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PLANNING COMPLEX ENGINEER-TO-ORDER
PRODUCTS

Christopher Earl: Dong Ping Song: Christian Hicks
Open University, Imperial College London, Newcastle University, UK

Abstract: The design and manufacture of complex Engineer-to-Omteducts is
characterised by uncertain operation durations, finifaacty resources and
multilevel product structures. Two scheduling methods aresepted to
minimise expected costs for multiple products acrossipfeilfinite capacity
resources. The first sub-optimises the operatiomgiesee, using mean
operation durations, then refines the schedule by pertonbafine second
method generates a schedule of start times directhatjom search with an
embedded simulation of candidate schedules for evafualite methods are
compared for industrial examples.
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1. INTRODUCTION

Planning Engineer-to-Order products [1,2,3,4] takés account several
factors: significant uncertainty in operation timekmited resources
maintained by companies in response to fluctuatiordemand; concurrent
development of multiple products and complex prodiitgure 1). The
problem addressed here is to create a plan witlinmim expected costs
(both earliness and lateness). The majority of mlam research in this area
is limited to simple systems such as single machjBg serial structures or
flow lines [6,7,8,9], two stage assembly systemd @vp stage distribution
type networks [10,11]. Research on planning nmayél products has
optimised operation sequences for deterministic radfma durations.
However, with stochastic durations, the other fesstoamely; finite capacity
resource constraints, precedence constraints, Afsentrordination and due
date constraints; all cause the actual schedutiewiate significantly from
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plan. A further difficulty is that although the satule starts as a useful
guide, it can rapidly become a constraint as untdits take effect,

operations are completed and new conditions forrémeaining operations
come into play. Two methods are developed to opgnschedules for
multiple complex products over multiple finite resces. The first

optimises sequences (using mean operation duratitimates) then further
optimises timings for this sequence. The secorongges timings directly.

The methods are tested on examples of ETO prodiactthe power

generationindustry

O Final Product

Key :

Assemblies

k

. Components

Figure 1. General product structure whose nodes represent mamefassembly (with
component design at leaves and final assembly at the root)

2. PLANNING

Planning in stochastic systems needs to take atadumow plans are
implemented. For example, when a resource finigtre®peration but the
next planned operation has not arrived (but sevettar operations are
queuing at this resource); which operation shouddresource do next? Two
choices present themselves. The first keeps tlyggnatisequence [12]. The
resource ignores the queuing operations, keepsaittfiewaits for the next
planned operation. The second choice selects otfeeafjueuing operations
by a priority rule. These choices give rise totilie methods developed here
for planning. Broadly the first optimises sequendden refines the
associated timings. The second optimises timingsitly.

2.1 Notation
An implementation is a sample process (or real @i@t) of a schedule

of start timess = {s} of operationsi, with durationsx, sampled from their
probability distributions (or given by their realues). An implementation is
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described by the ‘actual’ operation start tineesnd completion times; of
operations on many products and resources. Thmwiolg notation is used:

r set of all operations over all products andegburces,
L set of the final assembly operations oVep@ducts,
G operations which immediately precede operati@iigure 1),

p(i) operation immediately afteéin the product structure,
r(i)  resource used to undertake operation
¢(i) operation immediately preceding operatiam resource(i);
di due date of operatian
hi,h7  costs of earliness and lateness for operation
The basic relations among starting and completiorg are:
a = max &, Coq), {G : JUC}) G =a +X 1)
The cost function which is minimised is the expdatalue of:
Yiorw hi(agg) - 6) + 2io. himax(@; - ¢,0) + o, hiymax(@; - di,0) (2)

2.2 Industrial ETO examples

The planning methods were tested on examples fronkragineer-to-
Order company which designs and manufactures pogemeration
equipment. Although the examples are not comppetalucts they are
significant functional subassemblies such as bgapiedestals, casings and
rotor/blade assemblies. The data available covbmd product structures
and estimates of operation times for manufactupirggesses and assembly.
As mentioned above these times are not known wdttaimty. But the
difficulties are more profound. Because the preslace engineer-to-order,
operations are not repeated across products aedtiseations of stochastic
characteristics and distributions are problematie tb small sample sizes.
However, from historical data on sets of similareigtions, means and
variances can be approximated but estimates ofildiibns are more
difficult to obtain. In this paper we assume tthegt distributions are normal.

3. TWO-PHASE OPTIMISATION METHOD

The first phase (figure 2) sets the values of dperadurations at the
estimated means. A sequence of operations on essturce is then
determined by either: (i) a finite loading heugstith a priority rule or, (ii)
random search using Simulated Annealing (SA) orliian Strategy (ES).
The second phase takes operation sequences fronfirthephase as
constraints and refines operation timings using eatubation Analysis
Stochastic Approximation (PASA). Although SA and & also be used to
refine the timings in the second phase, PASA waaddo converge faster.
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Deterministic scheduling based on Fix operation sequences
mean dat A
Heuristic, SA or ES methods Apply PASA to optimise timings

v Y

Optimal operation sequences Operation sequence (first stage) an
timings (second stac

Q.

First phase Second phase

Figure 2. Two-phase scheduling
3.1 First phase heuristics

First phase heuristics are based on backwards slohgdvhich aims to
start each item as late as possible. If more tim&noperation is waiting to be
loaded onto a resource then a latest possible etimpltime (LCT) priority
rule is used to decide which is loaded first. Ndtat if an operation is
loaded first in the backwards scheduling then It lae processed last when
the plan is implemented. The LCT priority rule i reduce waiting and
thus holding costs. In cases where LCT cannot detite highest cost ratio
hi/x (HCR) selects the next operation to be loaded.

Backwards finite loading with the LCT priority ruleas computational
complexity less tha®(n?) in the number of operatioms Several examples
of ETO products, (major subassemblies), from thegrageneration sector
were tested. One with 113 operations and 13 ressumok 2 seconds and
another with 239 operations on three concurrentiysts and 17 resources
took 4 seconds. See table 1 and figure 4 for detdithese products. Finite
loading gives much lower costs (up to a factoriad)fthan infinite loading.

3.2 First phase random search

Random search methods are used to optimise staes tof operations
under the assumption that durations are set at ¢isimated means. These
start times give a sequence which is then adoptethé second phase
refinement of the schedule. Two different randorarcle techniques have
been applied. Simulated Annealing (SA) [13,14] nuoadly optimises [15]
operation start timessf. The performance (total cost) of a candidate
schedule within a SA iteration is determined by udating its
implementation using the priority rule that the @i®n with the earliest
planned start time (EPST) is started first if thisreompetition for resources.
Two types of constraint are applied. Physical aamsts specify that a
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starting event on an operation cannot occur befthienmediately preceding
operationsC; are completed. Planning constraints specify thaberation
cannot start before its planned start tiraeX s). The actual scheduleag
given by the simulation is likely to deviate sigadntly from {s} because of
the finite capacity resources. Neighbouring schexiiare obtained by
randomly choosing new start times from a uniforstrithution in the ranges
[s -1/2y;, s +1/2y;] wherey; is the current step size. Step sizes and anigealin
temperatures are reduced linearly.

Evolution Strategy (ES) has iterative proceduresh wiselection”,
“crossover” and “mutation” for generating offsprinfom a parent
population. Offspring are selected for further gatien. ES uses continuous
variables and is thus suitable for numerical oation [16] of schedules.
The chromosome of an individusthedule is represented by the vester
{s} of start times. Evaluation of offspring is by simtibn as in SA.

Results from running SA and ES on industrial dataafsingle multilevel
subassembly with 113 operations and 13 separataenes indicate that SA
converges faster than ES, although in the long tEBngives lower costs.
See table 1 and figure 4(a) for details of thisdp and associated
operations. Compared with the heuristic method Ef &A achieve
marginally lower costs, in the region of 10%, bigh®er computational costs
(by a factor of 100). Similar results were obtairfedm experiments on
similar subassemblies from the power generatiotosec

3.3 Second phase perturbation analysis

Perturbation analysis (PA) is used in the secorad@hConsider a sample
implementation (or nominal path NP) of a scheduith wtart timess ={s}
and parameters (eg durationg)in the whole sample spa€g determining
start times &} and completion timesd} by equations (1). The cost of the
sample process V(s, w) is given by (2) [17,7]. Let planned start tigde
perturbed tos + A. The sample process fos {+ A, s, i#j, i} with the
same w is a perturbed path (PP). The perturbed path witort and
completion times &'} and {¢'} can be constructed directly from the
nominal path without repeating the simulation.

Perturbation generation is described by (§ ¥ s, thena'=a andc'= ¢,
for il (i) if & =s, thena/= g + A andc= ¢; + A. Perturbation propagation
and disappearance are described by (i@ # s (i#)), thena'= a andc/'= ¢
(iv) if & =Cyq) (i%]), thena'=a + (Cyp)' - Coy)) @NAC’ = Ci + (Cyy’ - Coqi), (V)
if & =c(i#], kOGC), theng' =& + (¢ - &) andc'=c¢ + (¢ - ¢). The whole
perturbation gai\ will be propagated along the perturbed path. i)
= 1{a' # a}, where 1{.} takes 1 if {.} is true, and O othersé. Note thas,’
andc' have the same perturbation gain. The sequelfigei{ll'} determines
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the difference between PP and NP. A recursive poeeimplements the
perturbation propagation rules and determinkp,{iC0l'}. Song et al [12]
show that for anwQ andjOr
oV(s, w)/0s = Xiprw il (o(i))-1(1))+2ioe (i) A{di>ci}+ 2o b (i) [A{di< ¢}
is an unbiased estimator of gradient, that is:
o{E V(s, w) }os = E{oV(s, w)/ds}and EPV(s, w)/ds| < o, for anyjOr.
Thus a PA-based Stochastic Approximation [18,19]sis1 = S, - Y [IJy,
wheres, are start times at the beginning of iteratigrilJ, is the gradient
estimator, and stey, >0, Yy, 0, X {Y.}diverges andX {y,}? converges (eg
Yn = 1h). The gradient estimator is calculated using Kgamrocesses.
Some results from applying PASA (in conjunction twifirst phase
methods and using K = 100 sample processes) tolegmppoducts (figure
4) are shown in figure 5. They indicate that aggilon of the second phase
PASA yields an extra reduction in costs of betw&8r20% with moderate
computation.

4. ONE-PHASE SCHEDULING

Simulated Annealing (SA) and Evolution Strategy \EBE&thods can be
extended from their application in the two-phasecpss to provide one-
phase optimisation methods (figure 3). Multiple péanprocesses are
required to estimate expected cost.

Initial Apply SA or ES tcs Final
schedules Evaluation: schedule
and EPST 1. Run K sample processes consists of
priority — based ors,and EPST rule | optimals'
rule 2. Evaluate cost function by and EPST
averaging K sample priority
processes rule

Figure 3. One phase method for scheduling

5. NUMERICAL EXAMPLES

Two examples are described here (Table 1). Examptmnsists of a
single product and example B has three producigmiss and manufactured
concurrently. The products are major subassemioiegower generation
plant. One simplification is introduced, namelyttlfze concurrent products
are all assumed to start at the same time, withséimee delivery date. In
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practice, for major subassemblies on a single mbthis is a reasonable
assumption but for concurrent products, staged stad delivery will be

usual practice. Example B has more pressure onumes® - a common
feature of ETO where resource constraints becosigraficant problem as
the number of concurrent products increases.

Table 1. Examples of ETO used for scheduling

Example  Products = Components  Operations Resources
Manufacture/Assembly
A 1 9 100/13 13
B 3 47 210/29 17

51 Single product

Consider a single product (figure 4a) which is gamaubassembly of
power generation plantThe numbers on the nodes are references to
particular operations, components and products. mdlly distributed
operation times have increasing variance as asgepnbfresses. Holding
costs are set at 1% x {sum of operation times &éysjl already spent on the
item}x £1000. Lateness costs for final product weet at twice holding
costs of the final product. The due date for tingle subassembly was 180
days. Parameters for the search algorithms wesbledied by experiment
over several simulations of a range of examplegduding the specific ones
described here. For each method K=100 sample mesese used to assess
stochastic effects. The three two-phase methodsargwared in figure 5a,
where the second phase PASA is compared for theusamputs provided
by the different first phase methods. For singledpcts an extra cost
reduction of about 20% is achieved by applyinggbeond phase PASA.

5.2 Multiple products

Consider three different products with the multideassembly structures
shown in figure 4(a), (b) and (¢). The aim is lampconcurrent development
of these three products. The same regime of holaimblateness costs as for
the single product was assumed but with a due afag@90 days. Normal
distributions were assumed for all operation timeéh variances increasing
for assembly operations closer to the finished petdin all cases K=100
samples were used. The three two-phase methodsoarpared in figure
5(b). The second phase PASA is compared for theuainputs provided
by the different first-phase methods. For multipl@ducts an extra 10%
cost reduction is achieved by applying the secdrabp PASA.
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Figure 4. Examples of multilevel product structures
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Figure 5. (a) Total costs versus CPU times at the seconcedhaga) assembly of product in

figure 4(a) and (b) ¢

oncurrent assembly of threelpets in figure 4(a), (b) and (c)

For one phase methods the initial schedylés obtained by a shifted
backwards scheduling assuming infinite capacity ax@n duration times.
The shift, corresponding to letting the mean produnpletion time meet
the product due date, helps to reduce SA and ES8lstieme. The choice of
parameters for SA and ES is made by repeated expet$s on these and
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other similar complex examples. One-phase methodsapplied to the
single and multiple product cases (figure 4) ta foptimal operation timings
with the EPST priority rule (figure 6).

200

~ © ©
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<] <] 15}
| | |
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| | | | |
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Figure 6. Total costs versus CPU time by one-phase methaoda)fassembly of product in
figure 4(a) and (b) concurrent assembly of threelpets in figure 4(a), (b) and (c)

6. CONCLUSION

Planning large and complex products is a diffiquibblem especially
when the operations have large uncertainties imatdur. This is likely to
happen for engineer-to-order products which ard¢omised to a particular
client's specification. Furthermore, companies Wwhiesign and manufacture
these types of product often have an unpredictelvkd of orders. Thus they
retain core resources, but when several produces w@andertaken
concurrently, significant competition for the resms occurs. The aim of an
optimum plan is to minimise expected cost, whichlides lateness and
holding (i.e. work in progress or earliness) costs.

The methods developed in this paper go some wagoteing this
problem. One method uses a two-phase process.ifBhegliase optimises
the sequence of operations and the operation dinetishes (assuming means
of operation times are set deterministically ainestes of their means). An
heuristic is described which is computationally twalers of magnitude
guicker than alternative random search simulatecalimg and evolutionary
strategy methods, with only a marginal reductiorast of schedules for the
industrial examples tested. The second phase liseggfuence of operations
from the first phase and optimises timings for tlEequence using
perturbation analysis giving between 10-20% costucton. The other
method optimises timings directly through randomarsk but due to the
stochastic operation times a priority rule is reediboth to implement the
final plan as well as evaluate candidate solutioRepeated simulation of
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sample processes for this evaluation makes the pbase method
computationally expensive. Both the one- and twasgh methods were
implemented and validated on several cases withstndl data. Further
research on re-planning when new orders arrive usrently being

undertaken by the authors.
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