247 research outputs found

    Exploiting Superconvergence Through Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

    Get PDF
    There has been much work in the area of superconvergent error analysis for finite element and discontinuous Galerkin (DG) methods. The property of superconvergence leads to the question of how to exploit this information in a useful manner, mainly through superconvergence extraction. There are many methods used for superconvergence extraction such as projection, interpolation, patch recovery and B-spline convolution filters. This last method falls under the class of Smoothness-Increasing Accuracy-Conserving (SIAC) filters. It has the advantage of improving both smoothness and accuracy of the approximation. Specifically, for linear hyperbolic equations it can improve the order of accuracy of a DG approximation from k + 1 to 2k + 1, where k is the highest degree polynomial used in the approximation, and can increase the smoothness to k − 1. In this article, we discuss the importance of overcoming the mathematical barriers in making superconvergence extraction techniques useful for applications, specifically focusing on SIAC filtering

    Analysis of optimal error estimates and superconvergence of the discontinuous Galerkin method for convection-diffusion problems in one space dimension

    Get PDF
    In this paper, we study the convergence and superconvergence properties of the discontinuous Galerkin (DG) method for a linear convection-diffusion problem in one-dimensional setting. We prove that the DG solution and its derivative exhibit optimal O(hp+1) and O(hp) convergence rates in the L 2 -norm, respectively, when p-degree piecewise polynomials with p ≥ 1 are used. We further prove that the p-degree DG solution and its derivative are O(h2p) superconvergent at the downwind and upwind points, respectively. Numerical experiments demonstrate that the theoretical rates are optimal and that the DG method does not produce any oscillation. We observed optimal rates of convergence and superconvergence even in the presence of boundary layers when Shishkin meshes are used

    Analysis of \u3ci\u3ea posteriori\u3c/i\u3e error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations

    Get PDF
    We develop and analyze a new residual-based a posteriori error estimator for the discontinuous Galerkin (DG) method for nonlinear ordinary differential equations (ODEs). The a posteriori DG error estimator under investigation is computationally simple, efficient, and asymptotically exact. It is obtained by solving a local residual problem with no boundary condition on each element. We first prove that the DG solution exhibits an optimal O(hp+1) convergence rate in the L2-norm when p-degree piece-wise polynomials with p ≥1 are used. We further prove that the DG solution is O(h2p+1) superconvergent at the downwind points. We use these results to prove that the p-degree DG solution is O(hp+2) super close to a particular projection of the exact solution. This superconvergence result allows us to show that the true error can be divided into a significant part and a less significant part. The significant part of the discretization error for the DG solution is proportional to the (p +1)-degree right Radau polynomial and the less significant part converges at O(hp+2) rate in the L2-norm. Numerical experiments demonstrate that the theoretical rates are optimal. Based on the global superconvergent approximations, we construct asymptotically exact a posteriori error estimates and prove that they converge to the true errors in the L2-norm under mesh refinement. The order of convergence is proved to be p +2. Finally, we prove that the global effectivity index in the L2-norm converges to unity at O(h)rate. Several numerical examples are provided to illustrate the global superconvergence results and the convergence of the proposed estimator under mesh refinement. A local adaptive procedure that makes use of our local a posteriori error estimate is also presented

    The Discontinuous Galerkin Finite Element Method for Ordinary Differential Equations

    Get PDF
    We present an analysis of the discontinuous Galerkin (DG) finite element method for nonlinear ordinary differential equations (ODEs). We prove that the DG solution is (p+1)(p + 1) th order convergent in the L2L^2-norm, when the space of piecewise polynomials of degree pp is used. A (2p+1) (2p+1) th order superconvergence rate of the DG approximation at the downwind point of each element is obtained under quasi-uniform meshes. Moreover, we prove that the DG solution is superconvergent with order p+2p+2 to a particular projection of the exact solution. The superconvergence results are used to show that the leading term of the DG error is proportional to the (p+1) (p + 1) -degree right Radau polynomial. These results allow us to develop a residual-based a posteriori error estimator which is computationally simple, efficient, and asymptotically exact. The proposed a posteriori error estimator is proved to converge to the actual error in the L2L^2-norm with order p+2p+2. Computational results indicate that the theoretical orders of convergence are optimal. Finally, a local adaptive mesh refinement procedure that makes use of our local a posteriori error estimate is also presented. Several numerical examples are provided to illustrate the global superconvergence results and the convergence of the proposed estimator under mesh refinement

    Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

    Get PDF
    In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the alpha-th order (1 <= \alpha <= k+1) divided difference of the DG error in the L2-norm is of order k+(3-alpha)/2 when upwind fluxes are used, under the condition that |f'(u)| possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order k+(3-alpha)/2 in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least (3k/2+1)th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order k+1 in the L2-norm for the divided differences of DG errors and thus (2k+1)th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results
    • …
    corecore