4 research outputs found

    Development of Autonomous Optimal Cooperative Control in Relay Rover Configured Small Unmanned Aerial Systems

    Get PDF
    This thesis documents the research effort to develop, integrate and implement the system hardware and the software necessary to validate the Air Force Institute of Technology\u27s theoretical advances in small unmanned aerial systems (SUAS) cooperative control. The end state objective of the research effort was to flight test an autonomous control algorithm on a communication relay unmanned aerial vehicle (UAV) that was actively relaying data to and from a rover UAV. The relay UAV is one part of a SUAS designed to utilize cooperative control to extend the effective line-of-sight operating range for a rover UAV. An algorithm is integrated into ground control software that takes telemetry data (the current position of the ground station, rover UAV, and relay UAV) to determine where to navigate the relay aircraft for optimal communication signal strength. The ground station operator flies the rover aircraft in the extended line-of-sight operational envelope just as she/he would in the normal line-of-sight operations. The relay UAV is autonomously routed to the optimal communications relay position. The research yielded a SUAS based on the Ardupilot Mega 2.0. Flight testing demonstrated the SUAS\u27s ability to generate the correct navigation data autonomously; however, the navigation data was not successfully activated as current waypoints on the relay UAV \u27s autopilot. Software in the loop testing was utilized to verify a solution to activate the navigation data but flight testing was not conducted to verify the simulation results

    Establishing and optimising unmanned airborne relay networks in urban environments

    Get PDF
    This thesis assesses the use of a group of small, low-altitude, low-power (in terms of communication equipment), xed-wing unmanned aerial vehicles (UAVs) as a mobile communication relay nodes to facilitate reliable communication between ground nodes in urban environments. This work focuses on enhancing existing models for optimal trajectory planning and enabling UAV relay implementation in realistic urban scenarios. The performance of the proposed UAV relay algorithms was demonstrated and proved through an indoor simulated urban environment, the rst experiment of its kind.The objective of enabling UAV relay deployment in realistic urban environments is addressed through relaxing the constraints on the assumptions of communication prediction models assumptions, reducing knowledge requirements and improving prediction efficiency. This thesis explores assumptions for urban environment knowledge at three different levels: (i) full knowledge about the urban environment, (ii) partially known urban environments, and (iii) no knowledge about the urban environment. The work starts with exploring models that assume the city size, layout and its effects on wireless communication strength are known, representing full knowledge about the urban environment. [Continues.]</div
    corecore