5 research outputs found

    Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining

    Get PDF
    A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.</jats:p

    Randomized Optimal Design of Parallel Manipulators

    Get PDF
    This work intends to deal with the optimal kinematic synthesis problem of parallel manipulators under a unified framework. Observing that regular (e.g., hyper-rectangular) workspaces are desirable for most machines, we propose the concept of effective regular workspace, which reflects simultaneously requirements on the workspace shape and quality. The effectiveness of a workspace is characterized by the dexterity of the mechanism over every point in the workspace. Other performance indices, such as manipulability and stiffness, provide alternatives of dexterity characterization of workspace effectiveness. An optimal design problem, including constraints on actuated/passive joint limits and link interference, is then formulated to find the manipulator geometry that maximizes the effective regular workspace. This problem is a constrained nonlinear optimization problem without explicitly analytical expression. Traditional gradient based approaches may have difficulty in searching the global optimum. The controlled random search technique, as reported robust and reliable, is used to obtain an numerical solution. The design procedure is demonstrated through examples of a Delta robot and a Gough-Stewart platform. Note to Practitioners-The kinematic/dynamic performance of a parallel manipulator highly depends on its geometry, e.g., link lengths, positions of fixed actuator, shape and size of end-effector. In designing a parallel manipulator, it is a crucial step to determine the best geometry that satisfies practical design requirements. For a general parallel manipulator, this paper provides a unified framework to formulate the optimal design problem by considering some key kinematic criteria, regularity and volume of workspace and dexterity. The latter one is closely related to stiffness and control accuracy. Since the optimal design problem is a nonlinear optimization problem without analytic expression, traditional gradient based search algorithms have difficulty to solve the problem. The controlled random search technique is used to search the global optimum. The design procedure is applicable for general parallel manipulators. Other design criteria, such as stiffness and accuracy, can be readily included in the design formulation

    Optimal kinematic design of a three translational DoFs parallel manipulator

    No full text

    A SERIAL-PARALLEL HYBRID ROBOT FOR MACHINING OF COMPLEX SURFACES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore