253 research outputs found

    Cooperative Caching in Vehicular Networks - Distributed Cache Invalidation Using Information Freshness

    Get PDF
    Recent advances in vehicular communications has led to significant opportunities to deploy variety of applications and services improving road safety and traffic efficiency to road users. In regard to traffic management services in distributed vehicular networks, this thesis work evaluates managing storage at vehicles efficiently as cache for moderate cellular transmission costs while still achieving correct routing decision. Road status information was disseminated to oncoming traffic in the form of cellular notifications using a reporting mechanism. High transmission costs due to redundant notifications published by all vehicles following a basic reporting mechanism: Default-approach was overcome by implementing caching at every vehicle. A cooperative based reporting mechanism utilizing cache: Cooperative-approach, was proposed to notify road status while avoiding redundant notifications. In order to account those significantly relevant vehicles for decision-making process which did not actually publish, correspondingly virtual cache entries were implemented. To incorporate the real-world scenario of varying vehicular rate observed on any road, virtual cache entries based on varying vehicular rate was modeled as Adaptive Cache Management mechanism. The combinations of proposed mechanisms were evaluated for cellular transmission costs and accuracy achieved for making correct routing decision. Simulation case studies comprising varying vehicular densities and different false detection rates were conducted to demonstrate the performance of these mechanisms. Additionally, the proposed mechanisms were evaluated in different decision-making algorithms for both information freshness in changing road conditions and for robustness despite false detections. The simulation results demonstrated that the combination of proposed mechanisms was capable of achieving realistic information accuracy enough to make correct routing decision despite false readings while keeping network costs significantly low. Furthermore, using QoI-based decision algorithm in high density vehicular networks, fast adaptability to frequently changing road conditions as well as quick recovery from false notifications by invalidating them with correct notifications were indicated

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Mobility-aware fog computing in dynamic networks with mobile nodes: A survey

    Get PDF
    Fog computing is an evolving paradigm that addresses the latency-oriented performance and spatio-temporal issues of the cloud services by providing an extension to the cloud computing and storage services in the vicinity of the service requester. In dynamic networks, where both the mobile fog nodes and the end users exhibit time-varying characteristics, including dynamic network topology changes, there is a need of mobility-aware fog computing, which is very challenging due to various dynamisms, and yet systematically uncovered. This paper presents a comprehensive survey on the fog computing compliant with the OpenFog (IEEE 1934) standardised concept, where the mobility of fog nodes constitutes an integral part. A review of the state-of-the-art research in fog computing implemented with mobile nodes is conducted. The review includes the identification of several models of fog computing concept established on the principles of opportunistic networking, social communities, temporal networks, and vehicular ad-hoc networks. Relevant to these models, the contributing research studies are critically examined to provide an insight into the open issues and future research directions in mobile fog computing research

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Alternative group trip planning queries in spatial databases

    Get PDF
    Trip Planning Queries are considered as one of the popular services offered by Location-Based Services. We propose a new query type called an Alternative Group Trip Planning Query (AGTPQ) which is an extended version of Sequenced Group Trip Planning Queries (SGTPQs). Given a set of users’ source locations and destination locations and a sequence of Categories of Interest (COIs) that the users want to visit, an AGTPQ generates a new COI sequence order using one of the proposed techniques and finds an optimal trip starting from the source locations, passing through the new sequenced COI order and ending at the destination locations. We propose three approaches: Permutation Strategy on Sequenced Group Trip Planning Queries (PSGTPQs), Greedy Strategy on Sequenced Group Trip Planning Queries (GSGTPQs) and Random Strategy on Sequenced Group Trip Planning Queries (RSGTPQs). We compare the results of our proposed strategies with the PGNE strategy through experimental evaluation
    • …
    corecore