5 research outputs found

    Optimal procurement of flexibility services within electricity distribution networks

    Get PDF
    The increased injection of volatile renewable energy at local levels into the electricity grid is forcing the distribution network operators to seek participation in emerging service markets in order to obtain the flexibility required to balance their systems. However, the distribution companies lack experience in designing new market arrangements. We consider a market framework wherein a proactive distribution company is willing to purchase reserve capacity for overload management, using a two-part tariff. The problem is modelled as a three-stage stochastic market including Day-Ahead, Intra-Day and Real-Time, with uncertainty on both demand and generation. After assessing our formulation, we discuss the impact of risk-aversion at each stage with an objective function based on CVaR. Finally, different Intra-Day clearing horizons and delivery settings are evaluated. The results show that risk-aversion close to Real-Time becomes the main driver for decision makers and that early hedging strategies lead to sub-optimal solutions

    Short-term Risk Management for Electricity Retailers Under Rising Shares of Decentralized Solar Generation

    Get PDF
    Electricity retailers face increasing uncertainty due to the ongoing expansion of unpredictable, distributed generation in the residential sector. We analyze how increasing levels of households\u27 solar PV self-generation affect the short-term decisionmaking and associated risk exposure of electricity retailers in day-ahead and intraday markets. First, we develop a stochastic model accounting for correlations between solar load, residual load and price in sequentially nested wholesale spot markets across seasons and type of day. Second, we develop a computationally tractable twostage stochastic mixed-integer optimization model to investigate the trading portfolio and risk optimization problem faced by retailers. Through conditional value-at-risk we assess retailers\u27 profitability and risk exposure to different levels of PV self-generation by assuming different retail tariff schemes. We find risk-hedging trading strategies and tariffs to have greater impact in Summer and with low levels of residual load in the system, i.e. when the solar generation uncertainty affect more the households demand to be served and the wholesale spot prices. The study is innovative in unveiling the potential of dynamic electricity tariffs, which are indexed to spot prices, to sustain a high penetration of renewable energy source while promoting risk sharing between customer and retailer. Our findings have implications for electricity retailers facing load and revenue risks in wholesale spot markets, likewise for regulators and policy-makers interested in electricity market design

    Multistage scenario trees generation for renewable energy systems optimization

    Get PDF
    The presence of renewables in energy systems optimization have generated a high level of uncertainty in the data, which has led to a need for applying stochastic optimization to modelling problems with this characteristic. The method followed in this thesis is multistage Stochastic Programming (MSP). Central to MSP is the idea of representing uncertainty (which, in this case, is modelled with a stochastic process) using scenario trees. In this thesis, we developed a methodology that starts with available historical data; generates a set of scenarios for each random variable of the MSP model; define individual scenarios that are used to build the initial stochastic process (as a fan or an initial scenario tree); and builds the final scenario trees that are the approximation of the stochastic process. The methodology proposes consists of two phases. In the first phase, we developed a procedure similar to Muñoz et al. (2013), with the difference being that the VAR models are used to predict the next day for each random parameter of the MSP models. In the second phase, we build scenario trees from the Forward Tree Construction Algorithm(FTCA), developed by Heitsch and Römisch (2009a); and an adapted version of DynamicTree Generation with a Flexible Bushiness Algorithm (DTGFBA), developed by Pflugand Pichler (2014, 2015). This methodology was used to generate scenario trees for two MSP models. A first model, Multistage Stochastic Wind Battery Virtual Power Plantmodel (MSWBVPP model) and to a second model, which is the Multistage StochasticOptimal Operation of Distribution Networks model (MSOODN model). We developed extensive computational experiments for the MSWBVPP model and generated scenario trees with real data, which were based on MIBEL prices and wind power generation of the real wind farm called Espina, located in Spain. For the MSOODN model, we obtained scenario trees by also using real data from the power load provided by FEEC-UNICAMP and photovoltaic generation of a distribution grid located in Brazil. The results show that the scenario tree generation methodology proposed in this thesis can obtain suitable scenario trees for each MSP model. In addition, results were obtained for the model using the scenario trees as input data. In the case of the MSWBVPP model, we solved three different case studies corresponding to three different hypotheses on the virtual power plant’s participation in electricity markets. In the case of the MSOODN model, two test cases were solved, with the results indicating that the EDN satisfied the limits imposed for each test case. Furthermore, the BESS case gave good results when taking into account the uncertainty in the model. Finally, the MSWBVPP model was used to study the relative performance of the FTCA and DTGFBA scenario trees, specifically by analyzing the value of the stochastic solution for the 366 daily optimal bidding problems. To this end, a variation of the classical VSS (the so-called “Forecasted Value of the Stochastic Solution”, FVSS) was defined and used together with the classical VSS.a presencia de energías renovables en la optimización de sistemas energéticos hagenerado un alto nivel de incertidumbre en los datos, lo que ha llevado a la necesidad de aplicar técnicas de optimización estocástica para modelar problemas con estas características. El método empleado en esta tesis es programación estocástica multietapa (MSP, por sus siglas en inglés). La idea central de MSP es representar la incertidumbre (que en este caso es modelada mediante un proceso estocástico), mediante un árbol de escenarios. En esta tesis, desarrollamos una metodología que parte de una data histórica, la cual está disponible; generamos un conjunto de escenarios por cada variable aleatoria del modelo MSP; definimos escenarios individuales, que luego serán usados para construir el proceso estocástico inicial (como un fan o un árbol de escenario inicial); y, por último, construimos el árbol de escenario final, el cual es la aproximación del proceso estocástico. La metodología propuesta consta de dos fases. En la primera fase, desarrollamos un procedimiento similar a Muñoz et al. (2013), con la diferencia de que para las predicciones del próximo día para cada variable aleatoria del modelo MSP usamos modelos VAR. En la segunda fase construimos árboles de escenarios mediante el "Forward Tree Construction Algorithm (FTCA)", desarrollado por Heitsch and Römisch (2009a); y una versión adaptada del "Dynamic Tree Generation with a Flexible Bushiness Algorithm (DTGFBA)", desarrolado por Pflug and Pichler (2014, 2015). Esta metodología fue usada para generar árboles de escenarios para dos modelos MSP. El primer modelo fue el "Multistage Stochastic Wind Battery Virtual Power Plant model (modelo MSWBVPP)", y el segundo modelo es el "Multistage Stochastic Optimal Operation of Distribution Networks model (MSOODN model)". Para el modelo MSWBVPP desarrollamos extensivos experimentos computacionales y generamos árboles de escenarios a partir de datos realesde precios MIBEL y generación eólica de una granja eólica llamada Espina, ubicada en España. Para el modelo MSOODN obtuvimos árboles de escenarios basados en datos reales de carga, provistos por FEEC-UNICAMP y de generación fotovoltaica de una red de distribución localizada en Brasil. Los resultados muestran que la metodología de generación de árboles de escenarios propuesta en esta tesis, permite obtener árboles de escenarios adecuados para cada modelo MSP. Adicionalmente, obtuvimos resultados para los modelos MSP usando como datos de entrada los árboles de escenarios. En el caso del modelo MSWBVPP, resolvimos tres casos de estudio correspondiente a tres hipótesis basadas en la participación de una VPP en los mercados de energía. En el caso del modelo MSOODN, dos casos de prueba fueron resueltos, mostrando que la EDN satisface los límites impuestos para cada caso de prueba, y además, que el caso con BESS da mejores resultados cuando se toma en cuenta el valor la incertidumbre en el modelo. Finalmente, el modelo MSWBVPP fue usado para estudiar el desempeño relativo de los árboles de escenarios FTCA y DTGFBA, específicamente, analizando el valor de la solución estocástica para los 366 problemas de oferta óptima. Para tal fin, una variación del clásico VSS (denominado "Forecasted Value of the Stochastic Solution", FVSS) fue definido y usado junto al clásico VSS

    Estudio del rol de las Plantas Virtuales de Producción en la gestión de las redes de generación y distribución eléctrica

    Get PDF
    141 p.El objetivo principal de las Planta Virtuales de Producción Eléctrica o Virtual Power Plants (VPPs) es darle cumplimiento a los requerimientos de sus Stakeholders dentro de las redes de generación y distribución eléctrica que gestionan, así como aprovechar eficientemente los elementos y recursos que tienen a su disposición. Uno de los desafíos más importantes de las VPPs es satisfacer los requerimientos de sus Stakeholders optimizando el uso de la electricidad generada en sus sistemas de manera sostenible, minimizando los costes de operación y maximizando los beneficios comerciales. En esta tesis se presenta la información clave, recopilada a partir de más de 160 artículos científicos, para dar apoyo en el conocimiento de conceptos infraestructurales, tecnológicos y de desarrollo sostenible que involucran la gestión de las VPPs en las redes de generación y distribución eléctrica. De esta manera, se analiza, selecciona y organiza la información suministrada por los investigadores a través de sus artículos científicos, identificándose las distintas interacciones de las VPPs relacionadas con la arquitectura infraestructural y tecnología de los sistemas, el mercado eléctrico, modelos de optimización para la toma de decisiones, y las tecnologías de la información y de la comunicación; y dar así respuesta a la pregunta clave: ¿Cómo el rol de las VPPs puede utilizarse para minimizar los costes de operación y maximizar los beneficios comerciales de las redes de generación y distribución eléctrica, optimizando el uso de la electricidad de manera sostenible?. Finalmente, se indican esquemas de sistemas centralizados, descentralizados e híbridos, en los cuales las VPPs desempeñan su gestión mediante la aplicación de su rol y funciones para cumplir con los requerimientos de sus Stakeholders, mencionando las ventajas y dificultades según los escenarios en los que se desempeñe
    corecore