of these potential control loops are actually implemented. This novel approach may result in one of the classic systems, but it may also be another type: (1) the total line may be decomposed into several segments, each with its own classic control system (e.g., segment 1 with Kanban, segment 2 with Conwip); (2) the total line or segments may combine different classic systems; (3) the line may be controlled through a new type of system. These different pull systems are found when applying the new approach to a set of twelve production lines. These lines are configured through the application of a statistical (Plackett-Burman) design with ten factors that characterize production lines (such as line length, demand variability, and machine breakdowns).Pull production / inventory;sampling;optimization;evolutionary algorithm

    A hierarchical approach to multi-project planning under uncertainty

    Get PDF
    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the various existing planning approaches. We discuss the current state of the art of hierarchical planning approaches both for traditional manufacturing and for project environments. We introduce a generic hierarchical project planning and control framework that serves to position planning methods for multi-project planning under uncertainty. We discuss multiple techniques for dealing with the uncertainty inherent to the different hierarchical stages in a multi-project organisation. In the last part of this paper we discuss two cases from practice and we relate these practical cases to the positioning framework that is put forward in the paper

    Survey instrument for measuring level of preparedness amongst healthcare personnel in radiation emergency

    Get PDF
    Drills and exercises are globally practiced to investigate the level of preparedness towards disaster events. However, these activities are rarely conducted because they require substantial investment, specifically to budget and time. A self-reported survey may serve as an alternative approach, although it may not be as effective as drills and exercises. As part of the survey development process, this article discusses preliminary validation of a survey instrument to measure the level of preparedness towards radiation emergency amongst healthcare personnel. Prior to this validation process, extensive literature reviews pointed out that the instrument consists of three constructs of preparedness, namely readiness, willingness, and ability. A total of seven subject matter experts were invited to judge the contents for verification purposes. Randolph Kappa analysis was then conducted to analyse their judgment to allow irrelevant items to be filtered from the rest prior to any improvements. Initially, the survey instrument consisted of 69 items; however, the analysis omitted 16 of them. The following values for each preparedness construct were: Readiness (0.77), Willingness (0.70), and Ability (0.73). These findings indicate that contents of the instrument are valid. Further analysis should be fulfilled to complete validation process to ensure its practicality prior to using it as an evaluation tool

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    Simulation Based Study of Safety Stocks under Short-Term Demand Volatility in Integrated Device Manufacturing.

    Get PDF
    © IEOM Society InternationalA problem faced by integrated device manufacturers (IDMs) relates to fluctuating demand and can be reflected in long-term demand, middle-term demand, and short-term demand fluctuations. This paper explores safety stock under short term demand fluctuations in integrated device manufacturing. The manufacturing flow of integrated circuits is conceptualized into front end and back end operations with a die bank in between. Using a model of the back-end operations of integrated circuit manufacturing, simulation experiments were conducted based on three scenarios namely a production environment of low demand volatility and high capacity reliability (Scenario A), an environment with lower capacity reliability than scenario A (Scenario B), and an environment of high demand volatility and low capacity reliability (Scenario C). Results show trade-off relation between inventory levels and delivery performance with varied degree of severity between the different scenarios studied. Generally, higher safety stock levels are required to achieve competitive delivery performance as uncertainty in demand increases and manufacturing capability reliability decreases. Back-end cycle time are also found to have detrimental impact on delivery performance as the cycle time increases. It is suggested that success of finished goods safety stock policy relies significantly on having appropriate capacity amongst others to support fluctuations

    Production planning and control of closed-loop supply chains

    Get PDF
    More and more supply chains emerge that include a return flow of materials. Many original equipment manufacturers are nowadays engaged in the remanufacturing business. In many process industries, production defectives and by-products are reworked. These closed-loop supply chains deserve special attention. Production planning and control in such hybrid systems is a real challenge, especially due to increased uncertainties. Even companies that are engaged in remanufacturing operations only, face more complicated planning situations than traditional manufacturing companies.We point out the main complicating characteristics in closed-loop systems with both remanufacturing and rework, and indicated the need for new or modified/extended production planning and control approaches. An overview of the existing scientific contributions is given. It appears that we only stand at the beginning of this line of research, and that many more contributions are needed and expected in the future.closed-loop supply chains;Production planning and control
    • 

    corecore