584 research outputs found

    Traffic Management System for the combined optimal routing, scheduling and motion planning of self-driving vehicles inside reserved smart road networks

    Get PDF
    The topic discussed in this thesis belongs to the field of automation of transport systems, which has grown in importance in the last decade, both in the innovation field (where different automation technologies have been gradually introduced in different sectors of road transport, in the promising view of making it more efficient, safer, and greener) and in the research field (where different research activities and publications have addressed the problem under different points of view). More in detail, this work addresses the problem of autonomous vehicles coordina tion inside reserved road networks by proposing a novel Traffic Management System (TMS) for the combined routing, scheduling and motion planning of the vehicles. To this aim, the network is assumed to have a modular structure, which results from a certain number of roads and intersections assembled together. The way in which roads and intersections are put together defines the network layout. Within such a system architecture, the main tasks addressed by the TMS are: (1) at the higher level, the optimal routing of the vehicles in the network, exploiting the available information coming from the vehicles and the various elements of the network; (2) at a lower level, the modeling and optimization of the vehicle trajectories and speeds for each road and for each intersection in the network; (3) the coordination between the vehicles and the elements of the network, to ensure a combined approach that considers, in a recursive way, the scheduling and motion planning of the vehicles in the various elements when solving the routing problem. In particular, the routing and the scheduling and motion planning problems are formulated as MILP optimization problems, aiming to maximize the performance of the entire network (routing model) and the performance of its single elements - roads and intersections (scheduling and motion planning model) while guaranteeing the requested level of safety and comfort for the passengers. Besides, one of the main features of the proposed approach consists of the integration of the scheduling decisions and the motion planning computation by means of constraints regarding the speed limit, the acceleration, and the so-called safety dynamic constraints on incompatible positions of conflicting vehicles. In particular, thanks to these last constraints, it is possible to consider the real space occupancy of the vehicles avoiding collisions. After the theoretical discussion of the proposed TMS and of its components and models, the thesis presents and discusses the results of different numerical experiments, aimed at testing the TMS in some specific scenarios. In particular, the routing model and the scheduling and motion planning model are tested on different scenarios, which demonstrate the effectiveness and the validity of such approach in performing the addressed tasks, also compared with more traditional methods. Finally, the computational effort needed for the problem solution, which is a key element to take into account, is discussed both for the road element and the intersection element

    A comprehensive survey on cooperative intersection management for heterogeneous connected vehicles

    Get PDF
    Nowadays, with the advancement of technology, world is trending toward high mobility and dynamics. In this context, intersection management (IM) as one of the most crucial elements of the transportation sector demands high attention. Today, road entities including infrastructures, vulnerable road users (VRUs) such as motorcycles, moped, scooters, pedestrians, bicycles, and other types of vehicles such as trucks, buses, cars, emergency vehicles, and railway vehicles like trains or trams are able to communicate cooperatively using vehicle-to-everything (V2X) communications and provide traffic safety, efficiency, infotainment and ecological improvements. In this paper, we take into account different types of intersections in terms of signalized, semi-autonomous (hybrid) and autonomous intersections and conduct a comprehensive survey on various intersection management methods for heterogeneous connected vehicles (CVs). We consider heterogeneous classes of vehicles such as road and rail vehicles as well as VRUs including bicycles, scooters and motorcycles. All kinds of intersection goals, modeling, coordination architectures, scheduling policies are thoroughly discussed. Signalized and semi-autonomous intersections are assessed with respect to these parameters. We especially focus on autonomous intersection management (AIM) and categorize this section based on four major goals involving safety, efficiency, infotainment and environment. Each intersection goal provides an in-depth investigation on the corresponding literature from the aforementioned perspectives. Moreover, robustness and resiliency of IM are explored from diverse points of view encompassing sensors, information management and sharing, planning universal scheme, heterogeneous collaboration, vehicle classification, quality measurement, external factors, intersection types, localization faults, communication anomalies and channel optimization, synchronization, vehicle dynamics and model mismatch, model uncertainties, recovery, security and privacy

    Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

    Get PDF
    Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026

    A Robust Integrated Multi-Strategy Bus Control System via Deep Reinforcement Learning

    Full text link
    An efficient urban bus control system has the potential to significantly reduce travel delays and streamline the allocation of transportation resources, thereby offering enhanced and user-friendly transit services to passengers. However, bus operation efficiency can be impacted by bus bunching. This problem is notably exacerbated when the bus system operates along a signalized corridor with unpredictable travel demand. To mitigate this challenge, we introduce a multi-strategy fusion approach for the longitudinal control of connected and automated buses. The approach is driven by a physics-informed deep reinforcement learning (DRL) algorithm and takes into account a variety of traffic conditions along urban signalized corridors. Taking advantage of connected and autonomous vehicle (CAV) technology, the proposed approach can leverage real-time information regarding bus operating conditions and road traffic environment. By integrating the aforementioned information into the DRL-based bus control framework, our designed physics-informed DRL state fusion approach and reward function efficiently embed prior physics and leverage the merits of equilibrium and consensus concepts from control theory. This integration enables the framework to learn and adapt multiple control strategies to effectively manage complex traffic conditions and fluctuating passenger demands. Three control variables, i.e., dwell time at stops, speed between stations, and signal priority, are formulated to minimize travel duration and ensure bus stability with the aim of avoiding bus bunching. We present simulation results to validate the effectiveness of the proposed approach, underlining its superior performance when subjected to sensitivity analysis, specifically considering factors such as traffic volume, desired speed, and traffic signal conditions

    Estimating Uncertainty of Bus Arrival Times and Passenger Occupancies

    Get PDF
    Travel time reliability and the availability of seating and boarding space are important indicators of bus service quality and strongly influence users’ satisfaction and attitudes towards bus transit systems. With Automated Vehicle Location (AVL) and Automated Passenger Counter (APC) units becoming common on buses, some agencies have begun to provide real-time bus location and passenger occupancy information as a means to improve perceived transit reliability. Travel time prediction models have also been established based on AVL and APC data. However, existing travel time prediction models fail to provide an indication of the uncertainty associated with these estimates. This can cause a false sense of precision, which can lead to experiences associated with unreliable service. Furthermore, no existing models are available to predict individual bus occupancies at downstream stops to help travelers understand if there will be space available to board. The purpose of this project was to develop modeling frameworks to predict travel times (and associated uncertainties) as well as individual bus passenger occupancies. For travel times, accelerated failure-time survival models were used to predict the entire distribution of travel times expected. The survival models were found to be just as accurate as models developed using traditional linear regression techniques. However, the survival models were found to have smaller variances associated with predictions. For passenger occupancies, linear and count regression models were compared. The linear regression models were found to outperform count regression models, perhaps due to the additive nature of the passenger boarding process. Various modeling frameworks were tested and the best frameworks were identified for predictions at near stops (within five stops downstream) and far stops (further than eight stops). Overall, these results can be integrated into existing real-time transit information systems to improve the quality of information provided to passengers

    Development and evaluation of cooperative intersection management algorithm under connected vehicles environment

    Get PDF
    Recent technological advancements in the automotive and transportation industry established a firm foundation for development and implementation of various automated and connected vehicle (C/AV) solutions around the globe. Wireless communication technologies such as the dedicated short-range communication (DSRC) protocol are enabling instantaneous information exchange between vehicles and infrastructure. Such information exchange produces tremendous benefits with the possibility to automate conventional traffic streams and enhance existing signal control strategies. While many promising studies in the area of signal control under connected vehicle (CV) environment have been introduced, they mainly offer solutions designed to operate a single isolated intersection or they require high technology penetration rates to operate in a safe and efficient manner. Applications designed to operate on a signalized corridor with imperfect market penetration rates of connected vehicle technology represent a bridge between conventional traffic control paradigm and fully automated corridors of the future. Assuming utilization of the connected vehicle environment and vehicle to infrastructure (V2I) technology, all vehicular and signal-related parameters are known and can be shared with the control agent to control automated vehicles while improving the mobility of the signalized corridor. This dissertation research introduces an intersection management strategy for a corridor with automated vehicles utilizing vehicular trajectory-driven optimization method. The Trajectory-driven Optimization for Automated Driving (TOAD) provides an optimal trajectory for automated vehicles while maintaining safe and uninterrupted movement of general traffic, consisting of regular unequipped vehicles. Signal status parameters such as cycle length and splits are continuously captured. At the same time, vehicles share their position information with the control agent. Both inputs are then used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in the reduction of vehicle delay along the signalized corridor with fixed-time signal control. To determine the most efficient trajectory for automated vehicles, an evolutionary-based optimization is utilized. Influence of the prevailing traffic conditions is incorporated into a control algorithm using conventional data collection methods such as loop detectors, Bluetooth or Wi-Fi sensors to collect vehicle counts, travel time on corridor segments, and spot speed. Moreover, a short-term, artificial intelligence prediction model is developed to achieve reasonable deployment of data collection devices and provide accurate vehicle delay predictions producing realistic and highly-efficient longitudinal vehicle trajectories. The concept evaluation through microsimulation reveals significant mobility improvements compared to contemporary corridor management approach. The results for selected test-bed locations on signalized arterials in New Jersey reveals up to 19.5 % reduction in overall corridor travel time depending on different market penetration and lane configuration scenario. It is also discovered that operational scenarios with a possibility of utilizing reserved lanes for movement of automated vehicles further increases the effectiveness of the proposed algorithm. In addition, the proposed control algorithm is feasible under imperfect C/AV market penetrations showing mobility improvements even with low market penetration rates
    • …
    corecore