74 research outputs found

    Fourth order real space solver for the time-dependent Schr\"odinger equation with singular Coulomb potential

    Full text link
    We present a novel numerical method and algorithm for the solution of the 3D axially symmetric time-dependent Schr\"odinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the symmetry axis. Our propagation algorithm is based on merging the method of the split-operator approximation of the exponential operator with the implicit equations of second order cylindrical 2D Crank-Nicolson scheme. We call this method hybrid splitting scheme because it inherits both the speed of the split step finite difference schemes and the robustness of the full Crank-Nicolson scheme. Based on a thorough error analysis, we verified both the fourth order accuracy of the spatial discretization in the optimal spatial step size range, and the fourth order scaling with the time step in the case of proper high order expressions of the split-operator. We demonstrate the performance and high accuracy of our hybrid splitting scheme by simulating optical tunneling from a hydrogen atom due to a few-cycle laser pulse with linear polarization

    Uniform LL^\infty-bounds for energy-conserving higher-order time integrators for the Gross-Pitaevskii equation with rotation

    Full text link
    In this paper, we consider an energy-conserving continuous Galerkin discretization of the Gross-Pitaevskii equation with a magnetic trapping potential and a stirring potential for angular momentum rotation. The discretization is based on finite elements in space and time and allows for arbitrary polynomial orders. It was first analyzed in [O. Karakashian, C. Makridakis; SIAM J. Numer. Anal. 36(6):1779-1807, 1999] in the absence of potential terms and corresponding a priori error estimates were derived in 2D. In this work we revisit the approach in the generalized setting of the Gross-Pitaevskii equation with rotation and we prove uniform LL^\infty-bounds for the corresponding numerical approximations in 2D and 3D without coupling conditions between the spatial mesh size and the time step size. With this result at hand, we are in particular able to extend the previous error estimates to the 3D setting while avoiding artificial CFL conditions

    Electronic and Molecular Dynamics by the Quantum Wave Packet Method

    Get PDF
    A solution to the time‐dependent Schrödinger equation is required in a variety of problems in physics and chemistry. In this chapter, recent developments of numerical and theoretical techniques for quantum wave packet methods efficiently describe the dynamics of molecular dynamics, and electronic dynamics induced by ultrashort laser pulses in atoms and molecules will be reviewed, particularly on the development of grid methods and time‐propagation or pseudo‐time evolution methods developed recently. Applications of the quantum wave packet for studying the reactive resonances in F + H2/HD and O + O2 reaction, dissociative chemisorption of water on transition‐metal surfaces, state‐to‐state reaction dynamics, state‐to‐state tetra‐atomic reaction dynamics using transition wave packet method and reactant coordinate method, and electronic dynamics in H2+ and H2 molecules will be presented

    Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates

    Get PDF
    In this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations. The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations illustrating the strength of the proposed approach

    Optimization of Ultrafast Strong-Field Phenomena

    Get PDF
    Elektronien liikkeen havainnointi ja ohjaaminen on attosekuntitieteen keskiössä. Attosekuntiluokan elektroniprosessit ovat esimerkiksi kemiallisten reaktioiden takana, selittävät aineen optiset ominaisuudet sekä ovat pohjana useille ultranopeille nanomittaluokan kuvantamismenetelmille. Useat mielenkiintoiset attosekuntiluokan ilmiöt aiheutuvat vahvasta ulkoisesta sähkömagneettisesta kentästä. Tällaisia kenttiä saadaan femtosekuntilasersykäyksillä, joiden kenttien vahvuus on samaa suuruusluokkaa kuin atomin elektroniinsa kohdistama sähkökenttä. Voimakas sähkömagneettinen vuorovaikutus aiheuttaa atomien, molekyylien ja kiinteän aineen epälineaarisia ilmiöitä kuten korkeaenergisten fotonien tuottoa (HHG), nopeiden elektronien emissiota sekä esimerkiksi atomielektronin virittymistä korkeille sidotuille tiloille. Edellämainitut ilmiöt ovat myös pohjana useille teknisille edistyksille: HHG:lla tuotetaan koherentteja röntgensykäyksiä, joiden kesto on vain muutamien attosekuntien suuruusluokkaa; nopeita fotoemittoituneita elektroniaaltopaketteja käytetään aineen kuvantamiseen; ja Rydberg-tiloille viritettyjä atomeita käytetään kvanttilaskennassa kubitteina. Attosekuntiluokan ilmiöitä voidaan ohjata haluttuun suuntaan käyttämällä femtosekuntilasersykäyksiä, joiden sähkökentän aikariippuvuutta voidaan säätää. Tämä väitöskirja on laskennallinen tutkimusretki, jolla pyritään löytämään menetelmiä ennustamaan sellaisten femtosekuntilasersykäysten aikaprofiileja, joilla aiemmin mainittuja ilmiöitä – HHG:ta, elektroniemissiota sekä Rydbergtilojen virityksiä – voidaan tehostaa, optimoida. Väitöskirjan alussa esitellään työn kannalta oleelliset vahvojen kenttien attosekuntiluokan ilmiöt keskittyen etenkin niiden teoreettisiin ja laskennallisiin malleihin. Tutkielmassa annetaan myös yleiskatsaus femtosekuntisykäysten käytöstä atomifysiikan ilmiöiden ohjaamisessa ja optimoinnissa avaten sekä alan kokeellista että laskennallista puolta. Tutkimuksessamme käytetyt laskennalliset mallit käydään yksityiskohtaisesti läpi, ja väitöskirjan oheismateriaali (saatavilla internetistä) sisältää oleellisimmat työssä käytetyt ohjelmistot ja analyysityökalut. Tutkimusten tuloksina on löydetty menetelmiä femtosekuntilasersykäysten suunnittelua varten. Näillä menetelmillä saadaan kasvatettua sekä HHG:n että korkeaenergisen elektroniemission hyötysuhdetta ja maksimienergiaa. Työssä tutkittiin myös femtosekuntilasersykäysten käyttöä alkalimetalliatomien virittämiseksi kvanttilaskentaa varten. Optimointimenetelmämme ja femtosekuntilasersykäysten käyttö vähentää viritykseen käytettävää aikaa huomattavasti perinteisiin tekniikoihin verrattuina, mutta nykyisessä muodossaan menetelmä ei ole tarpeeksi tarkka, jotta sillä voitaisiin miehittää vain yksi tietty tila. Väitöskirjassa kehitetään myös uusi elementtimenetelmään pohjautuva laskentaohjelmisto, joka on suunniteltu nanorakenteiden attosekunti-ilmiöiden mallinnukseen. Nanorakenteet muuttavat niihin kohdistetun femtosekuntilasersykäyksen paikkariippuvuutta, mitä useimmat aiemmat mallinnusohjelmistot eivät kykene huomioimaan. Kehittämämme ohjelmisto mallintaa näitä tilanteita tehokkaasti ja ottaa huomioon femtosekuntilasersykäysten epähomogeenisen paikkariippuvuuden. Väitöskirjan lopussa on yhteenveto löydöksistämme, joita käsitellään suhteessa muihin alan tuoreisiin tutkimuksiin. Pohdimme myös mahdollisia kehityskohteita sekä suuntaa tuleville tutkimuksille.Attosecond science deals with monitoring and control of electron dynamics in their native, attosecond time scale. Ultrafast electron dynamics is the driving force behind chemical reactions, it determines the optical response of matter, and it is the cornerstone of multiple ultrafast nanoscale imaging techniques. Attosecond phenomena are often driven by strong-field light-matter interaction. Femtosecond laser pulses with electric fields rivaling those of atomic binding forces drive complex nonlinear phenomena in atoms, molecules, and solid state. They include electron excitations, nonlinear frequency up-conversion known as high-order harmonic generation (HHG), and emission of ultra-energetic electrons via above-threshold ionization (ATI). These processes have important roles in ultrafast technologies. For example, HHG is used as a source for coherent X-ray pulses with durations down to attoseconds, ATI is used for building electron wave packets for self-interrogation spectroscopy of matter, and excited Rydberg-states of atoms are prime candidates for multi-qubit quantum computing. Control of strong-field attosecond phenomena can be achieved by shaping the temporal profile of the driving femtosecond pulse in modern light-field synthesizers. This dissertation is a computational expedition to shaping the driving laser pulses for optimizing strong-field light-matter interaction in HHG, ATI, and Rydberg-state preparation in atoms. We begin this dissertation with a brief reviewof relevant strong-field attosecond phenomena with an emphasis on their theoretical modeling. We continue with an overview of control and optimization of these phenomena both from an experimental and a computational point of view. Later, we describe in detail the computational models we have used. The corresponding software is provided in the online supplementary material. Our optimization studies deliver experimentally feasible optimization/control schemes for shaping the driving femtosecond laser pulses to increase the maximum energy and signal strength of HHG and ATI in atomic gases. We also demonstrate how the optimized processes behind the optimized HHG and ATI can be understood with a semiclassical three-step model. The excitation of alkali metals to their Rydberg states is shown to be feasible with multicolor femtosecond fields, decreasing the excitation time by several orders of magnitude compared to traditional methods. On the downside, in its current form the proposed scheme lacks the finesse to populate only a single final state. We also develop a new finite element simulation suite for studying attosecond phenomena in nanostructures. Nanostructures shape the spatial profile of the driving laser field, something existing simulation software cannot easily model. Our software suite is designed for simulating these systems efficiently, and it can incorporate the spatial inhomogeneity of the driving field with ease. We close this dissertation with a summary of our optimization studies and obtained results. They are discussed in the context of other recent work in the field, and we also reflect on possible improvements and directions for future work

    Optimization of Ultrafast Strong-Field Phenomena

    Get PDF
    Elektronien liikkeen havainnointi ja ohjaaminen on attosekuntitieteen keskiössä. Attosekuntiluokan elektroniprosessit ovat esimerkiksi kemiallisten reaktioiden takana, selittävät aineen optiset ominaisuudet sekä ovat pohjana useille ultranopeille nanomittaluokan kuvantamismenetelmille. Useat mielenkiintoiset attosekuntiluokan ilmiöt aiheutuvat vahvasta ulkoisesta sähkömagneettisesta kentästä. Tällaisia kenttiä saadaan femtosekuntilasersykäyksillä, joiden kenttien vahvuus on samaa suuruusluokkaa kuin atomin elektroniinsa kohdistama sähkökenttä. Voimakas sähkömagneettinen vuorovaikutus aiheuttaa atomien, molekyylien ja kiinteän aineen epälineaarisia ilmiöitä kuten korkeaenergisten fotonien tuottoa (HHG), nopeiden elektronien emissiota sekä esimerkiksi atomielektronin virittymistä korkeille sidotuille tiloille. Edellämainitut ilmiöt ovat myös pohjana useille teknisille edistyksille: HHG:lla tuotetaan koherentteja röntgensykäyksiä, joiden kesto on vain muutamien attosekuntien suuruusluokkaa; nopeita fotoemittoituneita elektroniaaltopaketteja käytetään aineen kuvantamiseen; ja Rydberg-tiloille viritettyjä atomeita käytetään kvanttilaskennassa kubitteina. Attosekuntiluokan ilmiöitä voidaan ohjata haluttuun suuntaan käyttämällä femtosekuntilasersykäyksiä, joiden sähkökentän aikariippuvuutta voidaan säätää. Tämä väitöskirja on laskennallinen tutkimusretki, jolla pyritään löytämään menetelmiä ennustamaan sellaisten femtosekuntilasersykäysten aikaprofiileja, joilla aiemmin mainittuja ilmiöitä – HHG:ta, elektroniemissiota sekä Rydbergtilojen virityksiä – voidaan tehostaa, optimoida. Väitöskirjan alussa esitellään työn kannalta oleelliset vahvojen kenttien attosekuntiluokan ilmiöt keskittyen etenkin niiden teoreettisiin ja laskennallisiin malleihin. Tutkielmassa annetaan myös yleiskatsaus femtosekuntisykäysten käytöstä atomifysiikan ilmiöiden ohjaamisessa ja optimoinnissa avaten sekä alan kokeellista että laskennallista puolta. Tutkimuksessamme käytetyt laskennalliset mallit käydään yksityiskohtaisesti läpi, ja väitöskirjan oheismateriaali (saatavilla internetistä) sisältää oleellisimmat työssä käytetyt ohjelmistot ja analyysityökalut. Tutkimusten tuloksina on löydetty menetelmiä femtosekuntilasersykäysten suunnittelua varten. Näillä menetelmillä saadaan kasvatettua sekä HHG:n että korkeaenergisen elektroniemission hyötysuhdetta ja maksimienergiaa. Työssä tutkittiin myös femtosekuntilasersykäysten käyttöä alkalimetalliatomien virittämiseksi kvanttilaskentaa varten. Optimointimenetelmämme ja femtosekuntilasersykäysten käyttö vähentää viritykseen käytettävää aikaa huomattavasti perinteisiin tekniikoihin verrattuina, mutta nykyisessä muodossaan menetelmä ei ole tarpeeksi tarkka, jotta sillä voitaisiin miehittää vain yksi tietty tila. Väitöskirjassa kehitetään myös uusi elementtimenetelmään pohjautuva laskentaohjelmisto, joka on suunniteltu nanorakenteiden attosekunti-ilmiöiden mallinnukseen. Nanorakenteet muuttavat niihin kohdistetun femtosekuntilasersykäyksen paikkariippuvuutta, mitä useimmat aiemmat mallinnusohjelmistot eivät kykene huomioimaan. Kehittämämme ohjelmisto mallintaa näitä tilanteita tehokkaasti ja ottaa huomioon femtosekuntilasersykäysten epähomogeenisen paikkariippuvuuden. Väitöskirjan lopussa on yhteenveto löydöksistämme, joita käsitellään suhteessa muihin alan tuoreisiin tutkimuksiin. Pohdimme myös mahdollisia kehityskohteita sekä suuntaa tuleville tutkimuksille.Attosecond science deals with monitoring and control of electron dynamics in their native, attosecond time scale. Ultrafast electron dynamics is the driving force behind chemical reactions, it determines the optical response of matter, and it is the cornerstone of multiple ultrafast nanoscale imaging techniques. Attosecond phenomena are often driven by strong-field light-matter interaction. Femtosecond laser pulses with electric fields rivaling those of atomic binding forces drive complex nonlinear phenomena in atoms, molecules, and solid state. They include electron excitations, nonlinear frequency up-conversion known as high-order harmonic generation (HHG), and emission of ultra-energetic electrons via above-threshold ionization (ATI). These processes have important roles in ultrafast technologies. For example, HHG is used as a source for coherent X-ray pulses with durations down to attoseconds, ATI is used for building electron wave packets for self-interrogation spectroscopy of matter, and excited Rydberg-states of atoms are prime candidates for multi-qubit quantum computing. Control of strong-field attosecond phenomena can be achieved by shaping the temporal profile of the driving femtosecond pulse in modern light-field synthesizers. This dissertation is a computational expedition to shaping the driving laser pulses for optimizing strong-field light-matter interaction in HHG, ATI, and Rydberg-state preparation in atoms. We begin this dissertation with a brief reviewof relevant strong-field attosecond phenomena with an emphasis on their theoretical modeling. We continue with an overview of control and optimization of these phenomena both from an experimental and a computational point of view. Later, we describe in detail the computational models we have used. The corresponding software is provided in the online supplementary material. Our optimization studies deliver experimentally feasible optimization/control schemes for shaping the driving femtosecond laser pulses to increase the maximum energy and signal strength of HHG and ATI in atomic gases. We also demonstrate how the optimized processes behind the optimized HHG and ATI can be understood with a semiclassical three-step model. The excitation of alkali metals to their Rydberg states is shown to be feasible with multicolor femtosecond fields, decreasing the excitation time by several orders of magnitude compared to traditional methods. On the downside, in its current form the proposed scheme lacks the finesse to populate only a single final state. We also develop a new finite element simulation suite for studying attosecond phenomena in nanostructures. Nanostructures shape the spatial profile of the driving laser field, something existing simulation software cannot easily model. Our software suite is designed for simulating these systems efficiently, and it can incorporate the spatial inhomogeneity of the driving field with ease. We close this dissertation with a summary of our optimization studies and obtained results. They are discussed in the context of other recent work in the field, and we also reflect on possible improvements and directions for future work

    Perfectly Matched Layer for computing the dynamics of nonlinear Schrödinger equations by pseudospectral methods. Application to rotating Bose-Einstein condensates

    Get PDF
    International audienceIn this paper, we first propose a general strategy to implement the Perfectly Matched Layer (PML) approach in the most standard numerical schemes used for simulating the dynamics of nonlinear Schrödinger equations. The methods are based on the time-splitting [15] or relaxation [24] schemes in time, and finite element or FFT-based pseudospectral discretization methods in space. A thorough numerical study is developed for linear and nonlinear problems to understand how the PML approach behaves (absorbing function and tuning parameters) for a given scheme. The extension to the rotating Gross-Pitaevskii equation is then proposed by using the rotating Lagrangian coordinates transformation method [13, 16, 39], some numerical simulations illustrating the strength of the proposed approach

    Finite Difference Computing with PDEs: A Modern Software Approach

    Get PDF
    finite difference methods; programming; python; verification; numerical methods; differential equation

    Computational and Theoretical Developements for (Time Dependent) Density Functional Theory

    Get PDF
    En esta tesis se presentan avances computacionales y teoricos en la teoria de funcionales de la densidad (DFT) y en la teoria de funcionales de la densidad dependientes del tiempo (TDDFT). Hemos explorado una posible nueva ruta para la mejora de los funcionales de intercambio y correlacion (XCF) en DFT, comprobado y desarrollado propagadores numericos para TDDFT, y aplicado una combinacion de la teoria de control optimo con TDDFT.En los ultimos anos, DFT se ha convertido en el metodo mas utilizado en el area de estructura electronica gracias a su inigualable relacion entre coste y precision. Podemos usar DFT para calcular multitud de propiedades fisicas y quimicas de atomos, moleculas, nanoestructuras, y materia macroscopica. El factor principal que determina la precision que podemos alcanzar usando DFT es el XCF, un objeto desconocido para el cual se han propuesto cientos de aproximaciones distintas. Algunas de estas aproximaciones funcionan correctamente en ciertas situaciones, pero a dia de hoy no existe un XCF que pueda aplicarse con certeza sobre su validez a un sistema arbitrario. Mas aun, no hay una forma sistematica de refinar estos funcionales. Proponemos y exploramos, para sistemas unidimensionales, una nueva manera de estudiarlos y optimizarlos basada en establecer una relacion con la interaccion entre electrones.TDDFT es la extension de DFT a problemas dependientes del tiempo y problemas conestados excitados, y es tambien uno de los metodos mas populares (a veces el unico metodo que se puede poner en practica) en la comunidad de estructura electronica para tratar conellos. De nuevo, la razon detras de su popularidad reside en su relacion precision/coste computacional, que nos permite tratar sistemas mayores y mas complejos. Puede usarse en combinacion con la dinamica de Ehrenfest, un tipo de dinamica molecular no adiabatica.Hemos ido mas alla y hemos combinado TDDFT y la dinamica de Ehrenfest con la teoria de control optimo, creando un instrumento que nos permite, por ejemplo, predecir la forma de los pulsos laser que inducen una explosion de Coulomb en clusters de sodio. A pesar del buen rendimiento computacional de TDDFT en comparacion con otros metodos, hallamos que el coste de estos calculos era bastante elevado.Motivados por este hecho, tambien dedicamos una parte del trabajo de la tesis a la investigacion computacional. En particular, hemos estudiado e implementado familias de propagadores numericos que no se habian examinado en el contexto de TDDFT. Mas concretamente, metodos con varios pasos previos, formulas Runge-Kutta exponenciales, y las expansiones de Magnus sin conmutadores. Finalmente, hemos implementado modificaciones de estas expansiones de Magnus sin conmutadores para la propagacion de las ecuaciones clasico-cuanticas que resultan de la combinacion de la dinamica de Ehrenfest con TDDFT.In this thesis we present computational and theoretical developments for density functional theory (DFT) and time dependent density functional theory (TDDFT). We have explored a new possible route to improve exchange and correlation functionals (XCF) in DFT, tested and developed numerical propagators for TDDFT, and applied a combination of optimal control theory with TDDFT. In recent years, DFT has become the most used method in the electronic structure field thanks to its unparalleled precision/computational cost relationship. We can use DFT to accurately calculate many physical and chemical properties of atoms, molecules, nanostructures, and bulk materials. The main factor that determines the precision that we can obtain using DFT is the XCF, an unknown object for which hundreds of different approximations have been proposed. Some of these approximations work well enough for certain situations, but to this day there is no XCF that can be reliably applied to any arbitrary system. Moreover, there is no clear way for a systematic refinement of these functionals. We propose and explore, for one-dimensional systems, a new way to optimize them, based on establishing a relationship with the electron-electron interaction. TDDFT is the extension of DFT to time-dependent and excited-states problems, and it is also one of the most popular methods (sometimes the only practical one) in the electronic structure community to deal with them. Once again, the reason behind its popularity is its accuracy/computational cost ratio, which allows us to tackle bigger, more complex systems. It can be used in combination with Ehrenfest dynamics, a non-adiabatic type of molecular dynamics. We have furthermore combined both TDDFT and Ehrenfest dynamics with optimal control theory, a scheme that has allowed us, for example, to predict the shapes of the laser pulses that induce a Coulomb explosion in different sodium clusters. Despite the good numerical performance of TDDFT compared to other methods, we found that these computations were still quite expensive. Motivated by this fact, we have also dedicated a part of the thesis work to computational research. In particular, we have studied and implemented families of numerical propagators that had not been tested in the context of TDDFT. More concretely, linear multistep schemes, exponential Runge-Kutta formulas, and commutator-free Magnus expansions. Moreover, we have implemented modifications of these commutator-free Magnus methods for the propagation of the classical-quantum equations that result of combining Ehrenfest dynamics with TDDFT.<br /
    corecore