3 research outputs found

    The Cost of Global Broadcast in Dynamic Radio Networks

    Get PDF
    We study the single-message broadcast problem in dynamic radio networks. We show that the time complexity of the problem depends on the amount of stability and connectivity of the dynamic network topology and on the adaptiveness of the adversary providing the dynamic topology. More formally, we model communication using the standard graph-based radio network model. To model the dynamic network, we use a generalization of the synchronous dynamic graph model introduced in [Kuhn et al., STOC 2010]. For integer parameters T1T\geq 1 and k1k\geq 1, we call a dynamic graph TT-interval kk-connected if for every interval of TT consecutive rounds, there exists a kk-vertex-connected stable subgraph. Further, for an integer parameter τ0\tau\geq 0, we say that the adversary providing the dynamic network is τ\tau-oblivious if for constructing the graph of some round tt, the adversary has access to all the randomness (and states) of the algorithm up to round tτt-\tau. As our main result, we show that for any T1T\geq 1, any k1k\geq 1, and any τ1\tau\geq 1, for a τ\tau-oblivious adversary, there is a distributed algorithm to broadcast a single message in time O((1+nkmin{τ,T})nlog3n)O\big(\big(1+\frac{n}{k\cdot\min\left\{\tau,T\right\}}\big)\cdot n\log^3 n\big). We further show that even for large interval kk-connectivity, efficient broadcast is not possible for the usual adaptive adversaries. For a 11-oblivious adversary, we show that even for any T(n/k)1εT\leq (n/k)^{1-\varepsilon} (for any constant ε>0\varepsilon>0) and for any k1k\geq 1, global broadcast in TT-interval kk-connected networks requires at least Ω(n2/(k2logn))\Omega(n^2/(k^2\log n)) time. Further, for a 00 oblivious adversary, broadcast cannot be solved in TT-interval kk-connected networks as long as T<nkT<n-k.Comment: 17 pages, conference version appeared in OPODIS 201

    Optimal gossiping in geometric radio networks in the presence of dynamical faults

    No full text
    We study deterministic fault-tolerant gossiping protocols in geometric radio networks. Node and link faults may happen during every time-slot of the protocol's execution. We first consider the model where every node can send at most one message per time-slot. We provide a protocol that completes gossiping in O(nΔ) time (where n is the number of nodes and Δ is the maximal in-degree) and has message complexity O(n 2). Both bounds are then shown to be optimal. Second, we consider the model where messages can be arbitrarily combined and sent in one time-slot. We give a protocol working in optimal completion time O(DΔ) (where D is the maximal source eccentricity) and message complexity O(Dn). © 2012 Wiley Periodicals, Inc. NETWORKS, Vol. 2012 Copyright © 2012 Wiley Periodicals, Inc
    corecore