73 research outputs found

    Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems with Untrusted Relays and Passive Eavesdroppers

    Full text link
    In this paper, a joint relay selection and power allocation (JRP) scheme is proposed to enhance the physical layer security of a cooperative network, where a multiple antennas source communicates with a single-antenna destination in presence of untrusted relays and passive eavesdroppers (Eves). The objective is to protect the data confidentially while concurrently relying on the untrusted relays as potential Eves to improve both the security and reliability of the network. To realize this objective, we consider cooperative jamming performed by the destination while JRP scheme is implemented. With the aim of maximizing the instantaneous secrecy rate, we derive a new closed-form solution for the optimal power allocation and propose a simple relay selection criterion under two scenarios of non-colluding Eves (NCE) and colluding Eves (CE). For the proposed scheme, a new closed-form expression is derived for the ergodic secrecy rate (ESR) and the secrecy outage probability as security metrics, and a new closed-form expression is presented for the average symbol error rate (SER) as a reliability measure over Rayleigh fading channels. We further explicitly characterize the high signal-to-noise ratio slope and power offset of the ESR to highlight the impacts of system parameters on the ESR. In addition, we examine the diversity order of the proposed scheme to reveal the achievable secrecy performance advantage. Finally, the secrecy and reliability diversity-multiplexing tradeoff of the optimized network are provided. Numerical results highlight that the ESR performance of the proposed JRP scheme for NCE and CE cases is increased with respect to the number of untrustworthy relays.Comment: 18 pages, 10 figures, IEEE Transactions on Information Forensics and Security (In press

    Optimal Power Allocation by Imperfect Hardware Analysis in Untrusted Relaying Networks

    Get PDF
    By taking a variety of realistic hardware imperfections into consideration, we propose an optimal power allocation (OPA) strategy to maximize the instantaneous secrecy rate of a cooperative wireless network comprised of a source, a destination and an untrusted amplify-and-forward (AF) relay. We assume that either the source or the destination is equipped with a large-scale multiple antennas (LSMA) system, while the rest are equipped with a single antenna. To prevent the untrusted relay from intercepting the source message, the destination sends an intended jamming noise to the relay, which is referred to as destination-based cooperative jamming (DBCJ). Given this system model, novel closed-form expressions are presented in the high signal-to-noise ratio (SNR) regime for the ergodic secrecy rate (ESR) and the secrecy outage probability (SOP). We further improve the secrecy performance of the system by optimizing the associated hardware design. The results reveal that by beneficially distributing the tolerable hardware imperfections across the transmission and reception radio-frequency (RF) front ends of each node, the system's secrecy rate may be improved. The engineering insight is that equally sharing the total imperfections at the relay between the transmitter and the receiver provides the best secrecy performance. Numerical results illustrate that the proposed OPA together with the most appropriate hardware design significantly increases the secrecy rate.Comment: 29 pages, 7 figures, Submitted to IEEE Transactions on Wireless Communication

    Optimal Power Allocation by Imperfect Hardware Analysis in Untrusted Relaying Networks

    Get PDF
    CCBY By taking a variety of realistic hardware imperfections into consideration, we propose an optimal power allocation (OPA) strategy to maximize the instantaneous secrecy rate of a cooperative wireless network comprised of a source, a destination and an untrusted amplify-and-forward (AF) relay. We assume that either the source or the destination is equipped with a large-scale multiple antennas (LSMA) system, while the rest are equipped with a single-antenna. To prevent the untrusted relay from intercepting the source message, the destination sends an intended jamming noise to the relay, which is referred to as destination-based cooperative jamming (DBCJ). Given this system model, novel closed-form expressions are presented in the high signal-to-noise ratio (SNR) regime for the ergodic secrecy rate (ESR) and the secrecy outage probability (SOP). We further improve the secrecy performance of the system by optimizing the associated hardware design. The results reveal that by beneficially distributing the tolerable hardware imperfections across the transmission and reception radio-frequency (RF) front ends of each node, the system & #x2019;s secrecy rate may be improved. The engineering insight is that equally sharing the total imperfections at the relay between the transmitter and the receiver provides the best secrecy performance. Numerical results illustrate that the proposed OPA together with the most appropriate hardware design significantly increases the secrecy rate

    Subcarrier Pairing as Channel Gain Tailoring: Joint Resource Allocation for Relay-Assisted Secure OFDMA with Untrusted Users

    Full text link
    Joint resource allocation involving optimization of subcarrier allocation, subcarrier pairing (SCP), and power allocation in a cooperative secure orthogonal frequency division multiple access (OFDMA) communication system with untrusted users is considered. Both amplify and forward (AF), and decode and forward (DF) modes of operations are considered with individual power budget constraints for source and relay. After finding optimal subcarrier allocation for an AF relayed system, we prove the joint power allocation as a generalized convex problem, and solve it optimally. Compared to the conventional channel gain matching view, the optimal SCP is emphasized as a novel concept of channel gain tailoring. We prove that the optimal SCP pairs subcarriers such that the variance among the effective channel gains is minimized. For a DF relayed system, we show that depending on the power budgets of source and relay, SCP can either be in a subordinate role where it improves the energy efficiency, or in a main role where it improves the spectral efficiency of the system. In an AF relayed system we confirm that SCP plays a crucial role, and improves the spectral efficiency of the system. The channel gain tailoring property of SCP, various roles of SCP in improving the spectral and the energy efficiency of a cooperative communication system are validated with the help of simulation results
    • …
    corecore