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PLANNING COMPLEX ENGINEER-TO-ORDER 
PRODUCTS 

Christopher Earl: Dong Ping Song: Christian Hicks 
Open University, Imperial College London, Newcastle University, UK 

Abstract: The design and manufacture of complex Engineer-to-Order products is 
characterised by uncertain operation durations, finite capacity resources and 
multilevel product structures. Two scheduling methods are presented to 
minimise expected costs for multiple products across multiple finite capacity 
resources.  The first sub-optimises the operations sequence, using mean 
operation durations, then refines the schedule by perturbation. The second 
method generates a schedule of start times directly by random search with an 
embedded simulation of candidate schedules for evaluation. The methods are 
compared for industrial examples.  
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1. INTRODUCTION 

Planning Engineer-to-Order products [1,2,3,4] takes into account several 
factors: significant uncertainty in operation times; limited resources 
maintained by companies in response to fluctuations in demand; concurrent 
development of multiple products and complex product (Figure 1). The 
problem addressed here is to create a plan with minimum expected costs 
(both earliness and lateness). The majority of planning research in this area 
is limited to simple systems such as single machines [5], serial structures or 
flow lines [6,7,8,9], two stage assembly systems and two stage distribution 
type networks [10,11].  Research on planning multilevel products has 
optimised operation sequences for deterministic operation durations. 
However, with stochastic durations, the other factors, namely; finite capacity 
resource constraints, precedence constraints, assembly co-ordination and due 
date constraints; all cause the actual schedule to deviate significantly from 
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plan. A further difficulty is that although the schedule starts as a useful 
guide, it can rapidly become a constraint as uncertainties take effect, 
operations are completed and new conditions for the remaining operations 
come into play. Two methods are developed to optimise schedules for 
multiple complex products over multiple finite resources.  The first 
optimises sequences (using mean operation duration estimates) then further 
optimises timings for this sequence.  The second optimises timings directly. 
The methods are tested on examples of ETO products in the power 
generation industry. 

Final Product
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Components
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k

BkBi
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                   Bk

                   Bi

 

Figure 1. General product structure whose nodes represent manufacture/assembly (with 
component design at leaves and final assembly at the root) 

2. PLANNING 

Planning in stochastic systems needs to take account of how plans are 
implemented. For example, when a resource finishes an operation but the 
next planned operation has not arrived (but several other operations are 
queuing at this resource); which operation should the resource do next? Two 
choices present themselves. The first keeps the original sequence [12]. The 
resource ignores the queuing operations, keeps idle and waits for the next 
planned operation. The second choice selects one of the queuing operations 
by a priority rule. These choices give rise to the two methods developed here 
for planning.  Broadly the first optimises sequences then refines the 
associated timings.  The second optimises timings directly. 

2.1 Notation 

An implementation is a sample process (or real execution) of a schedule 
of start times s = {si} of operations i, with durations xi sampled from their 
probability distributions (or given by their real values). An implementation is 
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described by the ‘actual’ operation start times ai and completion times ci of 
operations on many products and resources.  The following notation is used:  

Γ   set of all operations over all products and all resources,   
L       set of the final assembly operations over all products,  
Ci     operations which immediately precede operation i (figure 1),  
ρ(i)   operation immediately after i in the product structure, 
r(i)  resource used to undertake operation i 
ϕ(i)  operation immediately preceding operation i on resource r(i);  
di   due date of operation i.  
h i , hi

-   costs of earliness and lateness for operation i.  
The basic relations among starting and completion times are: 

ai = max (si, cϕ(i), {cj : j∈Ci})       ci = ai + xi           (1) 
The cost function which is minimised is the expected value of:  

        ∑i∈Γ\L hi(aρ(i) - ci) + ∑i∈L himax(di - ci,0) + ∑i∈L hi
-max(ci - di,0)   (2) 

2.2 Industrial ETO examples 

The planning methods were tested on examples from an Engineer-to-
Order company which designs and manufactures power generation 
equipment.  Although the examples are not complete products they are 
significant functional subassemblies such as bearing pedestals, casings and 
rotor/blade assemblies. The data available covered both product structures 
and  estimates of operation times for manufacturing processes and assembly.  
As mentioned above these times are not known with certainty.  But the 
difficulties are more profound.  Because the products are engineer-to-order, 
operations are not repeated across products and so estimations of stochastic 
characteristics and distributions are problematic due to small sample sizes.  
However, from historical data on sets of similar operations, means and 
variances can be approximated but estimates of distributions are more 
difficult to obtain.  In this paper we assume that the distributions are normal. 

3. TWO-PHASE OPTIMISATION METHOD   

The first phase (figure 2) sets the values of operation durations at the 
estimated means. A sequence of operations on each resource is then 
determined by either: (i) a finite loading heuristic with a priority rule or, (ii) 
random search using Simulated Annealing (SA) or Evolution Strategy (ES). 
The second phase takes operation sequences from the first phase as 
constraints and refines operation timings using a Perturbation Analysis 
Stochastic Approximation (PASA). Although SA and ES can also be used to 
refine the timings in the second phase, PASA was found to converge faster.  
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Deterministic scheduling based on
mean data

Fix operation sequences

Apply PASA to optimise timings

Operation sequence (first stage) and
timings (second stage)

Heuristic, SA or ES methods

Optimal operation sequences

First phase Second phase

Figure 2. Two-phase scheduling 

3.1 First phase heuristics 

First phase heuristics are based on backwards scheduling which aims to 
start each item as late as possible. If more than one operation is waiting to be 
loaded onto a resource then a latest possible completion time (LCT) priority 
rule is used to decide which is loaded first. Note that if an operation is 
loaded first in the backwards scheduling then it will be processed last when 
the plan is implemented. The LCT priority rule tries to reduce waiting and 
thus holding costs. In cases where LCT cannot decide, the highest cost ratio 
hi/xi (HCR) selects the next operation to be loaded.  

Backwards finite loading with the LCT priority rule has computational 
complexity less than O(n2) in the number of operations n. Several examples 
of ETO products, (major subassemblies), from the power generation sector 
were tested. One with 113 operations and 13 resources took 2 seconds and 
another with 239 operations on three concurrent products and 17 resources 
took 4 seconds. See table 1 and figure 4 for details of these products. Finite 
loading gives much lower costs (up to a factor of five) than infinite loading.  

3.2 First phase random search 

Random search methods are used to optimise start times of operations 
under the assumption that durations are set at their estimated means. These 
start times give a sequence which is then adopted in the second phase 
refinement of the schedule. Two different random search techniques have 
been applied. Simulated Annealing (SA) [13,14] numerically optimises [15] 
operation start times {si}. The performance (total cost) of a candidate 
schedule within a SA iteration is determined by simulating its 
implementation using the priority rule that the operation with the earliest 
planned start time (EPST) is started first if there is competition for resources. 
Two types of constraint are applied. Physical constraints specify that a 
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starting event on an operation cannot occur before all immediately preceding 
operations Ci are completed. Planning constraints specify that an operation 
cannot start before its planned start time (ai  ≥ si). The actual schedule {ai} 
given by the simulation is likely to deviate significantly from {si} because of 
the finite capacity resources.  Neighbouring schedules are obtained by 
randomly choosing new start times from a uniform distribution in the ranges 
[si -1/2γi, si +1/2γi] where γi is the current step size.  Step sizes and annealing 
temperatures are reduced linearly.  

Evolution Strategy (ES) has iterative procedures with “selection”, 
“crossover” and “mutation” for generating offspring from a parent 
population. Offspring are selected for further generation. ES uses continuous 
variables and is thus suitable for numerical optimisation [16] of schedules. 
The chromosome of an individual schedule is represented by the vector s = 
{ si}  of start times. Evaluation of offspring is by simulation as in SA. 

Results from running SA and ES on industrial data for a single multilevel 
subassembly with 113 operations and 13 separate resources indicate that SA 
converges faster than ES, although in the long term ES gives lower costs. 
See table 1 and figure 4(a) for details of this product and associated 
operations. Compared with the heuristic method ES and SA achieve 
marginally lower costs, in the region of 10%, but higher computational costs 
(by a factor of 100). Similar results were obtained from experiments on 
similar subassemblies from the power generation sector. 

3.3 Second phase perturbation analysis 

Perturbation analysis (PA) is used in the second phase. Consider a sample 
implementation (or nominal path NP) of a schedule with start times s ={ si} 
and parameters (eg durations) ω, in the whole sample space Ω, determining 
start times {ai} and completion times {ci} by equations (1). The cost of the 
sample process     V(s, ω) is given by (2) [17,7]. Let planned start time sj be 
perturbed to sj + ∆. The sample process for {sj + ∆, si, i≠j, i∈Γ} with the 
same ω is a perturbed path (PP). The perturbed path with start and 
completion times {ai′} and {ci′} can be constructed directly from the 
nominal path without repeating the simulation.  

Perturbation generation is described by (i) if aj > sj, then ai′≡ ai and ci′≡ ci, 
for i∈Γ (ii) if aj = sj, then aj′= aj + ∆ and cj′= cj + ∆. Perturbation propagation 
and disappearance are described by (iii) if ai = si (i≠j), then ai′= ai and ci′= ci 
(iv) if ai = cϕ(i) (i≠j), then ai′= ai + (cϕ(i)′ - cϕ(i)) and ci′ = ci + (cϕ(i)′ - cϕ(i)), (v) 
if ai = ck (i≠j, k∈Ci), then ai′ = ai + (ck′ - ck) and ci′= ci + (ck′ - ck). The whole 
perturbation gain ∆ will be propagated along the perturbed path. Define I(i) 
:= 1{ai′ ≠ ai}, where 1{.} takes 1 if {.} is true, and 0 otherwise. Note that ai′ 
and ci′ have the same perturbation gain. The sequence {I(i), i∈Γ} determines 
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the difference between PP and NP. A recursive procedure implements the 
perturbation propagation rules and determines {I(i), i∈Γ}. Song et al [12] 
show that for any ω∈Ω and j∈Γ 
∂V(s, ω)/∂sj = ∑i∈Γ\L hi⋅(I(ρ(i))-I(i))+∑i∈L hi⋅I(i)⋅1{di>ci}+∑i∈L hi

-⋅I(i)⋅1{di≤ ci}        
is an unbiased estimator of gradient, that is:  
∂{E  V(s, ω) }/ ∂sj = E{∂V(s, ω)/∂sj}and E|∂V(s, ω)/∂sj| < ∞, for any j∈Γ.  
Thus a PA-based Stochastic Approximation [18,19] is  sn+1 = sn - γn ⋅∇Jn, 
where sn are start times at the beginning of iteration n, ∇Jn is the gradient 
estimator, and step γn >0,  γn→0,  Σ {γn}diverges and  Σ {γn}

2 converges (eg 
γn = 1/n). The gradient estimator is calculated using K sample processes. 

Some results from applying PASA (in conjunction with first phase 
methods and using K = 100 sample processes) to complex products (figure 
4) are shown in figure 5.  They indicate that application of the second phase 
PASA yields an extra reduction in costs of between 10-20% with moderate 
computation. 

4. ONE-PHASE SCHEDULING 

Simulated Annealing (SA) and Evolution Strategy (ES) methods can be 
extended from their application in the two-phase process to provide one-
phase optimisation methods (figure 3). Multiple sample processes are 
required to estimate expected cost. 

Initial
schedule s0

and EPST
priority
rule

Apply SA or ES to s0

Evaluation:
1. Run K sample processes

based on sn and EPST rule
2. Evaluate cost function by

averaging K sample
processes

Final
schedule
consists of
optimal s'
and EPST
priority
rule

 

Figure 3. One phase method for scheduling 

5. NUMERICAL EXAMPLES 

Two examples are described here (Table 1). Example A consists of a 
single product and example B has three products designed and manufactured 
concurrently. The products are major subassemblies of power generation 
plant. One simplification is introduced, namely that the concurrent products 
are all assumed to start at the same time, with the same delivery date. In 
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practice, for major subassemblies on a single product this is a reasonable 
assumption but for concurrent products, staged start and delivery will be 
usual practice. Example B has more pressure on resources - a common 
feature of ETO where resource constraints become a significant problem as 
the number of concurrent products increases.  

     Table 1. Examples of ETO used for scheduling 

Example  Products Components Operations 

Manufacture/Assembly 

 Resources 

A 1 9 100/13 13 

B 3 47 210/29 17 

5.1 Single product 

Consider a single product (figure 4a) which is a major subassembly of 
power generation plant. The numbers on the nodes are references to 
particular operations, components and products. Normally distributed 
operation times have increasing variance as assembly progresses. Holding 
costs are set at 1% x {sum of operation times (in days) already spent on the 
item}x £1000. Lateness costs for final product were set at twice holding 
costs of the final product. The due date for this single subassembly was 180 
days. Parameters for the search algorithms were established by experiment 
over several simulations of a range of examples, including the specific ones 
described here. For each method K=100 sample processes are used to assess 
stochastic effects. The three two-phase methods are compared in figure 5a, 
where the second phase PASA is compared for the various inputs provided 
by the different first phase methods.  For single products an extra cost 
reduction of about 20% is achieved by applying the second phase PASA. 

5.2 Multiple products 

Consider three different products with the multi-level assembly structures 
shown in figure 4(a), (b) and (c).  The aim is to plan concurrent development 
of these three products. The same regime of holding and lateness costs as for 
the single product was assumed but with a due date of 900 days.  Normal 
distributions were assumed for all operation times with variances increasing 
for assembly operations closer to the finished product. In all cases K=100 
samples were used. The three two-phase methods are compared in figure 
5(b). The second phase PASA is compared for the various inputs provided 
by the different first-phase methods.  For multiple products an extra 10% 
cost reduction is achieved by applying the second phase PASA. 
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Figure 4. Examples of multilevel product structures 
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Figure 5. (a) Total costs versus CPU times at the second phase for (a) assembly of product in 
figure 4(a) and (b) concurrent assembly of three products in figure 4(a), (b) and (c)  

For one phase methods the initial schedule s0 is obtained by a shifted 
backwards scheduling assuming infinite capacity and mean duration times. 
The shift, corresponding to letting the mean product completion time meet 
the product due date, helps to reduce SA and ES search time. The choice of 
parameters for SA and ES is made by repeated experiments on these and 
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other similar complex examples. One-phase methods are applied to the 
single and multiple product cases (figure 4) to find optimal operation timings 
with the EPST priority rule (figure 6).  
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Figure 6. Total costs versus CPU time by one-phase methods for (a) assembly of product in 
figure 4(a) and (b) concurrent assembly of three products in figure 4(a), (b) and (c) 

6. CONCLUSION 

Planning large and complex products is a difficult problem especially 
when the operations have large uncertainties in duration.  This is likely to 
happen for engineer-to-order products which are customised to a particular 
client's specification. Furthermore, companies which design and manufacture 
these types of product often have an unpredictable level of orders. Thus they 
retain core resources, but when several products are undertaken 
concurrently, significant competition for the resources occurs. The aim of an 
optimum plan is to minimise expected cost, which includes lateness and 
holding (i.e. work in progress or earliness) costs.  

The methods developed in this paper go some way to solving this 
problem. One method uses a two-phase process. The first phase optimises 
the sequence of operations and the operation the start times (assuming means 
of operation times are set deterministically at estimates of their means). An 
heuristic is described which is computationally two orders of magnitude 
quicker than alternative random search simulated annealing and evolutionary 
strategy methods, with only a marginal reduction in cost of schedules for the 
industrial examples tested. The second phase uses the sequence of operations 
from the first phase and optimises timings for this sequence using 
perturbation analysis giving between 10-20% cost reduction. The other 
method optimises timings directly through random search but due to the 
stochastic operation times a priority rule is required both to implement the 
final plan as well as evaluate candidate solutions.  Repeated simulation of 
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sample processes for this evaluation makes the one-phase method 
computationally expensive. Both the one- and two-phase methods were 
implemented and validated on several cases with industrial data. Further 
research on re-planning when new orders arrive is currently being 
undertaken by the authors. 
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