7 research outputs found

    An independent framework for off-grid hybrid renewable energy design using Optimal Foraging Algorithm (OFA)

    Get PDF
    The rapidly increase in electrical energy demand from residential, commercial and industrial sectors is one of the major challenge in power system, especially in the current period of high oil prices, steadily reducing energy sources and increased concerns about environmental pollution. Renewable energy is considered as one of the solution to this increase in power demand. The conventional method of power system cannot meet the power demand for many reasons such as environmental effects, location of the consumer, price of fuel and others. This paper presents the design of an off-grid Hybrid Renewable Energy System (HRES) for electrification of a typical remote area. The designed hybrid system consists of three different configurations of PV/Battery, Wind/Battery and PV/Wind/Battery systems. The system components are modelled and the objective function is designed as a function of total annualized cost of the system subject to some constraints binding the decision variables. The total annual cost is formulated as a function of annual capital cost and annual maintenance cost of the system subject to some operational constraints. In order to determine the optimal number of the decision variables that would satisfy the load demand in the most cost effect manner, Optimal Foraging Optimization (OFA) algorithm was used. Finally, a simulation experiment shows that the total annual cost obtained by each algorithm for the PV/Battery system is 9,340.42orN3,876,274.30,9,340.42 or N3,876,274.30, 9,446.77 or N3,920,409.55 and 10,076.34orN4,181,681.1forOFA,GAandPSOrespectively.FortheWind/Batteryconfiguration,thetotalannualcostobtainedbyOFA,GAandPSOare10,076.34 or N4,181,681.1 for OFA, GA and PSO respectively. For the Wind/Battery configuration, the total annual cost obtained by OFA, GA and PSO are 17,508.20 or N7,265,903, 12,493.27orN5,184,707.05and12,493.27 or N 5,184,707.05 and 16,535.93 or N6,862,410.95 respectively. Similarly, the PV/Wind/Battery configuration showed that the OFA, GA and PSO obtained an annualized cost of 15,926.07orN6,609,319.05,15,926.07 or N6,609,319.05, 18,167.09 or N7,539,342.35 and $16,535.93 or N6,862,410,95 respectively. From the results obtained by OFA are compared with that of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm. Results showed that all the algorithm can efficiently size the hybrid system with OFA obtaining the most economical design. Therefore, for economically and efficiently electrification of a remote area in Abuja using an off-grid hybrid renewable energy system, GA optimization algorithm is recommended for wind/Battery system and OFA optimization algorithm is recommended for PV/Wind/Battery system

    Optimal controllers design for voltage control in Off-grid hybrid power system

    Get PDF
    Generally, for remote places extension of grid is uneconomical and difficult. Off-grid hybrid power systems (OGHPS) has  renewable energy sources integrated with conventional sources. OGHPS is very significant as it is the only source of electric supply for remote areas. OGHPS under study  has Induction generator (IG) for wind power generation, Photo-Voltaic source with inverter, Synchronous generator (SG) for Diesel Engine (DE) and load. Over-rated PV-inverter has capacity to supply reactive power.  SG of  DE  has Automatic voltage regulator for excitation control to regulate terminal voltage. Load and IG demands reactive power, causes reactive power imbalance hence voltage fluctuations in OGHPS. To manage reactive power for voltage control, two control structures with Proportional–Integral controller(PI), to control  inverter reactive power and  SG excitation by automatic voltage regulator are incorporated.  Improper tuning of controllers lead  to oscillatory and sluggish response. Hence in this test system both controllers need to be tune optimally. This paper proposes novel intelligent computing algorithm , Enhanced Bacterial forging algorithm (EBFA) for optimal reactive power controller for voltage control in OGHPS. Small signal model of OGHPS with proposed controller is  tested for different disturbances. simulation results  are compared  with conventional  method , proved the effectiveness of EBFA

    Parametric Analysis of BFOA for Minimization Problems Using a Benchmark Function

    Get PDF
    This paper presents the social foraging behavior of Escherichia coli (E. Coli) bacteria based on Bacteria Foraging Optimization algorithms (BFOA) to find optimization and distributed control values. The search strategy for E. coli is very complex to express and the dynamics of the simulated chemotaxis stage in BFOA is analyzed with the help of a simple mathematical model. The methodology starts from a detailed analysis of the parameters of bacterial swimming and tumbling (C) and the probability of elimination and dispersion (Ped), then an adaptive variant of BFOA is proposed, in which the size of the chemotherapeutic step is adjusted according to the current suitability of a virtual bacterium. To evaluate the performance of the algorithm in obtaining optimal values, the resolution was applied to one of the benchmark functions, in this case the Ackley minimization function, a comparative analysis of the BFOA is then performed. The simulation results have shown the validity of the optimal values (minimum or maximum) obtained on a specific function for real world problems, with a function belonging to the benchmark group of optimization functions

    A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A COVID-19 Case Study

    Full text link
    The "Curse of Dimensionality" induced by the rapid development of information science, might have a negative impact when dealing with big datasets. In this paper, we propose a variant of the sparrow search algorithm (SSA), called Tent L\'evy flying sparrow search algorithm (TFSSA), and use it to select the best subset of features in the packing pattern for classification purposes. SSA is a recently proposed algorithm that has not been systematically applied to feature selection problems. After verification by the CEC2020 benchmark function, TFSSA is used to select the best feature combination to maximize classification accuracy and minimize the number of selected features. The proposed TFSSA is compared with nine algorithms in the literature. Nine evaluation metrics are used to properly evaluate and compare the performance of these algorithms on twenty-one datasets from the UCI repository. Furthermore, the approach is applied to the coronavirus disease (COVID-19) dataset, yielding the best average classification accuracy and the average number of feature selections, respectively, of 93.47% and 2.1. Experimental results confirm the advantages of the proposed algorithm in improving classification accuracy and reducing the number of selected features compared to other wrapper-based algorithms

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations

    Get PDF
    In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature- inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications
    corecore