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Abstract

Attosecond science deals with monitoring and control of electron dynamics in
their native, attosecond time scale. Ultrafast electron dynamics is the driving
force behind chemical reactions, it determines the optical response of matter,
and it is the cornerstone of multiple ultrafast nanoscale imaging techniques.

Attosecond phenomena are often driven by strong-field light-matter interaction.
Femtosecond laser pulses with electric fields rivaling those of atomic binding
forces drive complex nonlinear phenomena in atoms, molecules, and solid state.
They include electron excitations, nonlinear frequency up-conversion known
as high-order harmonic generation (HHG), and emission of ultra-energetic
electrons via above-threshold ionization (ATI). These processes have important
roles in ultrafast technologies. For example, HHG is used as a source for
coherent X-ray pulses with durations down to attoseconds, ATI is used for
building electron wave packets for self-interrogation spectroscopy of matter,
and excited Rydberg-states of atoms are prime candidates for multi-qubit
quantum computing.

Control of strong-field attosecond phenomena can be achieved by shaping
the temporal profile of the driving femtosecond pulse in modern light-field
synthesizers. This dissertation is a computational expedition to shaping the
driving laser pulses for optimizing strong-field light-matter interaction in HHG,
ATI, and Rydberg-state preparation in atoms.

We begin this dissertation with a brief review of relevant strong-field attosecond
phenomena with an emphasis on their theoretical modeling. We continue
with an overview of control and optimization of these phenomena both from
an experimental and a computational point of view. Later, we describe in
detail the computational models we have used. The corresponding software is
provided in the online supplementary material.

Our optimization studies deliver experimentally feasible optimization/control
schemes for shaping the driving femtosecond laser pulses to increase the
maximum energy and signal strength of HHG and ATI in atomic gases.
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We also demonstrate how the optimized processes behind the optimized
HHG and ATI can be understood with a semiclassical three-step model. The
excitation of alkali metals to their Rydberg states is shown to be feasible with
multicolor femtosecond fields, decreasing the excitation time by several orders
of magnitude compared to traditional methods. On the downside, in its current
form the proposed scheme lacks the finesse to populate only a single final state.

We also develop a new finite element simulation suite for studying attosecond
phenomena in nanostructures. Nanostructures shape the spatial profile of the
driving laser field, something existing simulation software cannot easily model.
Our software suite is designed for simulating these systems efficiently, and it
can incorporate the spatial inhomogeneity of the driving field with ease.

We close this dissertation with a summary of our optimization studies and
obtained results. They are discussed in the context of other recent work in the
field, and we also reflect on possible improvements and directions for future
work.
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Tiivistelmä

Elektronien liikkeen havainnointi ja ohjaaminen on attosekuntitieteen keskiössä.
Attosekuntiluokan elektroniprosessit ovat esimerkiksi kemiallisten reaktioi-
den takana, selittävät aineen optiset ominaisuudet sekä ovat pohjana useille
ultranopeille nanomittaluokan kuvantamismenetelmille.

Useat mielenkiintoiset attosekuntiluokan ilmiöt aiheutuvat vahvasta ulkoisesta
sähkömagneettisesta kentästä. Tällaisia kenttiä saadaan femtosekuntilasersy-
käyksillä, joiden kenttien vahvuus on samaa suuruusluokkaa kuin atomin
elektroniinsa kohdistama sähkökenttä. Voimakas sähkömagneettinen vuoro-
vaikutus aiheuttaa atomien, molekyylien ja kiinteän aineen epälineaarisia
ilmiöitä kuten korkeaenergisten fotonien tuottoa (HHG), nopeiden elektronien
emissiota sekä esimerkiksi atomielektronin virittymistä korkeille sidotuille
tiloille.

Edellämainitut ilmiöt ovat myös pohjana useille teknisille edistyksille: HHG:lla
tuotetaan koherentteja röntgensykäyksiä, joiden kesto on vain muutamien
attosekuntien suuruusluokkaa; nopeita fotoemittoituneita elektroniaaltopaket-
teja käytetään aineen kuvantamiseen; ja Rydberg-tiloille viritettyjä atomeita
käytetään kvanttilaskennassa kubitteina.

Attosekuntiluokan ilmiöitä voidaan ohjata haluttuun suuntaan käyttämällä
femtosekuntilasersykäyksiä, joiden sähkökentän aikariippuvuutta voidaan sää-
tää. Tämä väitöskirja on laskennallinen tutkimusretki, jolla pyritään löytämään
menetelmiä ennustamaan sellaisten femtosekuntilasersykäysten aikaprofiileja,
joilla aiemmin mainittuja ilmiöitä – HHG:ta, elektroniemissiota sekä Rydberg-
tilojen virityksiä – voidaan tehostaa, optimoida.

Väitöskirjan alussa esitellään työn kannalta oleelliset vahvojen kenttien atto-
sekuntiluokan ilmiöt keskittyen etenkin niiden teoreettisiin ja laskennallisiin
malleihin. Tutkielmassa annetaan myös yleiskatsaus femtosekuntisykäysten
käytöstä atomifysiikan ilmiöiden ohjaamisessa ja optimoinnissa avaten sekä
alan kokeellista että laskennallista puolta. Tutkimuksessamme käytetyt lasken-
nalliset mallit käydään yksityiskohtaisesti läpi, ja väitöskirjan oheismateriaali
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(saatavilla internetistä) sisältää oleellisimmat työssä käytetyt ohjelmistot ja
analyysityökalut.

Tutkimusten tuloksina on löydetty menetelmiä femtosekuntilasersykäysten
suunnittelua varten. Näillä menetelmillä saadaan kasvatettua sekä HHG:n
että korkeaenergisen elektroniemission hyötysuhdetta ja maksimienergiaa.
Työssä tutkittiin myös femtosekuntilasersykäysten käyttöä alkalimetalliato-
mien virittämiseksi kvanttilaskentaa varten. Optimointimenetelmämme ja
femtosekuntilasersykäysten käyttö vähentää viritykseen käytettävää aikaa huo-
mattavasti perinteisiin tekniikoihin verrattuina, mutta nykyisessä muodossaan
menetelmä ei ole tarpeeksi tarkka, jotta sillä voitaisiin miehittää vain yksi tietty
tila.

Väitöskirjassa kehitetään myös uusi elementtimenetelmään pohjautuva las-
kentaohjelmisto, joka on suunniteltu nanorakenteiden attosekunti-ilmiöiden
mallinnukseen. Nanorakenteet muuttavat niihin kohdistetun femtosekuntilaser-
sykäyksen paikkariippuvuutta, mitä useimmat aiemmat mallinnusohjelmistot
eivät kykene huomioimaan. Kehittämämme ohjelmisto mallintaa näitä tilanteita
tehokkaasti ja ottaa huomioon femtosekuntilasersykäysten epähomogeenisen
paikkariippuvuuden.

Väitöskirjan lopussa on yhteenveto löydöksistämme, joita käsitellään suhteessa
muihin alan tuoreisiin tutkimuksiin. Pohdimme myös mahdollisia kehityskoh-
teita sekä suuntaa tuleville tutkimuksille.
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1 Introduction

1.1 Attosecond science and control of electron
dynamics

Femtochemistry, i.e., photography and control of matter in the femtosecond
time scale [1], has enabled us to track nuclear trajectories in multiple processes
including, e.g., chemical reactions [1–3] – especially with biomolecules [1,
3] – and structural transitions in solid-state physics [1, 3, 4]. Since the early
21st century, we have progressed further into the era of attosecond science
enabling us to monitor and control the electron dynamics in the attosecond time
scale [5]. The emergence of attosecond science is providing us not only deeper
insight into fundamental questions in quantum mechanics [6–11] but also
technological advances with applications in, e.g., condensed matter physics [12,
13], chemistry [13–21], and molecular biology [16–21].

Attosecond science is founded on ultrashort intense laser pulses with durations
of a few femtoseconds [22]. Such electromagnetic (EM) fields induce highly
nonlinear phenomena in matter, and the consequent dynamics occur in the
attosecond time scale. Notable examples include the ejection of ultraenergetic
electrons via above-threshold ionization (ATI) in atoms [23–26], the generation
of coherent X-ray pulses with durations down to a few dozen attoseconds
via high-order harmonic generation (HHG) [27–42], and atomic/molecular
self-interrogation with their own electron(s) in high-order harmonic (HH)
spectroscopy [14, 43–54], laser-induced electron diffraction (LIED) [55–63], and
ultrafast photoelectron holography [64–71]. In addition, access to electron
dynamics in the attosecond time scale allows us to control electron dynamics
during chemical reactions, paving the way for attochemistry [67, 72–80].

The control of electron dynamics relies on bespoke femtosecond laser pulses [81–
84]. Sub-femtosecond tailoring of laser electric fields is available with modern
waveform synthesizers [83–85], allowing the steering of the electron motion
by shaping the driving laser field. This allows us to control and optimize, e.g.,
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chemical reactions such as bond-breaking [86–89] and bond-formation [89–91],
table-top HH attosecond pulse generators [92–120], and ultrafast nanoscale
electron microscopes [121–125].

Ultrafast control of quantum phenomena is also in the core of quantum
computing technologies [126]. Multi-qubit setups can already be realized in
numerous systems including, e.g., atomic lattices [127–129]. There the atoms
are localized in a regular array using laser tweezers [129, 130], and the inter-
atom interactions can be switched on by exciting the atoms to their high-energy
Rydberg states [128]. Recently, Rydberg-atom arrays have been demonstrated
with more than 50 qubits [131, 132].

1.2 Research objectives and scope of the thesis

While attosecond science has come a long way from its infancy, there are
still challenges relating to, e.g., the generation of attosecond laser pulses [74],
photoelectron yields and energies relating to applications in attosecond spec-
troscopy [59], and precise and ultrafast initialization of atomic qubits in their
Rydberg states for quantum computing [133]. In addition, while laser-matter
interaction in atoms, molecules, and solid state can be numerically simulated
with numerous publicly available software packages [134–142], they are not
well suited for modeling attosecond science in nanodevices.

We address the above issues in this thesis. Specifically, the objectives are

1. to provide schemes for finding experimentally feasible control mechanisms
of laser-matter interaction in HHG, ATI, and ultrafast Rydberg-excitations,
and

2. to develop an efficient and versatile toolset for modeling and analysis of
strong-field phenomena not only in atoms but also in nanodevices.

Objective 1 is addressed in Paper I for HHG, Paper II for ATI, and Paper III for
the ultrafast Rydberg-excitation. In these works we report our quantum control
simulations to optimize these processes with driving fields compatible with
modern waveform synthesis. Objective 2 is addressed especially in Paper IV,
where we describe a software suite developed for the simulation of ultrafast
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strong-field phenomena in nanodevices. Objective 2 is also addressed by
collecting polished versions of the software and analysis tools developed for
the control studies in Papers I – III to the online supplementary of this thesis
in Ref. [143].

1.3 Organization of the thesis

The thesis is organized as follows. In Ch. 2 we discuss the laser-induced
strong-field phenomena relevant to this thesis and introduce the theoretical
framework used for modeling them. Next, in Ch. 3, we review the field of
quantum control with our focus on (i) the control of laser-induced strong-
field phenomena in atomic gases and on (ii) the experimental generation of
laser pulses for control. Numerical methods for solving the semiclassical and
quantum mechanical (QM) models are reviewed in Ch. 4, complemented by a
concise description of the optimization algorithms used in this work. Our most
important findings are discussed in Ch. 5, and we conclude this compendium
in Ch. 6 with a brief summary and an outlook on future directions. Note that
detailed descriptions of the findings of this thesis can be found in the research
papers I – IV appended at the end of this thesis.
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2 Ultrafast strong-field physics

2.1 Atoms in ultrafast laser fields

This thesis revolves around modeling electrons in a gas of atoms interacting
with strong and coherent electromagnetic (EM) pulses, laser pulses, which have
durations less than a few dozen femtoseconds. In a typical experiment, a gas
jet flows through the focus area of the EM pulse [144], and the atomic electrons
interact with the laser field producing a multitude of different phenomena
depending on the atomic species and characteristics of the driving field. With
high-repetition femtosecond pulse sources [85], the gas jet is repeatedly exposed
to an ultrashort laser field, and even rare events can be measured. Typical
measurements capture, e.g., the terminal kinetic energy of ionized electrons,
total ejected electron count, and the EM radiation emitted by the gas [22].

While there is a large number of atoms simultaneously interacting with the
driving laser field, they are practically independent of each other due to low
gas density of a typical experiment [23]. This is especially true for photoionized
electrons, but also for the emitted EM fields – provided that the experimental
setup is carefully designed [145].

Our numerical experiments in this compendium follow this well-traveled
road: we pick a single representative atom from the gas jet and investigate
the response of its electron(s) to the driving laser pulse. In the following,
we will briefly go through the elementary quantum mechanics needed for a
typical single-atom treatment, discuss some of the most notable phenomena in
ultrafast strong-field physics, and finally, introduce a standard semiclassical
model used in strong-field physics.

Unless otherwise specified, we use Hartree atomic units (a.u.) throughout this
thesis, i.e., the electron rest mass, elementary charge, reduced Planck’s constant,
and the Coulomb constant are set to unity: me � qe � ℏ � (4πϵ0)−1 � 1 [146].



6 Chapter 2. Ultrafast strong-field physics

2.2 Quantum description of light-matter interaction

Electron dynamics of an atomic electron in an external EM field is described by
the time-dependent Schrödinger equation (TDSE) [27]

i∂t
|︁|︁ψ(t)⟩︁ � Ĥ(t) |︁|︁ψ(t)⟩︁ , (2.1)

where
|︁|︁ψ(t)⟩︁ is the time-dependent state of the electron and Ĥ(t) the time-

dependent Hamiltonian operator.

The light-matter interaction is incorporated by the minimal coupling Hamilto-
nian

Ĥ(t) � [p̂ + A(r̂, t)]2
2 + Vatom(r̂), (2.2)

where p̂ is the momentum operator, A(r̂, t) is the time- and position-dependent
vector potential of the external EM field1, r̂ is the position operator, and Vatom(r̂)
is the atomic potential (operator) [147].

While the above presentation of TDSE is indeed the full description of an atomic
electron interacting with, e.g., laser pulses, it turns out to be quite tedious
for numerical and theoretical treatments due to the uncoupled position- and
time-dependence of the vector potential. In the following subsection, we will
introduce the dipole approximation where we can get rid of this complexity
yielding a more suitable approximation for strong-field physics.

With this in mind, we first write out Eq. (2.2) as

Ĥ(t) � p̂2

2 +
1
2 p̂ ·A(r̂, t) + 1

2A(r̂, t) · p̂ +
A(r̂, t)2

2 + Vatom(r̂),

and simplify it even further by working in the Coulomb gauge [27], where

1Note that we absorb the prefactor 1/c, i.e., inverse of the speed of light, into A.
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p̂ ·A(r̂, t) ≡ A(r̂, t) · p̂.2 This yields the Hamiltonian operator

Ĥ(t) � p̂2

2 + Vatom(r̂) + A(r̂, t) · p̂ +
A(r̂, t)2

2 . (2.3)

2.2.1 Dipole approximation

When the wavelength of the external EM field is much larger than the typical
excursion length of the atomic electron during the interaction (up to a few dozen
nanometers in our studies, see, e.g., Ch. 5.2) we can neglect the spatial variations
of the EM field around the atom: A(r, t) ≈ A(ratom , t) ≐ A(t). It is worth
noting the this also sets the magnetic field to zero according to the Maxwell’s
equations [148], thus preventing the applicability of the approximation for
extremely intense fields [149] for which a non-dipole [149–159] or even a
relativistic formulation [160–164] is required.

The dipole approximation gives us the Hamiltonian operator [27]

Ĥ(t) � p̂2

2 + Vatom(r̂) + A(t) · p̂ +
A(t)2

2 ,

where the last term vanishes with the gauge transformation [27]:

A(t) → AVG(t) � A(t);|︁|︁ψ(t)⟩︁ → |︁|︁ψVG(t)
⟩︁

� e
i
2

t∫
−∞

A(τ)2 dτ |︁|︁ψ(t)⟩︁ ;

V(r̂, t) → VVG(r̂, t) � Vatom(r̂) − 1
2A(t)2 ,

leaving us with the Hamiltonian operator

ĤVG(t) � p̂2

2 + Vatom(r̂) + A(t) · p̂. (2.4)
2
⟨r| p̂ ·A(r̂, t) |︁|︁ψ⟩︁

�

∫
dr′

⟨︁
r
|︁|︁p̂|︁|︁r′⟩︁ · ⟨︁r′

|︁|︁A(r̂, t)|︁|︁ψ⟩︁
� −i∇ · [︁A(r, t) ⟨︁r

|︁|︁ψ⟩︁]︁
� −i{[∇ ·A(r, t)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞

�0

] ⟨︁r
|︁|︁ψ⟩︁

+ A(r, t) · [∇ ⟨︁
r
|︁|︁ψ⟩︁]}

� −i
∫

dr′A(r, t) · δ′(r − r′) ⟨︁r′
|︁|︁ψ⟩︁

�

∫
dr′A(r, t) · ⟨︁r

|︁|︁p̂|︁|︁r′⟩︁ ⟨︁
r′
|︁|︁ψ⟩︁

�

∫
dr′

⟨︁
r
|︁|︁A(r̂, t) · p̂|︁|︁r′⟩︁ ⟨︁

r′
|︁|︁ψ⟩︁

�
⟨︁
r
|︁|︁A(r̂, t) · p̂|︁|︁ψ⟩︁
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This is called the velocity gauge (VG) Hamiltonian [27].

An equivalent formulation of the dipole approximation can be obtained from
the VG by a gauge transformation with the scalar field r ·ALG(t) [165]:

AVG(t) → ALG(t) � AVG(t) − ∇ [r ·AVG(t)] � 0;|︁|︁ψVG(t)
⟩︁→ |︁|︁ψLG(t)

⟩︁
� e ir·AVG(t) |︁|︁ψVG(t)

⟩︁
;

VVG(r̂, t) → VLG(r̂, t) � Vatom(r̂) − ∂t r̂ ·AVG(t)
� Vatom(r̂) + r̂ · E(t),

where E(t) is the external electric field. Consequently, the Hamiltonian operator
in the length gauge (LG) is

ĤLG(t) � p̂2

2 + Vatom(r̂) + r̂ · E(t). (2.5)

Both VG and LG are used in numerical and theoretical studies of atoms
and molecules in ultrafast laser fields. There has been some discussion on
which gauge is numerically more favorable for simulating strong-field phe-
nomena [166, 167], but this choice should not matter for calculated observables
as long as the numerical methods are accurate enough and the theoretical
approximations preserve the gauge invariance.

2.3 On the use of one-dimensional models

A full three-dimensional (3D) quantum mechanical (QM) description of strong-
field processes is computationally challenging as an ionized electron wave
packet can travel far from the parent ion. Especially when re-entry of the
ionized electron to the vicinity of the ion core is important, we must model the
entire travel path of the electron – often requiring large simulation domains.

This issue of a high computational cost is particularly problematic when
optimizing strong-field processes – as in this dissertation. In optimization
studies, we must solve the quantum dynamics in an iterative optimization
process for hundreds if not thousands of times, and the high computational
cost of a single simulation accumulates.
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However, in linearly polarized laser fields with intensities well below the
non-dipole and relativistic regimes, the driving force of the laser field affects
the atomic electron only in the polarization direction. Hence, it is often useful to
treat the electron dynamics in ultrafast strong fields within a one-dimensional
(1D) model.

A traditional choice for the 1D model potential is the soft Coulomb potential [168],

V(x) � − 1√
x2 + α2

, (2.6)

where α is the softening parameter. The soft Coulomb potential supports bound
states [169], and – most usefully – there is no singularity at the origin [169]. In
addition to the soft Coulomb potential, there are multiple alternative 1D model
potentials that offer improved quantitative agreement with 3D simulations (see,
e.g., Refs. [170, 171]).

We note that in recent years there have been several developments both in
computational power and modeling techniques for strong-field phenomena
in atoms. These techniques include, e.g., various approximations for the 3D
atomic potential [172], multiresolution schemes [173, 174], improved basis
sets [175], domain decomposition [141, 176], and even analytical treatment
of some parts of the electron dynamics [141]. These tools can alleviate the
computational demand required for the full solution of the 3D TDSE.

2.4 Ionization in strong-fields

When an atom is influenced by a strong driving laser field it might be ionized,
i.e., emit one or multiple photoelectrons. The traditional description of the ioniza-
tion process provides (essentially) two ionization mechanisms/pictures [177]:
multiphoton and tunneling ionization.

In multiphoton ionization [see Fig. 2.1(a)], the atomic electron – initially in its
ground state – absorbs multiple photons from the driving laser field [178]. With
the absorption of enough photons, the electron is excited to the continuum, and
it is free to travel away from the ion core. Multiphoton ionization is typically
attributed to relatively weak fields [178].
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Figure 2.1: Schematic picture of (a) multiphoton and (b) tunneling ionization.

Tunneling ionization provides a completely different picture: The driving laser
field bends the total scalar potential (in LG), Vatom(r) + r · E(t) as demonstrated
in Fig. 2.1(b). If the field oscillates slowly enough, it is static from the elec-
tron’s perspective, and the ionization can take place by tunneling through the
combined potential barrier of the ion and the driving field [178].

These two mechanisms are often characterized by a single parameter [178], the
Keldysh parameter [179], which can be written as [178]

γ �

√︄
Ip

2Up
, (2.7)

where Ip is the ionization potential of the atom, i.e., the binding energy of
the electron, Up � Imax/(4ω2) the ponderomotive energy with Imax the peak
intensity and ω the carrier frequency of the driving laser.

An intuitive description of the role of γ is provided, e.g., in Ref. [180]: For high-
frequency (and/or low intensity) fields, i.e., when γ ≫ 1, the photon energy is
large and the absorption of a few photons excites the electron to the continuum;
γ ≫ 1 is called the multiphoton regime. In contrast, in a low-frequency and/or
high-intensity field where γ ≪ 1, multiphoton absorption is a relatively rare
event whereas the tunneling probability increases exponentially with the field
strength. γ ≪ 1 is called the tunneling regime.

Finally, we note that this division of the ionization mechanisms to two separate
regimes has attracted some debate (see, e.g., Refs. [177, 181–183]). For example,
the tunneling ionization is fundamentally flawed in that the concept of tunneling
is only applicable in the LG [183]. In addition, reaching the deep tunneling
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Figure 2.2: Schematic picture of above-threshold ionization explained in terms of
multiphoton absorption. The peaks in the photo-electron spectrum (left panel)
correspond to the absorption of energy from the driving laser field in discrete quanta.
Adapted from Ref. [186].

regime γ→ 0 by increasing the field intensity either (i) suppresses the tunneling
barrier completely thus breaking the tunneling picture [183] or (ii) brings the
system to the relativistic domain [182]. In addition, at the interface between
the tunneling and multiphoton regimes at γ ∼ 1 combinations of these two
ionization mechanisms have been reported [184, 185]. However, while the
separation of ionization to tunneling and multiphoton mechanisms may face
problems in certain cases, they provide easy-to-understand intuition behind
non-linear strong-field phenomena, and we use them in the following.

2.5 Above threshold ionization

In the multiphoton ionization picture, the atomic electron is excited to the
continuum by the absorption of multiple photons. However, the electron can
absorb more photons than required for reaching the continuum threshold. In
such a case, the excess energy is seen as the electron’s terminal kinetic energy.
Especially when the laser field is nearly monochromatic, the electron can absorb
energy only in discrete steps. This process is called above-threshold ionization
(ATI), and it results in a peaked photo-electron spectrum (PES) with the ATI
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Figure 2.3: Photoelectron spectra for a one-dimensional hydrogen model driven by a
5 fs (intensity full width at half maximum) laser pulse with a 400 nm carrier wave at
peak intensities (a) 3.2 × 1013 W/cm2, (b) 1.7 × 1014 W/cm2, and (c) 3.5 × 1014 W/cm2.
The dashed lines at the bottom left of the figure show the final energies with n � 7 . . . 11
photon absorption from the ground state.
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Figure 2.4: Schematic picture of the rescattering mechanism in above-threshold
ionization according to the three-step model.

peaks separated by the photon energy of the driving field as demonstrated in
Fig. 2.2.

With low intensities, the PES of the ATI process is mostly a rapidly decreasing
peaked spectrum as shown in Fig. 2.3(a-b) [187]. With increasing field strengths,
the ATI spectrum acquires a plateau-like structure as in Fig. 2.3(c). This plateau
is the result of a rescattering mechanism for which the conventional three-step
model paints an intuitive picture [25, 26, 187–189].

The three-step model is illustrated in Fig 2.4. First, the atomic electron tunnels
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out of the atom. It then accelerates in the laser field gaining kinetic energy. If
the electron travels away from the parent ion without returning to its vicinity,
it contributes to the initial, rapidly decreasing direct part of the PES [187].

However, the electron may return to the vicinity of the parent ion and rescatter
from it. In backscattering, the electron scatters from the ion core elastically [187].
If the electron backscatters from the parent ion just as the force of the laser
field flips its direction, it gains kinetic energy from two half-cycles of the laser
pulse. Such an electron can reach energies up to 10Up [187]. This rescattering
part of the spectrum is the one that creates the plateau in the photoelectron
spectrum in Fig. 2.3(c).

Recently, the rescattering mechanism has been shown to produce also an addi-
tional increase of the yield at low energies [26] (not visible in the example spectra
shown here). This low-energy structure is the result of forward-scattering upon
return to the vicinity of the parent ion [26] instead of backscattering that results
in the high-energy plateau.

As a final note, the photoelectron emission is not typically encumbered with
effects from propagating through the gaseous medium. An emitted photoelec-
tron has a negligible cross-section with the rest of the atoms in the gas jet [186],
and the experimental spectrum the is often close to the single-atom response.
However, differences between the experimental and the single-atom response
may arise if the laser focus is not tight enough [186]. In such a case, electron
emission at different atomic positions inside the gas medium occurs at different
peak laser intensities, and the total measured PES is essentially a weighted sum
of the single-atom spectra for different intensities [186].

2.6 Calculating photoelectron spectrum

Semiclassically the photoelectron spectrum is easy to understand as the prob-
ability density for the terminal kinetic energy v2/2 of an ionized electron, but
the calculation of its QM counterpart is slightly more involved. In quantum
mechanics PES corresponds to the probability of finding an electron at a
positive-energy E eigenstate ϕ(E) of the system Hamiltonian [190], i.e.,

P(E) �
⨋

degeneracies

|︁|︁⟨︁ϕ(E)|︁|︁ψ(t →∞)⟩︁|︁|︁2 , (2.8)
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where we sum and integrate over all degenerate states with energy E.

There are multiple ways to compute or approximate Eq. (2.8). First, we could
compute the continuum eigenstates of the system Hamiltonian in the investi-
gated energy range and project the final electronic state to these eigenstates [190].
While this is conceptually easy, it would require an accurate computation of a
large set of continuum eigenstates which is computationally an expensive task.

Alternatively, we could approximate the continuum eigenstates ϕ(E) as plane
waves, i.e.,

⟨︁
r
|︁|︁ϕ(k)⟩︁ ∝ exp (ik · r). In this case the angle-resolved PES would be

computed simply as a Fourier transformation of the final state.

We can also approximate the projection to eigenstates with a window func-
tion [191], yielding the approximation

P(E) ≈ lim
t→∞

⟨︁
ψ(t)|︁|︁Ŵ |︁|︁ψ(t)⟩︁ , (2.9)

where the window operator can be written as [191]

Ŵ �
γ4

(Ĥ0 − E)4 + γ4
. (2.10)

These projection methods require us to simulate the system in a large simulation
domain so that all of the electron wave function is still inside it at the end of
the simulation (i.e., not absorbed by the boundaries). Recent developments
have brought also alternative methods such as the time-dependent surface flux
-method (tSurff) [141] or the mask method [176]. They allow more efficient
simulations by decomposing the simulation domain into an interior region,
where the interaction of the electron with its parent ion is non-negligible, and
an exterior region, where the electron interacts only with the laser field.

In the mask method, the interior region is typically simulated in the coordinate
space and the exterior region in the momentum space [176]. These regions
are coupled using a mask function, allowing electron density to pass from the
interior region to the exterior region (and vice versa) [176].

In tSurff, we must know the general solution to the TDSE in the exterior
region [141]. This general solution is used to transfer the computation of the
overlap integral (2.8) in the exterior region to a two-dimensional (2D) surface
within the interior region [141]. Since the PES can now be computed by
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an integral over a hypersurface in the interior region, one can truncate the
simulation domain to only the interior region. This results in a significantly
lower computational cost when computing PES.

2.7 Emitted electromagnetic fields

When an atom is influenced by an oscillating field such as a laser field, its
dipole moment starts to oscillate. This oscillating dipole moment emits EM
radiation, which is measured far away from the interaction region of the gas
and the laser field. Formally, one measures the spectrum [192]

Sz(ω) � |Ez(ω)|2 �
1

2π

|︁|︁|︁|︁|︁|︁
∞∫

−∞
dt Ez(r, t)e iωt

|︁|︁|︁|︁|︁|︁
2

, (2.11)

where ω is the frequency of the emitted radiation, Ez the z-component of the
emitted radiation, and r the (directed) distance from the dipole emitter.

In the following we clarify how the dipole spectrum S(ω)measured far away
from the interaction region is related to the simulated dipole moment

⟨︁
ψ
|︁|︁r̂|︁|︁ψ⟩︁

of
a single representative atom at the interaction region. The following derivation
follows that of Baggesen and Madsen in Ref. [192], but extends it to a 3D setup.
This treatment is similar to the comment on Baggesen’s and Madsen’s article in
Ref. [193], but here we focus on the field emitted by a single atom.

The relevant macroscopic Maxwell’s equations in their differential form can be
written as [194]

D(r, t) � E(r, t) + 4πP(r, t) (2.12)
H(r, t) � B(r, t) − 4πM(r, t) (2.13)

∇ ·D(r, t) � 4πρ f (2.14)

∇ × E(r, t) � − 1
c2 ∂tB(r, t) (2.15)

∇ ×H(r, t) � 4πJ f (r, t) + ∂tD(r, t), (2.16)

where D is the dielectric displacement, E the electric field, P the polarization,
M the magnetization, H the magnetic intensity vector, B the magnetic field,
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ρ f the density of free charges, and J f the current density of free charges [195].
Note that we have already previously in Sec. 2.2 absorbed the term 1

c into the
vector potential A and here we use this convention also for B, H, and M.

Since we have no free charges and magnetization of a gaseous medium is
negligible, the Maxwell’s equations simplify to

D(r, t) � E(r, t) + 4πP(r, t) (2.17)
H(r, t) � B(r, t) (2.18)

∇ ·D(r, t) � 0 (2.19)

∇ × E(r, t) � − 1
c2 ∂tB(r, t) (2.20)

∇ ×H(r, t) � ∂tD(r, t), (2.21)

The EM radiation emitted by the atom will be included later in the polarization
term.

By differentiating Eq. (2.21) with respect to time and using Eqs. (2.17) – (2.20),
we get the governing equation for the propagation of EM waves emanating
from the atom [196], (︃

∇2 − 1
c2 ∂

2
t

)︃
E �

4π
c2 ∂

2
t P. (2.22)

Note that in this simple model, the atom interacting with the external EM
pulse emits radiation which propagates in free space to the detector. This
gross approximation is valid only when the gas jet in the experimental setup is
extremely thin so that the interaction of the emitted radiation with the gaseous
medium is negligible. Often this is not the case and propagation effects should
be included rigorously.

The polarization of the atom is given by the atom’s dipole moment as

P(r, t) � ⟨︁
ψ(t)|︁|︁r̂|︁|︁ψ(t)⟩︁ δ3(r), (2.23)

where we have approximated the atom as a point-like source. The governing
equation for the propagating radiated field becomes

(∇2 − 1
c2 ∂

2
t )E �

4π
c2 ∂

2
t

⟨︁
ψ(t)|︁|︁r̂|︁|︁ψ(t)⟩︁ δ3(r), (2.24)
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which is the same as Eq. (5) in Ref. [192]. Denoting the dipole moment as
d(t) ≐ ⟨︁

ψ(t)|︁|︁r̂|︁|︁ψ(t)⟩︁ we can write the wave equation (2.24) in the frequency
domain as3

(∇2
+
ω2

c2 )E(r, ω) � −
4πω2

c2 d(ω)δ3(r). (2.25)

Equation (2.25) is the defining equation for the Green’s function of the three
dimensional Helmholtz equation for each component of E. The physical
solution is given by [197]

Eα(r, ω) � ω2

c2 dα(ω) e
iω ∥r∥c

∥r∥ , α � x , y , z (2.26)

or equivalently

E(r, ω) � − 1
c2 d̈(ω) e

iω ∥r∥c

∥r∥ , (2.27)

where d̈(ω) � 1
2π

∫ ∞
−∞ dt∂2

t

⟨︁
ψ(t)|︁|︁r̂|︁|︁ψ(t)⟩︁ e−iωt is the dipole acceleration of a

single atom.

Were we now to measure the z-component of the emitted EM signal, it is related
to the single-atom response by

Sz(ω) � |Ez(ω)|2 �
1

c4∥r∥2 |d̈z(ω)|2 ∝ |d̈z(ω)|2. (2.28)

This result for 3D wave propagation is slightly different from that of a 1D setup,
where the measured spectrum is proportional to the dipole velocity [192],

S1D(ω) ∝ |ḋ(ω)|2. (2.29)

However, the difference is only a factor of ω2 since d̈(ω) � −iωḋ(ω).
Finally, we point out that the standard way of computing d̈z(ω) from a QM
simulation is to compute the dipole acceleration d̈z(t) via Ehrenfest’s theo-
rem [198],

d̈(t) � ⟨︁
ψ(t)|︁|︁(−∇Vatom)(r)

|︁|︁ψ(t)⟩︁ , (2.30)

where we have dropped the term with the laser-matter interaction operator as
it typically contributes only to the low-frequency part of the spectrum.

3Assuming d(t � −∞) � d(t � ∞) � 0.
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Figure 2.5: Schematic picture of the frequency up-conversion process known as
high-order harmonic generation.

Figure 2.6: Dipole spectra for a one-dimensional hydrogen model using (a) a 400 nm
carrier pulse with 60 fs duration (envelope full width at half maximum) and (b)
a 800 nm carrier pulse with 12 fs duration (envelope full width at half maximum).
Dashed gray lines in (a) show odd harmonics of the driving field, and the orange
dashed line in (b) shows the semiclassical cutoff energy.

2.8 High-order harmonic generation

In ATI (Sec. 2.5) the electron might rescatter upon its return to the parent ion
leading to the detection of high-energy photoelectrons. However, instead of
rescattering the electron might recombine back to the ground state and emit
all the excess energy it has gathered as a single high energy photon. This
phenomenon is called high-order harmonic generation (HHG), and it can be
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utilized as a frequency up-converter: the atomic electron absorbs a number of
low-energy photons and emits a single high-energy photon (see Fig. 2.5 for an
illustration). The spectrum of the emitted radiation can be computed from the
oscillating dipole moment of the atom as described in Sec. 2.7.

The high-order harmonic (HH) spectrum for longer (dozens of femtoseconds)
driving pulses – demonstrated as the blue line in Fig. 2.6(a) – consists of multiple
peaks at odd multiples of the driving frequency [odd harmonics, shown as
vertical dashed lines in Fig. 2.6(a)]. The spectrum decreases rapidly for the first
few harmonics but reaches a wide plateau of a nearly constant yield [27]. The
plateau ends abruptly near the cutoff energy Ec ∼ 3.17Up + Ip [199–201]. The
cutoff law is demonstrated as the dashed vertical line in Fig. 2.6(b) for a 12 fs
pulse with a 800 nm carrier wave.

For near-monochromatic driving pulses we only observe the emission of odd
harmonics as demonstrated in Fig. 2.6(a). This can be understood in terms
of the single-atom multiphoton picture in Fig. 2.5 [178]: Dipole interaction
is allowed only between states of opposite parity [202]. With the absorption
of n photons from the driving field, the parity of the state changes by (−1)n .
Recombination to the initial state is allowed by the dipole selection rules only
if n is odd, i.e., when a high-energy photon with the energy E � nω is emitted
upon the recombination. For short pulses as in Fig. 2.6(b) most of the harmonic
peaks are smoothened out. This can be attributed to the broader bandwidth of
the driving pulse [203].

After emission, the harmonics must propagate through the gaseous medium to
reach a detector or to be used in applications. In contrast to ATI, the propagation
of harmonics is affected by the medium [204, 205]. For example, in order for
the intensity of the propagating harmonic radiation to accumulate coherently
while propagating through the gas, the phase of the radiation at a certain
position must match the phase of the radiation emitted by an atom at the same
position [205]. Fortunately, there are methods for addressing the issues arising
from macroscopic propagation. For more details, we refer to Ref. [204].

As the final note, HHG driven by few-cycle pulses can be used to generate
isolated attosecond pulses with energies in the extreme ultraviolet (XUV) [206] and
even soft X-ray range [20]. However, even a few-cycle driving pulse generates
multiple successive attosecond pulses, one for each recombination window as
shown in Fig. 2.7. Here the cutoff harmonics of the spectrum in Fig. 2.6(b) are
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Figure 2.7: (a) Intensity envelopes for the driving laser field and the envelope of the
intensity of the attosecond pulse train generated by spectral filtering from the cutoff
harmonics of Fig. 2.6(b). (b) Zoom-in to the centermost attosecond pulse in the upper
panel, but showing also the carrier oscillation of the intensity profile.

generated in three recombination windows producing three attosecond pulses.
An isolated attosecond pulse can be generated with multiple techniques (see,
e.g., the reviews [13, 204, 207, 208]). These techniques include, e.g., (a) spectral
filtering of the HH radiation to include only those cutoff-region harmonics that
are generated in the same recombination window [209], (b) allowing HHG only
in a short time-window either by controlling the ionization time by tailoring
the temporal profile [210] or the time-dependent polarization of the driving
field [211, 212], or (c) altering the emission direction for harmonics emitted at
different recombination times [213, 214]. Depending on the generation scheme,
the resulting attosecond pulse either utilizes the full HH spectrum or just the
harmonics in the cutoff region [207].



2.9. Semiclassical model 21

Egs

0. Initially at ground state 1. Ionization 2. Acceleration 3. Rescattering or
recombination

XUV

e−

Figure 2.8: Schematic picture of the three-step model. Here the dashed line shows the
ground state energy, the gray curves the combined potential of the ion core and laser
field, and blue objects the electron in each of the steps.

2.9 Semiclassical model

Let us briefly summarize a unified semiclassical description of ATI and HHG.
This three-step model is illustrated in Fig. 2.8 [199, 200, 215]. Initially, the electron
is in its ground state, from which a wave packet is ionized either by multiphoton
or tunneling ionization. After ionization, the electron is accelerated by the laser
field. Finally, some electron trajectories may return to the vicinity of the parent
ion and either rescatter from it or recombine back to the ground state.

Modeling of the first step, ionization, depends on the ionization regime and
mechanism as described in Sec. 2.4. Often the ionization step is modeled as
an instantaneous ejection of the electron from the parent ion [199]. There are
multiple distributions for the instantaneous emission rate W including, e.g.,
the Ammosov-Delone-Krainov (ADK) rate [216, 217], the Perelomov-Popov-
Terent’ev (PPT) rate [218, 219], and the strong-field approximation (SFA) or the
Keldysh-Faisal-Reiss (KFR) transition rate [220, 221]. In the often used ADK
and PPT transition rates, the dominant contribution has the form

W ∼ exp

[︄
−2(2Ip)3/2

3|E|

]︄
, (2.31)

where Ip is the ionization potential of the atom and E the instantaneous electric
field [216–219].

Ionization at different times produces an ensemble of classical electron trajecto-
ries in the Monte Carlo spirit [199]. The initial conditions of these trajectories
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vary between different flavors of semiclassical models. Simplest models ini-
tialize the trajectories at the origin [199], which is common when considering
multiphoton ionization. In the tunneling regime, non-zero tunnel exit has
already been confirmed experimentally [222], and correspondingly theoretical
models can use the classical turning-point on the far-side of the tunneling
barrier as the initial electron position. Furthermore, the initial velocity can be
set to zero [199]. In 3D models, however, the trajectory should have non-zero
velocity perpendicular to the direction of the initial ejection [223].

The dynamics of the trajectories of the ensemble follow Newton’s equations of
motion [26, 199],

r̈ � −∇Vatom(r) − E(t), (2.32)

where Vatom is the atomic/molecular potential and E(t) is the laser electric field.
In some models such as the Simple man’s model [199] the influence of the atomic
potential is neglected in the acceleration step.

Those trajectories that propagate away from the parent ion without returning
to its vicinity are a part of direct ionization in the ATI spectrum (see Sec. 2.5). The
Simple man’s model provides the maximum kinetic energy of 2Up for direct
ionization [26] with Up �

⟨︁
A2(t)⟩︁T /2 being the cycle-averaged kinetic energy

of an electron oscillating in a continuous wave (CW) laser field [26].

In addition to direct ionization, some of the trajectories can travel back near the
parent ion. There the electron might rescatter from the parent ion as discussed
in Sec. 2.5 and contribute to the rescattering part of the photoelectron spectrum.
The rescattering part can reach up to energies 10Up according to the Simple
man’s model [26].

If, instead of rescattering, the electron recombines with the parent ion, it emits
the excess energy as a photon. This process results in the generation of HH
radiation discussed in Sec. 2.8. The maximum kinetic energy the electron
gains in a CW field before returning to the parent ion is 3.17Up according to
the Simple man’s model. Consequently, the maximum photon energy will be
3.17Up + Ip [199–201, 215], where Ip is the ionization potential of the system.

Finally, note that the energy cutoffs provided by the semiclassical model(s),
that is, 2Up for the direct electrons, 10Up for the rescattered electrons, and
3.17Up + Ip for the cutoff energy of the HHG have all been verified in numerous
experimental and theoretical studies (see, e.g., Refs. [24, 25, 200, 224–229]).
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2.10 Rydberg states

As a slight detour from strong-field physics, let us discuss one peculiar feature
of atomic and molecular systems: Rydberg states. Rydberg states are high-lying
hydrogen-like excited states of atoms [230]. While in hydrogen the energy
levels are given by [230]

En � − 1
2n2 , (2.33)

with n the principal quantum number, with Rydberg states of other species we
have to take into account, e.g., the effective core electron contribution, which
yields a slightly modified expression [230]

En ,l � − 1
2(n − δl)2 , (2.34)

where δl is the quantum defect that depends on the angular quantum number l.

Atoms with a single electron excited to a Rydberg state are called Rydberg
atoms [230]. There are numerous atomic species supporting high-lying Rydberg
states including, e.g., all neutral atoms [230–232], rare gas dimers [233], and
even larger molecules such as water [234] and benzene [235].

Rydberg atoms are characterized by long lifetimes [231, 236] even at finite
temperatures [230, 237], large extent of the electron wave function [230], and
large dipole moments [230]. Large dipole moments couple nearby Rydberg
atoms together [237]. In addition, by controlling the quantum state of the
Rydberg atoms, their interatomic interaction strength can be varied within
12 orders of magnitude [237]. Nowadays, Rydberg atoms can be arranged in
2D [238] and even 3D [239] lattices by the use of optical tweezers [130, 240, 241].
These structures are prime candidates for multi-qubit platforms in quantum
computing applications [237, 239].
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3 Control of ultrafast strong-field
phenomena

3.1 On finding recipes for quantum control

In quantum control the aim is to tune parameters of a quantum mechanical
(QM) system to steer its temporal evolution to achieve a pre-defined goal.
The goal is quantified by the target, which can be formulated in terms of any
observable quantity such as the photo-electron spectrum (PES) or the local
electron density. In laser-driven phenomena, the variable parameters, i.e., the
control parameters, come in the form of the temporal or the spectral shape of
the driving laser. In atomic and molecular systems, successful control has
been demonstrated in, e.g., selective molecular bond breaking [86–89] and
bond formation [89–91], enhancement of atomic strong-field phenomena such
as above-threshold ionization (ATI) [23, 242–246] and high-order harmonic
generation (HHG) [92–120], and selective electron excitation [247–250].

There are various methods for finding suitable mechanisms and recipes for
quantum control. Most importantly, human invention and detailed studies of
the phenomenon of interest play a major role. Studies provide insights into
possible physical processes and mechanisms, which can be used to formulate
precise control recipes. For example, a necessary prerequisite for the invention
of polarization gating in the generation of isolated attosecond pulses [211, 212]
was to understand the recombination mechanism of HHG: by tailoring the
polarization of the driving field, we can steer electron trajectories so that only
those corresponding to a single recombination window pass near the parent
ion, consequently limiting HHG to a sub-cycle window and producing an
isolated attosecond pulse.

Alternatively to direct human invention of control mechanisms, algorithmic
search has proven to be a valuable method. It is implemented in a closed-loop
system where a laser pulse is used to drive the QM process of interest. The



26 Chapter 3. Control of ultrafast strong-field phenomena

outcome of the process, the feedback, is provided to a computer which further
adjusts the driving laser for steering the system to better achieve the target [251–
254]. The adjustment of the laser parameters is an optimization problem: find a
laser pulse that maximizes or minimizes the target. Setups where the feedback
is provided by an experimental measurement are called adaptive feedback
control (AFC) experiments. Alternatively, the system response can also be
computed from a theoretical model.

There are two categories of algorithms for designing the driving laser pulses:
gradient-free and gradient-based algorithms. In AFC experiments, evolutionary
algorithms, which are gradient-free, are almost exclusively used [252, 253]. In
contrast, the gradient-free algorithms in theoretical searches for control methods
are often various trust-region and coordinate descent -type algorithms [97,
255–259]. Recently, also machine learning methods have shown success in
quantum control [260].

In addition to gradient-free methods, theoretical search for control pulses
can utilize the gradient of the target. The gradient is computed within the
framework of quantum optimal control theory (QOCT), which provides a
straightforward way of computing the gradient of the target with respect to the
laser parameters [251, 252, 261]. When the laser pulse, switched on at t � t0
and switched off at t � T, is defined by a finite number of parameters u, the
gradient of the target G[u] � ⟨︁

ψ[u](T)|︁|︁Ô|︁|︁ψ[u](T)⟩︁ can be calculated from [262]

∇uG � 2 Im
T∫

t0

dt
⟨︁
χ[u](t)|︁|︁{︁∇uĤ[u](t)}︁|︁|︁ψ[u](t)⟩︁ , (3.1)

where
|︁|︁ψ[u](t)⟩︁ is the wave function of the system and |χ[u](t)⟩ a Lagrange mul-

tiplier that can be computed by propagating the time-dependent Schrödinger
equation (TDSE) backwards in time from the final state |χ[u](T)⟩ � Ô

|︁|︁ψ[u](T)⟩︁
[262]. There are also alternative formulations where the laser pulse is repre-
sented directly in the time domain, allowing more freedom in the optimiza-
tion [252].

When designing laser pulses based on numerical simulations, a number of issues
can hinder their applicability and success in experimental realizations. First,
the numerical simulations may not reproduce the experimental dynamics to a
required degree of accuracy [252]. This may be due to using only approximate
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models in the simulations or the experimental setup may not be able to produce
the designed laser pulse accurately enough [252]. However, with careful
numerical simulations, the designed pulses can be successfully applied in
experimental setups (see, e.g., Ref. [99]).

Additional challenges in the numerical search for control mechanisms are
posed by the compatibility with experimental setups. Experimental constraints
on the driving laser field include, e.g., maximum achievable peak intensity,
fixed set of available wavelengths, minimum duration of generated pulses,
and other possible spectral and temporal restrictions on the waveform of
the laser field. In numerical optimization simulations these constraints can
be included as penalty terms in the target functional [252, 263], as Lagrange
multipliers [252] or slack variables [264], by spectral filtering of the laser field
during optimization [252], as a mapping of the constrained parameter space to
an unconstrained one, or directly in the optimization algorithm [265]. While
without constraints on the laser field, the optimization landscape, i.e., the graph
of the target function(al) G[u] is known to have few difficult features such
as local extrema or singularities [266], enforcement of constraints populates
the optimization landscape with problematic areas which hinder efficient
optimization [267, 268].

Finally, recent techniques in gamification [269] and citizen science [270] have
opened up the possibility for crowd-sourcing quantum optimization problems
to human individuals [271–273]. The core idea is to convert the optimization
problem, such as speeding up transfer of atoms with optical tweezers [271,
272], to a game. The game is distributed to a large audience who, by playing the
game, find and optimize control methods for the QM process [271, 272]. Crowd-
sourced optimization has proven to quickly find promising subspaces in the
search space which can be further optimized with conventional strategies [272].
However, the jury is still out whether crowd-sourced search for quantum
control can outperform modern algorithms [274].

3.2 Tailoring femtosecond laser pulses

Control and optimization of atomic and molecular processes driven by laser
pulses requires laser pulses whose spectral or temporal profile can be shaped.
The idea is to take multiple different laser pulses, channels, Ei(t)whose prop-
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erties such as intensity, carrier-envelope phase (CEP), and duration can be
adjusted. The total laser field is constructed as a coherent superposition of
these pulses, E(t) � ∑︁

i
Ei(t).

A schematic illustration of the first modern pulse synthesizer is shown in
Fig. 3.1(a) [84]. The device is seeded with a broadband laser pulse which is
subsequently split into three spectral channels: near-infrared (NIR) (red), visible
(VIS) (yellow), and VIS/ultraviolet (UV) (blue) frequencies. The spectra of
each of the three channels is shown in Fig. 3.1(b) together with the spectrum
of the seed pulse [84]. The pulse in each spectral channel is compressed to a
few femtosecond duration [Fig. 3.1(c)], and by adjusting intensities, CEP, chirp,
and time-delays between these channels, the temporal profile of the output
pulse can be modified [84].

In the first demonstration of sub-cycle tailoring of the laser pulse, the peak inten-
sity and the spectral range were limited by the seed pulse [83, 84]. More recently,
the emergence of optical parametric chirped-pulse amplification (OPCPA) [85]
has allowed the generation and, more importantly, the amplification of each
channel separately [275–277] yielding extreme peak intensities – even deep in
the relativistic regime [277]. Finally, the emergence of attosecond nanopho-
tonics [278] suggests the possibility of generating tailored femtosecond pulses
even in nanoscale devices [279].

3.3 Algorithmic search for control of laser-driven
atomic processes

Algorithmic learning of controls and optimization of laser-driven atomic and
molecular processes such as HHG, ATI, ionization, and excitation paths has
been studied intensively. In the following we will review some of these previous
works to give an idea on the state of the field.

Optimization and control of HHG has been reviewed, e.g., in Refs. [92, 280].
Both the high-order harmonic (HH) cutoff energy and the yield of the high-
energy plateau have been increased in numerical experiments by optimizing
the spectral properties of the driving laser [107, 109] or by optimizing few-
channel synthesized pulses [97, 98, 281]. Note also that the optimization of
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Figure 3.1: (a) Schematic illustration of a three-channel laser pulse synthesizer. (b)
Power spectral density of each of the three channels of the device. (c) Visualization
of the intensity profiles of the individual channels. Reprinted from Ref. [84] with
permission from The American Association for the Advancement of Science.
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the single-atom response has been shown to be effective also in optimizing
the HH radiation that has propagated through the gaseous medium [120],
and some of the pulses from numerical/theoretical computations have also
been verified in experimental realizations [99]. In addition to plateau and
cutoff optimization, control of the emission of single harmonics has attracted
attention. On the numerical side, optimization of the dipole response from
strong-field approximation (SFA) [282], TDSE [283], and even including many-
body effects via time-dependent density functional theory (TDDFT) [284]
have demonstrated enhancement of single harmonics. Also, optimization for
single-harmonic enhancement has been successful in AFC experiments [285,
286].

Pulse shaping techniques also provide ways for optimizing the ionization
processes in atoms. Numerical studies within QOCT have demonstrated
optimal control of, e.g., instantaneous ionization rate [287, 288], total ioniza-
tion probability [289, 290], and suppression of ionization [107, 291]. Also
experimental control has been demonstrated [292]. As a step forward, also
optimal control of the kinetic energy spectrum of the ionized electrons has
been demonstrated [246]. Note that numerical and experimental optimization
experiments of ionization compare favorably [293], validating again the use of
single-atom response in the theoretical search for control mechanisms.

Finally, precise control of the excitation of atoms to their (meta)stable states,
and a-priori selection of the target state or even the excitation pathway would
be the ultimate control of laser-driven processes in atoms. These are important
steps in using atoms as a basis for multi-qubit quantum computing [237, 239].
There has been some progress in this direction: For example, AFC experiments
have demonstrated optimization of pulses for the excitation of rubidium dimers
[294], the |3s⟩ → |4s⟩ and |3s⟩ → |︁|︁7p

⟩︁
transitions in sodium [295–297], time-

dependent control of Rydberg-state ionization [298], and the generation of
localized Rydberg wave-packets [299].
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4 Numerical methods

4.1 Overview

In Ch. 2 we reviewed the semiclassical and quantum models for the time-
evolution of an atomic electron. The equations of motion of these models are
rarely analytically solvable, and therefore, we commonly use numerical methods
to compute their solutions. Numerical methods for solving ordinary differential
equations (ODEs) and partial differential equations (PDEs) have become
standard tool in the scientific community since the early 20th century [300, 301].
“Computers” used to refer to the laborers manually computing the numerical
solutions [300, 301], but since the 1940s the scientific community has switched
to digital computers [301]. In this chapter we introduce some (semi) modern
numerical methods we have used in our studies.

4.2 Simulations with the semiclassical model

4.2.1 Overview

The semiclassical model of laser-atom interaction, introduced already in Sec. 2.9,
consists of three steps:

1. generation of an ensemble of electron trajectories via laser-induced
ionization

2. propagation of the ensemble per Newton’s equations, and

3. rescattering and/or recombination effects.

Numerical simulation of the semiclassical model proceeds as follows. First,
a large ensemble of ionization times is sampled using one of the techniques
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introduced in Sec. 4.2.2. Next, the corresponding tunnel exits are computed
with a root-finding method with the recipe given in Sec. 4.2.3, and finally the
ensemble of trajectories is propagated in the combined field of the parent ion
and the laser electric field as described in Sec. 4.2.4.

4.2.2 Generating the initial ensemble

The unnormalized ionization rate at time t is given (in the first approximation)
by [216–219]

W(t) ∼ exp

[︄
−2(2Ip)3/2

3∥E(t)∥

]︄
, (4.1)

where Ip is the ionization potential of the atomic species and E(t) is the electric
field at the time of the ionization. The ionization times t, i.e., the starting times
for the semiclassical electron trajectories, are computed by drawing random
numbers from the ionization rate distribution W(t).
For the most common probability distributions such as uniform, normal, or
binomial distribution, we have a number of methods for drawing random
samples efficiently [302, 303]. However, these methods are highly specialized
and cannot sample distributions of different forms, such as given by the ioniza-
tion rate W(t). The simplest way to sample a general probability distribution
W(t) is by rejection sampling [304]. The idea is to transform the problem of
sampling from the distribution W to a sampling from another, easier to sample
distribution g(t). Rejection sampling is described below in Algorithm 1.

Algorithm 1 Rejection sampling algorithm [304]

M ← min
t

g(t)
W(t)

t ← draw a sample from g
u ← draw a sample from Unif(0, 1)1
if u ≤ W(t)

M g(t) then
return t

else
Repeat from the beginning

end if

1Here Unif(0, 1) is the uniform probability distribution yielding values between 0 and 1.
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While rejection sampling is easy to implement, it suffers from a few drawbacks.
For example, rejection sampling discards a large number of samples, especially
if the helper distribution g is quite different from the target distribution W [304].
This makes the algorithm generally quite inefficient [304], and the issue is even
worse for high-dimensional distributions.

Alternative methods include, e.g., the Markov chain Monte Carlo (MCMC)
approach [304]. MCMC methods generate a Markov chain t0 , t1 , . . . , tn whose
stationary distribution P(t) is the target distribution W(t) after a few initial
steps [304]. One of the simplest MCMC algorithms, Metropolis-Hastings, is
described in Algorithm 2 below.

Algorithm 2 Metropolis-Hastings algorithm [304]
Select an initial state t0 � 0.
for k � 0, . . .N do

t′← draw a sample from g(t′ |tk)
r ← min

(︂
1, W(t′)

W(tk )
g(tk |t′)
g(t′ |tk )

)︂
u ← draw a sample from Unif(0, 1)
if u ≤ r then

tk+1 � t′
else

tk+1 � tk
end if

end for

4.2.3 Computing the tunnel exit

After we have obtained a set of ionization times, we must compute an initial
configuration for the ionized electron. The initial position of an electron
trajectory generated at time t is given (in the first approximation) by the
classical turning point equation [222, 305],

V(r) + rE(t) � −Ip , (4.2)

where V is the atomic potential, and r the distance from the ion core in the
direction of the laser polarization. In the multiphoton and tunneling regimes,
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−Ip

V(r)+ rE(t)

r0

Figure 4.1: In the semiclassical model, the initial position of the electron trajectory
corresponds to the further classical turning point, r0.

Eq. (4.2) has three solutions as demonstrated in Fig. 4.1, and the initial position
is the turning point r0 furthest away from the ion core.

Eq. (4.2) can be solved numerically with any root-finding method applied to the
function f (x) � V(x) − xE(t) + Ip . For example, the most efficient algorithm is
currently [306] the algorithm 4.2 in Ref. [307] (called TOMS748 in the following).
TOMS748 requires an interval [a , b]with only a single root and f (a) f (b) < 0 [307].
For the soft Coulomb potential (see Sec. 2.3), which we will use later in our
one-dimensional (1D) simulations, the limits − 1

x < V(x) < 0 yield

a �

√︂
I2
p − 4∥E(t)∥ + Ip

2∥E(t)∥ , and (4.3)

b �
Ip

∥E(t)∥ . (4.4)

Open-source implementations of TOMS748 can be found, e.g., in SciPy [306] or
Boost [308].

4.2.4 Propagating the ensemble

After the stochastic generation of an ensemble of initial conditions for the

electron trajectories, E �

{︂[︂
t(k)0 , x(k)0 , ẋ(k)0

]︂}︂N−1

k�0
, we must compute their time-

evolution.2 The trajectories evolve according to classical mechanics, i.e., (in
2Note that in 1D simulations we set the initial velocity to zero.
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1D)
dx
dt

� ẋ (4.5)

dẋ
dt

� Fatom(x) − xE(t), (4.6)

where x , ẋ are the position and velocity of the electron, Fatom the force exerted
by the parent ion, and E(t) the instantaneous laser electric field. To simplify
the notation, let us rewrite this equation as

dz
dt

� f(t , z), (4.7)

where z � [x , ẋ]T and f(t , z) � [ẋ , Fatom(x) − xE(t)]T.

A numerical solution of this ODE builds a sequence of approximate values of
the true solution,

z(t0), z(t1), . . . , z(ti), . . . , z(tn), (4.8)
at finite number of time-instants ti ranging from the ionization time to the end
of the simulation. This kind of numerical time-stepping can be obtained with a
number of algorithms including, e.g., one from the Runge-Kutta (RK) family.

In RK algorithms, the time stepping, i.e., the time-evolution from ti to ti+1, is
obtained from [309]:

k1 � f(ti , zi) (4.9)
k2 � f(ti + c2h , zi + ha2,1k1) (4.10)
... (4.11)

ks � f(ti + cs h , zi + h(as ,1k1 + · · · + as ,s−1ks−1)) (4.12)
zi+1 � zi + h(b1k1 + · · · + bsks), (4.13)

where different constraints and solutions of the coefficients a, b, and c yield
different RK schemes [309].

A particularly efficient RK scheme called DOP8(5,3) was given in Ref. [309].
DOP8(5,3) begins by constructing an 8th order RK scheme. The 8th order RK
scheme is accompanied by 5th and 3rd order RK schemes with errors [309]:

err5 �
∥︁∥︁z8th order − z5th order∥︁∥︁ � O(h6) and (4.14)

err3 �
∥︁∥︁z8th order − z3rd order∥︁∥︁ � O(h4), (4.15)
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which are combined to yield a high order estimate for the error [309]:

err �
err2

5√︂
err2

5 + 0.01err2
3

� O(h8). (4.16)

The above error estimate can be used for adapting the time step h during the
time propagation as follows [309]. A trial step from ti to ti+1 � ti + h is made
with a step-size h. If the estimated error is smaller than a given tolerance,
the step is accepted, and an optimal step-size for the next time step can be
estimated from [309]

hopt �
h

4√err
. (4.17)

However, if the error estimate is larger than the given tolerance, the computed
step is rejected, a smaller step-size is selected with Eq. (4.17), and time-stepping
is attempted again. For more details, we refer the reader to Ref. [309].

This adaptive time-stepping allows DOP8(5,3) to adjust and correct the numerical
time-evolution to keep the local error within pre-described tolerances. An open-
source implementation of DOP8(5,3) can be found, e.g., in Ref. [309], and there
are wrappers and implementations of DOP8(5,3) in multiple programming
languages [306, 310, 311].

4.3 Solving Schrödinger’s equation

The quantum mechanical (QM) description of the laser-atom interaction is
based on the Schrödinger equation (see Sec. 2.2). Both the time-independent
Schrödinger equation (TISE) and time-dependent Schrödinger equation (TDSE)
are linear PDEs whose numerical solution is based on reducing the (often)
infinite-dimensional problem to a finite dimensional approximation. This
process is called discretization of the equations.

4.3.1 Time-independent Schrödinger equation and discretization

First, let us consider different ways to discretize the TISE. TISE is an eigenvalue
problem for the time-independent Hamiltonian operator ĤTI,

ĤTI
|︁|︁ψ(n)⟩︁ � E(n)

|︁|︁ψ(n)⟩︁ , (4.18)
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where E(n) ,
|︁|︁ψ(n)⟩︁ is the nth eigenpair of the equation.

If we describe the (single-particle) TISE in the coordinate space, it can be written
as [︃

−∇2

2 + V(r)
]︃
ψ(n)(r) � Ekψ

(n)(r), r ∈ Ω, (4.19)

where V(r) is the potential of the system and Ω its spatial domain. TISE
also requires some boundary conditions (BCs), which in QM simulations are
typically zero Dirichlet boundary conditions (ZDBCs), i.e., ψ(n)(∂Ω) � 0.

In the finite difference (FD) method, we discretize the Laplacian ∇2 with a FD
approximation. For example, in 1D we can approximate [312]

∇2ψ(n)(x) ≈ ψ
(n)(x + ∆x) − 2ψ(n)(x) + ψ(n)(x − ∆x)

∆x2 , (4.20)

where ∆x is the grid spacing. This reduces the problem of finding out the values
of the wave function in all points of the domain Ω to finding out the wave
function values at a finite number of points r ∈ Ω.

As a concrete example, let us consider the 1D TISE on an intervalΩ � [a , b] ⊂ R.
We first discretize the domain to N grid points,

[a , b] → x � {x0 � a , x1 � x0 + ∆x , . . . , xN−1 � x0 + (N − 1)∆x � b} , (4.21)

and denote the values of the nth eigenstate ψ(n) at these points by

ψ(n) �
{︂
ψ(n)0 , ψ(n)1 , . . . , ψ(n)k � ψ(n)(x0 + k∆x), . . . , ψ(n)N−1

}︂
. (4.22)

The TISE with our FD Laplacian must hold in all grid points xk � x0 + k∆x, i.e.,

− 1
2∆x2ψ

(n)
k−1 +

[︃
1
∆x2 + V(xk)

]︃
ψ(n)k −

1
2∆x2ψ

(n)
k+1 � E(n)ψ(n)k . (4.23)

This is a standard eigenvalue problem for the matrix

HFD
TI �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
∆x2 + V(x0) − 1

2∆x2 0 · · · 0

− 1
2∆x2

1
∆x2 + V(x1) − 1

2∆x2
. . .

...

0 − 1
2∆x2

1
∆x2 + V(x2) . . . 0

...
. . .

. . .
. . . − 1

2∆x2

0 · · · 0 − 1
2∆x2

1
∆x2 + V(xN−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.24)
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ZDBCs are trivial to enforce by zeroing the rows and columns corresponding
to a boundary point xk in our grid and setting unity on the corresponding
diagonal.

The FD discretization yields a finite eigenvalue problem

HFD
TI ψ

(n)
� E(n)ψ(n) , (4.25)

which can be solved with standard solvers [313, 314], but also specialized
algorithms exist for TISE [315].

Alternatively to the FD method, we can discretize the solution space H . The
standard technique is to select an N-dimensional subspaceHN ∈ H and find
a basis for it,

{︁|︁|︁ϕ0
⟩︁
, . . . ,

|︁|︁ϕN−1
⟩︁}︁

. By linearity of the Schrödinger equation,
we obtain again a finite-dimensional eigenvalue problem for the expansion
coefficients ψ(n). However, in contrast to the FD method, we now face a
generalized eigenvalue problem,

HEM
TI ψ

(n)
� E(n)SEMψ(n) , (4.26)

where HEM
TI;i , j �

⟨︁
ϕi

|︁|︁ĤTI
|︁|︁ϕ j

⟩︁
is the Hamiltonian matrix and SEM

i , j �
⟨︁
ϕi

|︁|︁ϕ j
⟩︁

the
overlap matrix in our basis.

Let us consider a concrete example of the discretization of the solution space,
e.g., the cylindarically symmetric three-dimensional (3D) TISE,

− 1
2ρ

∂
∂ρ

(︃
ρ
∂ψ(n)

∂ρ

)︃
− 1

2
∂2ψ(n)

∂z2 + V(ρ, z)ψ(n)k � E(n)ψ(n) , (4.27)

where ρ and z are the cylindrical coordinates and we have set the magnetic
quantum number m to zero. We set continuity boundary condition at ρ � 0,
i.e.,

lim
ρ→0+

(︃
ρ
∂ψ

∂ρ

)︃
� 0, (4.28)

and ZDBCs elsewhere on the domain boundary denoted by Γ; See the left panel
of Fig. 4.2 for an illustration of the setup.

In the finite element method (FEM), we discretize the solution space as follows.
First, we separate the (coordinate-space) domain Ω to a finite number of
elementary elements, e.g., triangles in our case (see Fig. 4.2). The basis
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z

ρ

Ω

Γ

meshing

z

ρ

Figure 4.2: Meshing of the simulation domainΩ (cylindrical coordinates) constructs an
approximation of the domain as a union of a finite number of elements, e.g., triangles
in a two-dimensional case. Adapted from Paper IV.

functions ϕk(ρ, z) for the finite-dimensional approximation of the solution
space are then chosen as low-order Lagrange polynomials which are non-zero
only on a few neighboring elements.

This choice of basis functions yields sparse system matrices. The overlap matrix
in FEM is trivially given by

SFEM
TI;i , j �

⟨︁
ϕi

|︁|︁ϕ j
⟩︁
�

∫
Ω

dρdz ρϕiϕ j , (4.29)

and the elements are non-zero only between those basis functions whose
supports overlap. The Hamiltonian matrix is slightly trickier as we need to
decrease the order of the differential operator in the kinetic energy term. This
can be accomplished using the Green’s first identity yielding the result

HFEM
TI;i , j �

⟨︁
ϕi

|︁|︁ĤTI
|︁|︁ϕ j

⟩︁
� −1

2

∫
Ω

dρdz ρ
∑︂
α�ρ,z

∂ϕi

∂α

∂ϕ j

∂α

+

∫
Ω

dρdz ρϕiV(ρ, z)ϕ j ,

(4.30)
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where the boundary integrals have vanished due to ZDBCs. This procedure
is described in more detail in, e.g., Paper IV. Finally, we obtain a generalized
eigenvalue equation

HFEM
TI ψ(n) � E(n)SFEMψ(n). (4.31)

The advantages of finite element (FE) discretization are the adaptation of the
element mesh to the problem geometry and the spatial control of the solution
accuracy. In addition, since the system matrices HFEM

TI and SFEM are extremely
sparse, the eigenvalue problem can be solved efficiently with Krylov-subspace
methods [313, 314].

4.3.2 Time-evolution

In contrast to TISE as an eigenvalue problem, TDSE is an initial value problem:
We must compute the time-evolution of the state

|︁|︁ψ(t)⟩︁ given an initial value|︁|︁ψ(0)⟩︁ and the equation of motion,

− i∂t
|︁|︁ψ(t)⟩︁ � ĤTD(t)

|︁|︁ψ(t)⟩︁ , (4.32)

where ĤTD is the time-dependent Hamiltonian.

The numerical solution of TDSE proceeds as follows. First, we discretize the
coordinate/state-space of the problem similarly as for TISE, and select an initial
state

|︁|︁ψ(0)⟩︁. The initial state is often chosen as one of the eigenstates of the
time-independent Hamiltonian, but in principle it can be any state.

After the spatial discretization, TDSE reduces to a system of coupled ODEs,

− iS d
dt
ψ(t) � HTD(t)ψ(t), (4.33)

whereψ(t) is the time-evolving vector of our expansion coefficients and HTD(t)
the discretized time-dependent Hamiltonian operator. In the FD discretization,
the overlap matrix S is an identity matrix.

Equation (4.33) can be solved with numerous different methods. First, standard
solvers for ODEs are applicable, such as the RK methods introduced in
Sec. 4.2.4. Standard solvers, however, do not usually take into account additional
properties of the Schrödinger equation such as norm conservation. Hence,
specialized solvers are usually preferred.
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Luckily, Eq. (4.33) has a formal solution [316]

ψ(t) � T
⎧⎪⎪⎪⎨⎪⎪⎪⎩e
−iS−1

t∫
t0

HTD(t′)dt′
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ψ(t0), (4.34)

where T is the chronological time ordering operator [316]. For a short time
span [t0 , t0 + ∆t], where the commutator [HTD(t),HTD(t′)] ∀t , t′ ∈ [t0 , t0 + ∆t]
(almost) vanishes, we can approximate the time-evolution in Eq. (4.34) with
the exponential mid-point rule [317]

ψ(t0 + ∆t) � e−iS−1HTD(t0+
∆t
2 )∆tψ(t0), (4.35)

where we only need to compute a regular matrix-exponential – or rather its
action on a vector ψ(t0). The full matrix exponential could be computed, e.g.,
using Padé approximants [318], but its action on ψ(t0) can be obtained with,
e.g., Krylov-subspace methods [319].

The exponential mid-point rule has the advantage that the exponential propa-
gator is a unitary transformation, thus conserving the wave function norm [317].
Furthermore, it is time-reversible [317], and thus especially suitable for quantum
optimal control theory (QOCT) simulations when we may need to propagate
backwards in time (see Sec. 3.1).

Further approximations to the exponential mid-point rule include, e.g., the
Crank-Nicolson (CN) method [320]. The CN propagator starts with the time-
reversibility condition,

e−iS−1HTD(t0+
∆t
2 )∆t

2 ψ(t0) � e iS−1HTD(t0+
∆t
2 )∆t

2 ψ(t0 + ∆t), (4.36)

and expands the matrix exponentials to first order in S−1HTD, yielding

ψ(t0+∆t) �
[︃
S +

i∆t
2 HTD

(︃
t0 +
∆t
2

)︃]︃−1 [︃
S − i∆t

2 HTD

(︃
t0 +
∆t
2

)︃]︃
ψ(t0). (4.37)

The CN method is also a unitary transformation [320], thus conserving the
wave function norm in numerical simulations.
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4.4 Optimization methods

4.4.1 Overview

An optimization problem corresponds to finding the minimum (or maximum)
of a real-valued function.3 Formally, this can be written as [265, 321]

minimize F(x), x ∈ Rn

subject to ci(x) ≥ 0, i � 0, 1, . . . ,m − 1,
(4.38)

where F : Rn → R is the target function and ci : Rn → R are the constraint
functions. In quantum control problems, the search space parameters x are the
control knobs for the laser pulse, and the target F is an observable computed
from TDSE simulations.

Multiple methods have been developed for solving these optimization problems.
The simplest case of having a linear target and linear constraint functions can
be solved with, e.g., the simplex algorithm [322]. For nonlinear functions such
as those common in quantum control, the optimization algorithms can be
classified either as derivative-free or gradient-based, depending on whether
the knowledge of the gradient of the target is required.

4.4.2 Derivative-free optimization with trust-region methods

Derivative-free optimization is based on sampling the target and the constraints
at multiple locations in the search space. There are various types of derivative-
free optimization methods, but we focus on trust region methods which run an
iterative search for the minimum of F by leveraging easier-to-handle surrogate
models. In the following, we discuss three different algorithms, Constrained
Optimization BY Linear Approximation (COBYLA) [321], NEW Unconstrained
Optimization with quadratic Approximation (NEWUOA) [323], and Bound
Optimization BY Quadratic Approximation (BOBYQA) [324], which are used
later in this compendium.

Trust-region methods work by building a surrogate model F̂ : Rn → R for the
target [325]. The surrogate is built on samples of the true target function F

3Or functional, if the search space is large.
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and it comes with a trust-region B ⊂ Rn within which the surrogate model is
expected to give a decent approximation to the target function F [325]. The
trust-region is often taken as a n-sphere B(xopt ,∆)with radius ∆, centered on
the optimal point xopt from previous iterations [325].

The trust-region optimization proceeds iteratively by (i) minimizing the surro-
gate problem

minimize F̂(x), x ∈ B(xopt ,∆) ⊂ Rn , (4.39)

(ii) updating the surrogate model F̂ by replacing old points with a new one from
the surrogate optimization, and (iii) by adjusting the trust-region radius ∆ if
the surrogate model performs significantly worse or better than expected [325].

COBYLA is a trust region method utilizing linear surrogate models for both
the target F and the constraints ci [321]. It starts by constructing an n-simplex{︁

x(0) , . . . , x(n)
}︁

from an initial guess and an initial trust region radius [321].
The surrogates F̂ and ĉi become linear interpolants based on the simplex. The
simplex is updated by alternating between optimizing the constrained surrogate
model within the trust region, refining the simplex to increase accuracy of the
surrogate model or to prevent the simplex from collapsing, and decreasing
the trust region radius and adjusting the interpolating surrogate model [321].
COBYLA converges when the trust region radius decreases below a predefined
tolerance value [321].

NEWUOA is designed for unconstrained optimization, and it is based on
quadratic surrogate models [323]. The advantage of NEWUOA is the fact that it
does not require a full set of samples for building the quadratic model [323].
This significantly reduces the computational cost [323]. The idea is to use only
m ≪ 1

2 (n+1)(n+2) samples4 of the target F for building the quadratic surrogate
model F̂ [323]. The remaining degrees of freedom in the surrogate are handled
by minimizing the change in the curvature of the quadratic model between
updates to the surrogate [323]. NEWUOA also has a more recent sibling,
BOBYQA, which uses the same idea for building and updating the quadratic
surrogate model [324, 326]. However, BOBYQA allows for optimization inside
a hypercube, instead of an unconstrained domain [324], and it also includes
some tweaks for numerical stability and improving convergence [324, 326].

4Often m � 2n + 1 is a good choice [323].
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4.4.3 Gradient-based optimization

As described above, the trust-region methods build their surrogate models by
sampling only the target function F. More efficient optimization methods can
be developed by utilizing also the gradient ∇F. First, let us consider Newton’s
method where the iterative update of the optimal point xk → xk+1 � xk + ∆xk
follows from the 2nd order Taylor expansion of the target [327],

F(xk+1) ≈ F(xk) + ∇F(xk)T∆xk +
1
2∆xT

k H(xk)∆xk , (4.40)

where H(x) is the Hessian of F, Hi , j �
∂2F
∂xi∂x j

. The initial quess x0 is given as an
input for the optimization routine.

Minimizing the above Taylor expansion of F yields the Newton’s update
formula [327],

xk+1 � xk − γH(x)−1∇F(xk), (4.41)

where γ � 1 in a rigorous setting, but it is often replaced by an estimate for a
good step-size [327].

However, the computation of the Hessian H is often a formidable task, and
we rarely have that information available in quantum control simulations.
Quasi-Newton techniques augment the Newton’s method with an update step
for an approximate Hessian Bk ≈ H(xk) [327]. The approximate Hessian B is
built so that is obeys the quasi-Newton condition [327],

∇F(xk+1) ≈ ∇F(xk) + H(xk)∆xk ≈ ∇F(xk) + Bk+1∆xk , (4.42)

i.e.,
Bk+1∆xk ≈ [∇F(xk+1) − ∇F(xk)] . (4.43)

The Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm updates the ap-
proximate Hessian Bk with [327–331]

Bk+1 � Bk +
[∇F(xk+1) − ∇F(xk)] [∇F(xk+1) − ∇F(xk)]T

[∇F(xk+1) − ∇F(xk)]T ∆xk

− Bk∆xk(Bk∆xk)T
∆xT

k Bk∆xk
,

(4.44)
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and computes the update step using Bk [327]

xk+1 � xk − γkB−1
k ∇F(xk), (4.45)

where γk is the step-size obtained from (an approximate solution to) [327]

argmin
γk>0

F
(︁
xk − γkB−1

k ∇F(xk)
)︁
. (4.46)

4.4.4 Global optimization

While the trust region and quasi-Newton algorithms solve a local optimization
problem, multiple methods exist for finding global minima. Evolutionary
algorithms update generations of walkers in the search space based on their
success [326], Bayesian methods generate global surrogate models [332], and
some other methods search the parameter space by dividing it into smaller and
smaller hypercubes [326]. In addition, random restarting of local optimization
with different initial conditions also provides a way for global search of minima
of the target.

Multi-Level Single Linkage (MLSL) is a method that utilizes repeated local
optimization, using any local optimizer of your choosing [326]. It provides
anti-clustering heuristics for avoiding repeated convergence to the same local
optimum [326], hence improving upon mere random restarting of the local
optimizer [326]. MLSL is employed in some of the studies in the next chapter,
and we refer the reader to Ref. [333] for further details on the algorithm.

4.4.5 Constraints

The topic of this compendium is the optimization of driving laser pulses for
controlling various quantum phenomena. As discussed in Sec. 3.2, realistic
pulse waveforms are quite restricted, and hence we must also incorporate
constraints when optimizing the pulse parameters.

Bounds for individual parameters xi are the easiest to incorporate. They can be
included directly in the optimization algorithm, as in the case of BOBYQA [324],
or we can map the constrained optimization problem to an unconstrained one.
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Consider, e.g., a 1D optimization problem

minimize F(x), x ∈ [a , b] ⊂ R. (4.47)

By mapping R to the search space [a , b]with, e.g.,

g : R→ [a , b], x ↦→ (b − a) tanh(x) + a , (4.48)

the constrained optimization problem has been transformed to an unconstrained
problem

minimize F ◦ g , x ∈ R. (4.49)

Equality constraints ce(x) � 0 can either be handled by the optimization algo-
rithm (the preferred method), as with COBYLA [321], or they can be included
by increasing the search space dimensions with Lagrange multipliers [334].
Consider again a 1D optimization problem, but now subject to a nonlinear
equality constraint:

minimize F(x), x ∈ R
subject to ce(x) � 0.

(4.50)

By introducing an additional variable λ, we can now optimize the unconstrained
two-dimensional (2D) problem

minimize F(x) + λce(x), (x , λ) ∈ R2 , (4.51)

where the stationarity condition in the extra dimension enforces the equality
constraint.

Inequality constraints ci(x) ≥ 0, on the other hand, can be transformed to
equality constraints by the method of slack variables [334]. Consider again the
1D optimization problem but subject to a nonlinear inequality constraint:

minimize F(x), x ∈ R
subject to ci(x) ≥ 0.

(4.52)

By introducing a slack variable s, we can transform the above problem to

minimize F(x), (x , s) ∈ R2

subject to ci(x) � s2 ,
(4.53)
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which can be handled with Lagrange multipliers yielding a 3D problem

minimize F(x) + λ [︁
ci(x) − s2]︁ , (x , s , λ) ∈ R3. (4.54)

As we have discovered above, if the optimization method does not handle our
nonlinear constraints, we have to increase the dimension of our search space
to enforce them. This is undesirable as it increases the computational cost of
the optimization. Let us briefly consider an alternative way to incorporate
nonlinear constraints without increasing the dimension of the search space.
These methods, called augmented Lagrangian methods, modify the target
function F by adding a penalty term built from the constraints [335], e.g.,

F ↦→ Faug
ρ (x , λ, µ) � F(x) + ρ

2

{︄[︃
ce(x) + λ

ρ

]︃2

+ max
[︃
0, ci(x) + µ

ρ

]︃2
}︄
, (4.55)

where Faug
ρ (x , λ, µ) is the augmented target and ρ, λ, µ are the penalty weight,

Lagrange multiplier, and slack variable, respectively [335]. The optimization
proceeds iteratively by optimizing Faug

ρ with decreasing solution tolerance [335].
After each iterative solution of Faug

ρ , the multipliers λ and µ are modified
to better fulfill the constraints and the penalty factor ρ is increased [335].
By incorporating the constraints as iterative update of the target function,
augmented Lagrangian methods provide an easy way to include arbitrary
nonlinear constraints while using your favorite optimization algorithm. For
more details we refer the reader to Refs. [326, 335–337].
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5 Results

5.1 Optimal control of high-order harmonic generation

5.1.1 Motivation and goal

Generation of laser pulses in the attosecond regime with wavelengths in the
nanometer range is usually accomplished with one of two methods: X-ray free
electron lasers (XFELs) [338] or the utilization of strong-field phenomena in
noble gases [74].

XFELs offer wide tunability in wavelength and pulse duration [339], and the
maximum pulse intensity is several orders of magnitude higher than in devices
based on strong-field phenomena in gases. The downside with XFELs is that
they are massive and expensive facilities. For example, the European XFEL
facility is spread across 19 hectares of land, and its construction costs were
over one billion euros with an estimated yearly upkeep of over 100 million
euros [340].

As an alternative attosecond X-ray pulse source, we can use high-order harmonic
generation (HHG) (see Sec. 2.8). They are tabletop-sized setups [74] with
negligible initial and upkeep costs compared to XFELs. However, HHG-
based sources suffer from low pulse intensities, and higher frequencies and
shorter duration of the resulting attosecond pulses would be beneficial for
applications, e.g., by improving the temporal resolution of high-order harmonic
(HH) spectroscopy [14, 43–54, 74].

Numerous schemes have been suggested for solving the issues relating to the
intensity, the frequency range, and the pulse durations from HHG sources;
Refs. [92, 341–345] review some of the recent advances. The solutions fall
roughly into three categories: plateau extension, yield increase, or both of
them simultaneously. The extension of the HHG plateau to higher energies
has been demonstrated by, e.g., using two-color fields [95–97, 102, 346, 347],
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chirped pulses [102–106], or by more complex tailoring of the temporal profile
of the driving field [93, 94, 107–111]. The yield increase, on the other hand, has
been addressed, e.g., by using two-color fields [112–117], chirped fields [100],
multi-element target gases [101], and multi-color waveforms [98]. Simultaneous
extension of the cutoff and increase of the HH yield has been demonstrated
with, e.g., tailored two-color and multicolor fields [97, 99, 119, 120]. Recently,
also HHG from solids [28–42, 53, 279, 348–351] and nanostructures1 [278, 355,
363–367] have been proposed as prominent candidates for the generation of
attosecond pulses in tabletop devices.

In Paper I (Ref. [258]) we investigate the applicability of temporally tailored
femtosecond driver pulses in addressing the drawbacks of low yield and
low cutoff energies generated with HHG in gases. In brief, we employ
quantum optimal control theory (QOCT) (see Sec. 3.1) to find optimal pulses to
simultaneously increase the HHG yield and the maximal photon energy.

5.1.2 Optimization scheme and model

To optimize the HH spectrum, we maximize the target functional

G[u] �
ωb∫

ωa

|︁|︁d̈[u](ω)|︁|︁2 dω, (5.1)

where [ωa , ωb] is the frequency range of the emitted radiation to be optimized
and u denotes the optimizable parameters of the driving femtosecond pulse.
Ideally, the maxima of this functional will provide simultaneously the increased
HH yield and the extension of the cutoff energy of the generated harmonics.

We fix the fluence and duration T of the driving pulse and parametrise it using
a frequency representation with frequencies up to a fixed maximum ωmax,

ϵ [u � {A1 , . . . ,AN−1}] (t) �
k≤⌊ ωmaxT

2π

⌋︂∑︂
k�1

Θ(t)Θ(t − T)Ak sin
(︃

2πk
T

t
)︃
, (5.2)

1Note that while nanostructure-assisted HHG (cf. nanostructure-generated HHG) in noble gases
has been studied intensively [352–360], the current understanding is that this phenomenon will
yield low intensities [361, 362] and therefore may not be not suitable for applications.
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where we have N �

⌊︂
ωmaxT

2π

⌋︂
− 1 amplitudes Ak to be optimized due to the fixed

fluence constraint. This pulse parametrization sets the electric field correctly
to zero at the beginning and the end of the pulse, but it lacks the freedom to
adjust the relative phase of different frequency components. The optimization
is performed with two different algorithms: the gradient-based Broyden-
Fletcher-Goldfarb-Shannon (BFGS) and the gradient-free NEW Unconstrained
Optimization with quadratic Approximation (NEWUOA) which we have
already introduced in Sec. 4.4.2

We demonstrate this scheme in Paper I by optimizing the HH response of
a one-dimensional (1D) hydrogen atom (introduced in Sec. 2.3). Its static
potential is given by [168]

V(x) � − 1√
x2 + 1

, (5.3)

and we model the laser-matter interaction in the length gauge (LG) (see
Sec. 2.2.1). These simulations were performed with the Octopus software
package [135, 136], and we provide an example input file for performing
the optimization simulations in the online supplementary material of this
thesis [143].

We compare our optimization results shown in the following to a readily
available reference pulse with the carrier frequency ω � 0.0569 a.u. (≈ 1.548 eV,
i.e., 800 nm Ti:sapphire lasers). The duration and the peak intensity of the
reference pulse are set to T � 1104 a.u. (≈ 26.7 fs) and 6 × 1013 W/cm2. We also
set ω � 0.0569 a.u. as the maximum allowed frequency in the optimized pulses,
and they are also constructed to have the same duration and fluence (pulse
energy) as our reference pulse.

5.1.3 Optimized driver pulses for HHG

A few select optimized driver pulses and the corresponding HH spectra reported
in Paper I are shown in Fig. 5.1(a-b) and (c-d), respectively. The targeted energy
ranges for the optimization were set to 1.4 . . . 4 a.u. (≈ 40 eV. . . 110 eV) in
Fig. 5.1(a),(c) and 1 . . . 5 a.u. (≈ 30 eV. . . 140 eV) in Fig. 5.1(b),(d).

2The gradient for the BFGS algorithm is supplied by QOCT (see Sec. 3.1).
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Figure 5.1: (a)-(b) Optimized driver pulses for high-order harmonic generation and
(c)-(d) the corresponding single-atom dipole spectra. Adapted from Paper I.

The NEWUOA-optimized driver pulse in Fig. 5.1(a) extends the plateau cutoff
and increases the HHG yield to perfectly fill the targeted energy range [see
Fig. 5.1(b)]. The pulse is composed of a high intensity peak in the beginning
followed by a low intensity oscillating tail. The high-intensity peak at the
beginning of the driver is not alone responsible for the enhanced HHG. Indeed,
we found that should the peak be not in the beginning but later in the pulse, it
would increase the plateau cutoff only marginally from the reference spectrum,
up to ω ≈ 2.5 a.u. (≈ 70 eV). In addition, while the low frequency components
of the optimized pulse do produce higher cutoff frequencies than with the
reference pulse, the low frequency components alone would result in a much
lower HH yield. Only optimized and rather complex combinations of these
frequency components were found to produce the kinds of multicolor driving
pulses that result in the simultaneous extension of the HHG plateau cutoff and
the increase of the photon yield.
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Figure 5.2: Time dependent harmonic spectra corresponding to the optimized driving
pulses in Fig. 5.1 (a) and (b). Adapted from Paper I.

For the BFGS-optimized driver pulse in Fig. 5.1(c), the target range was slightly
increased, up to ω � 5 a.u. (≈ 140 eV). Despite a more powerful optimization
algorithm, we find an almost comparable cutoff extension and yield increase as
in the gradient-free case, albeit with different characteristics for the driving
pulse. This suggests that given the chosen pulse constraints, the obtained
results already represent the maximum enhancement we can achieve for HHG.

5.1.4 Physical origins of the optimized HHG

In Paper I we also investigated the physical processes behind the optimized
HHG. For this purpose, we have computed (1) the time-dependent HH spectra
and (2) the return energies in a semiclassical model (see Secs. 2.9 and 4.2) as
the electron trajectories return to the origin. These are shown in Fig. 5.2 for
the optimized pulses of Fig. 5.1; Here the colored density profile shows the
quantum mechanical (QM) time-dependent (TD) HH spectra, and the lines
show the return energies in the semiclassical picture.

The return energies of the semiclassical model correspond remarkably well
to the quantum harmonic spectra. The highest observed energies in the
QM spectra are observed also in the semiclassical model, thus verifying the
semiclassical mechanism behind the cutoff extension. The yield increase, on
the other hand, can be attributed to the increased tunneling probability due to
increased peak strengths of the driving pulses: A comparable yield increase
can be obtained with the reference pulses using the same maximum amplitude
as in the driving pulses.
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5.1.5 Summary

In Paper I we set out to find multicolor femtosecond pulses to drive HHG in
a way that would increase the yield and plateau cutoff compared to simpler
pulsed lasers. We found driver pulse candidates that can simultaneously both
increase the harmonic yield and extend the cutoff. Furthermore, we have
analyzed the physical mechanisms behind the optimized HHG processes and
found the yield increase to be due to increased tunneling probability and the
cutoff extension due to more complicated electron dynamics that are in good
agreement with a semiclassical model. Extension and applicability of the
proposed scheme to three-dimensional (3D) setups and phase-matching of the
optimized HHG are discussed below in Ch. 6.
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5.2 Optimal control of photoelectron emission

5.2.1 Motivation and goal

In addition to HHG, another fundamental phenomenon in intense laser-atom
interactions is the ionization and emission of electrons (see Sec. 2.5). While
photoelectron emission – especially above-threshold ionization (ATI) – and its
control with the driving laser field is interesting in itself from a fundamental
point of view [246], photoelectrons can be utilized in self-interrogation spec-
troscopy of the parent atom, ion, molecule, or nanostructure [55, 368]. For
example, laser-induced electron diffraction (LIED) allows simultaneous inquiry
of multiple bond-lengths in complex molecules with the temporal resolution
of the order of a few femtoseconds [61], and in ultrafast photoelectron hologra-
phy, the temporal resolution can reach even sub-femtosecond time scales [64].
In both these techniques, the spatial resolution is heavily dependent on the
photoelectron energies.

Obtaining higher electron energies and yields is a complicated task since
the photo-electron spectrum (PES) is sensitive to multiple laser-parameters.
Naturally, higher intensities result in higher electron yields and energies [23].
In addition, since carrier-envelope phase (CEP) has a dramatic effect on the char-
acteristics of ultrashort pulses, it can be used to control both the electron yield
and even the symmetry properties of the PES [242–244]. Also, the wavelength
dependence of the PES with simple pulses is relatively well known [245].

In Paper II (Ref. [259]) we demonstrate the control of the laser-driven photoelec-
tron emission with multicolor waveforms. Specifically, we aim to increase the
maximum photoelectron energy and the signal strength with experimen-
tally feasible pulses. The proposed scheme is a step towards the control of
photoelectron emission for applications such as LIED and ultrafast photoelec-
tron holography.
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5.2.2 Optimization scheme and model

Similarly to Paper I for HHG, we optimize the target functional

G[u] �
ωb∫

ωa

S(ω)dω, (5.4)

where [ωa , ωb] is the output frequency range to be optimized, S(ω) is the PES,
and u denotes the optimizable parameters of the driving multicolor pulse.
The PES is computed with the window method introduced in Ref. [191] (see
Sec. 2.6), i.e.,

S(ω) �
Eb∫

Ea

dE PES(E)

�

Eb∫
Ea

dE
γ4(︁

Ĥ0 − E
)︁4

+ γ4
,

(5.5)

where γ is a half of the energy resolution (∆E ≈ 0.5 eV in the present work).

In Paper II, we change the laser pulse parametrization from Paper I to improve
the compatibility with modern waveform synthesizers [84, 369, 370]. The laser
electric field is parametrized as a superposition of N channels – ultrashort
pulses consisting of a single-frequency carrier wave with a Gaussian envelope.
Each channel is parametrized by its own amplitude Ai , carrier frequency ωi ,
time of maximal envelope τi , carrier-envelope phase (CEP) ϕi , and channel full
width at half maximum (FWHM) σi , i.e.,

ϵ[u](t) �
N∑︂

i�1
Ai cos

[︂
ωi(t − τi) + ϕi

]︂
exp

[︂
− ln (2) (t − τi)2 /σ2

i

]︂
. (5.6)

Optimization is performed with the Multi-Level Single Linkage (MLSL) [333]
global optimizer on top of the gradient-free Bound Optimization BY Quadratic
Approximation (BOBYQA) [324] algorithm. Global pulse constraints such
as fluence and peak intensity are enforced with the augmented Lagrangian
technique [371, 372]. See Sec. 4.4 for more details on these methods.



5.2. Optimal control of photoelectron emission 57

0 100 200 300 400 500
energy (eV)

10−12

10−8

10−4

1

el
ec
tr
on

co
un

t(
ar
b.

u)

(a) Opt.
1.9µm
1.6µm
Ref.

−15 −10 −5 0 5 10 15
time (fs)

−0.5

0.0

0.5

el
ec
tr
ic
fie

ld
(G

V
/c

m
)

(b)

Opt.
1.9µm
1.6µm
Ref.

0 250 500
f (THz)

PS
D

0 100 200 300 400 500
energy (eV)

10−12

10−8

10−4

1

el
ec
tr
on

co
un

t(
ar
b.

u)

(c) Opt.
1.9µm
1.6µm
0.8µm
Ref.

−15 −10 −5 0 5 10 15
time (fs)

−0.5

0.0

0.5

el
ec
tr
ic
fie

ld
(G

V
/c

m
)

(d)

Opt.
Ref.

0 250 500
f (THz)

PS
D

Figure 5.3: (a),(c) Optimized photoelectron spectra together with the component-wise
and reference results, and (b),(d) the corresponding driving pulses. Adapted from
Paper II.

In Paper II, the optimization process mixes two to three different channels with
fixed central wavelengths 0.8µm, 1.6µm, and 1.9µm. Each channel is restricted
by 15.4 V/nm ≤ Ai ≤ 66.8 V/nm, −9.7 fs ≤ τi ≤ 9.7 fs, and 3.6 fs ≤ σi ≤ 9.7 fs.

We demonstrate our scheme by optimizing the PES of a 1D hydrogen atom
where the electron-laser interaction is modeled in the LG (see Secs. 2.2.1 and 2.3).
We compare our results to (i) a readily available 800 nm femtosecond pulse
with the same duration and peak intensity as with the optimized pulses and (ii)
the spectra with just the individual channels of the optimized driving pulse.

5.2.3 Optimized driver pulses for ATI

First, we consider optimization with just two channels with central wavelengths
1.6µm and 1.9µm, and the maximum peak electric field is restricted to below
46.3 V/nm. The resulting optimal pulse is shown as a black line in Fig. 5.3(b)



58 Chapter 5. Results

together with its component channels (dark green and blue lines) and an
800 nm reference pulse of equal duration (light green).

The optimized PES in Fig. 5.3(a) shows dramatic enhancements compared to
the spectra of the individual channels of the optimal pulse and the 800 nm
reference pulse. First, the yield is increased 3–5 fold when comparing to the
pure 1.9µm channel and the reference pulse. Remarkably, this yield increase
is achieved with the same peak amplitude as the reference pulse in contrast
to the yield increase mechanism observed for HHG in Paper I. Furthermore,
the photoelectron cutoff energy is extended by over 100 eV filling the entire
targeted energy range.

An optimized driving pulse from a similar setup but with an additional 800 nm
channel and a maximum peak electric field constraint of 56.6 V/nm is shown in
Fig. 5.3 (d) and the corresponding spectra in Fig. 5.3 (c). Here the yield increase
is even more dramatic than in the two-channel case since the photoelectron
yield remains almost constant for the whole plateau region of the spectrum.
The yield increase is up to six orders of magnitude compared to individual
channels and the reference pulse, and the cutoff is extended up to 400 eV, i.e.,
much further than the requested energy window.

Note that here the optimized pulses spread the total pulse energy among
the channels. For the optimized two-channel case, the channels are mixed
in (intensity) proportions of one to three (1.6µm : 1.9µm), and for the three
channels in proportions of 5:1:11 (0.8µm : 1.6µm : 1.9µm). This is a desirable
effect since it is more difficult to pack high amounts of energy to a single
channel than to distribute it among multiple channels. In addition, the
optimized driving pulses mix shorter wavelength channels to increase the PES
cutoff even if these channels alone would result in spectra with much lower
cutoff energies.

5.2.4 Physical origins of the optimized ATI

We have found the main process behind the optimized PES to be of semiclassical
origin. This situation is similar as for the optimized HHG in Paper I, and we
can utilize the same semiclassical model for analysis.

We demonstrate the results for the three-channel optimized driving pulse of
Fig. 5.3(d). First, the QM electron density in Fig. 5.4 (a) and the semiclassical



5.2. Optimal control of photoelectron emission 59

−10 −5 0 5 10
time (fs)

−100
−50

0
50

100

x
(n
m
)

(a)

Quantum
10−8

10−6

10−4

El
ec
tr
on

de
ns

ity

−10 −5 0 5 10
time (fs)

−100
−50

0
50

100

x
(n
m
)

(b)

Semiclassical

−10 −5 0 5 10
time of tunneling (fs)

0

100

200

300

400

te
rm

in
al

ki
ne

tic
en

er
gy

(e
V
)

(c)

10−18

10−14

10−10

10−6

Tu
nn

el
in
g
ra
te

Figure 5.4: (a) Quantum mechanical electron density with the optimized three-color
pulse in Fig. 5.3 (d), (b) the corresponding semiclassical trajectories (multiple black
lines), and (c) the terminal kinetic energy vs. the time of tunneling in the semiclassical
model with line coloring from the tunneling rate. Adapted from Paper II.

trajectories in Fig. 5.4 (b) bear a striking resemblance. Indeed, the dynamics of
the ionized electron trajectories has a classical origin. The precise optimized
mechanism is revealed by comparing the terminal kinetic energy vs. the time
of tunneling in Fig. 5.4 (c) to the optimized driving field in Fig. 5.4 (d). After
the peak of the electric field before t �−2 fs, the tunneling rate is still high
enough to generate a significant amount of electron trajectories. In addition,
the trajectories tunneling just before the field minimum at t � 0 fs feel only the
driving action of the later dominant half cycle of the pulse. These trajectories
yield the maximal cutoff extension, up to 315 eV in the semiclassical model – in
good agreement with the beginning of the cutoff region in the QM spectrum.

5.2.5 Summary

We have demonstrated how the optimal mixing of a few pulse channels in the
femtosecond range generates laser pulses that can increase the photoelectron
yield by up to six orders of magnitude and provide photoelectrons with very
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high energies up to 0.5 keV. By distributing the pulse energy among multiple
channels, the proposed scheme provides an experimentally feasible technique
for controlling the photoelectron emission process without the need of high
intensities in single spectral channels. In addition, we have demonstrated how
the physical origin of the enhanced photoemission with optimized fields can
be understood in a semiclassical picture. Adaptation of the proposed scheme
to optimizing attosecond spectroscopy methods is discussed below in Ch. 6.
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5.3 Control of Rydberg state populations in alkali
metal atoms

5.3.1 Motivation and goal

Rydberg states of atoms and molecules are characterized by long lifetimes [231,
236], mesoscopic extent of the electron wave function [230], and large dipole
moments [230] (see also Sec. 2.10). These properties have made them prime
candidates for applied quantum information and quantum computing [128].

Conventionally, alkali metal atoms are excited to their Rydberg states using
two-photon absorption [133]. The first photon excites the valence electron from
an s state to a close by p1/2 state, from which the second photon transfers the
electron population to a high-n Rydberg state [133, 230]. While this method
can achieve good excitation yields [133], it requires (i) tuning of the driving
lasers to the resonances between the states – which is not always possible – and
(ii) long irradiation durations [133].

In Paper III (Ref. [373]) we investigate the applicability of multichannel
femtosecond laser pulses for an ultrafast all-optical preparation of alkali-
metal atoms in their Rydberg states. This is a step forward from previous
studies with few-color femtosecond control of electron occupation in atoms [374–
377].

5.3.2 Optimization scheme and model

As a prototype alkali-metal atom, we consider lithium (Li) in the single active
electron (SAE) approximation. An effective atomic potential for the active
valence electron in Li is given by [378]

V0(r) � −1
r

[︁
Zt + (Z − Zt) exp(−a1r) + a2r exp(−a3r)]︁ , (5.7)

where r is the distance from the atomic nucleus, Z � 3 the atomic number, Zt � 1
the number of valence electrons, and a1 � 3.395, a2 � 3.212, and a3 � 3.207 are
parameters fitted to experimental results for the eigenenergies [378].

Initially, the SAE is in its ground state (2s). The electron interacts with a linearly
polarized laser pulse described within the dipole approximation in the velocity
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gauge (VG). The Hamiltonian operator of this system is given by (see, e.g.,
Sec. 2.2.1)

ĤVG(t) � p̂2

2 + Vatom(r̂) + A[u](t) · p̂z . (5.8)

As in Paper II, the laser field is described by the vector potential A[u](t)
parameterized as

Az[u](t) �
N∑︂

i�1

Ai

ωi
env(t − τi , σi) cos

[︁
ωi(t − τi) + ϕi

]︁
, (5.9)

where u �
{︁
Ai , ωi , τi , ϕi , σi

}︁
are the amplitude, frequency, time of envelope

maximum, carrier-envelope phase, and envelope full width at half maximum
(FWHM) of each channel. We define the channel envelopes as

env(t − τ, σ) �
⎧⎪⎪⎨⎪⎪⎩ exp

[︃
− log(2)

1−( t−τ
2σ )2

(︁ t−τ
σ

)︁2
]︃
, |t − τ | < 2σ

0, otherwise
. (5.10)

This resembles a Gaussian function but it goes to zero at twice the FWHM, and it
is infinitely differentiable for all t ∈ R. We designed this pulse parametrization
to allow us to efficiently model realistic pulse shapes that are compatible with
experimental light field synthesizers [83].

We aim to optimize the population of a certain set I of Rydberg states
|︁|︁ϕn ,l

⟩︁
at the end of the laser pulse. To this end, we introduce the natural target
functional

G[u] �
∑︂
|ϕn ,l⟩∈I

|︁|︁⟨︁ϕn ,l
|︁|︁ψ(Tmax)

⟩︁|︁|︁2 , (5.11)

where u is the set of optimizable parameters, and
|︁|︁ψ(Tmax)

⟩︁
is the electron state

at the end of the laser pulse.

We optimize G[u]with the global MLSL optimizer combined with the gradient-
free local optimization routine Constrained Optimization BY Linear Approx-
imation (COBYLA) (see Sec. 4.4). The optimization process mixes one to
six different pulse channels with fixed central wavelengths 0.3µm, 0.4µm,
0.700 224 3µm, 800µm, 1.6µm, and 2µm. Only the 0.7µm channel is close
to the system resonance 2s → 2p. In addition, the channel parameters are
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restricted by Ai ≤ 67 V/nm, |τi | ≤ 6 fs, and 2.4 fs≤ σ ≤ 15 fs. The modeling
and optimization software is provided in the online supplementary of this
thesis; see Ref. [143].

5.3.3 Optimized driver pulses for Rydberg-populations

In Paper III, we have investigated the optimized population of states

• 2p,
• 8f,
• 8i,
• n � 7, l � 0 . . . 2,
• n � 7, l � 4 . . . 6,
• n � 7 . . . 10, l � 4, and
• n � 7 . . . 10 (all possible l),

where n is the principal quantum number and l is the azimuthal quantum
number, and we label individual target states in the spectroscopic notation. For
each of these targets, we have optimized all possible channel combinations of
the driving field. The maximum target populations and the corresponding
channel combinations are shown in Table 5.1, and the best pulse for each target
is further visualized in Fig. 5.5.

The target populations vary from 1.7 % for the single target state 8i up to 23 %
for a larger set of target states n � 7 . . . 10. The low-lying state 2p can be reached
with a short resonance pulse with up to 91 % fidelity3. The lack of a decent
excitation probability for single state targets (apart from the 2p target) suggests
that the scheme lacks the finesse to optimize population transfer to a single
select state. Such precise optimization may indeed require the ability to play
with the resonances of the system as, e.g., in Refs. [379, 380] – something the
modern waveform synthesizers are not designed to do.

3Note that since the optimized driving pulse has a finite duration, it has a non-zero
bandwidth which activates also other transitions than the dominant 2s→2p. This results in less
than 100 % target state population for the 2p target.
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Table 5.1: Summary of maximum achieved target populations for different pulse
channel combinations. Adopted from Paper III.

Target Channels (µm) Max. population

2p 0.7 91 %

n � 7, l � 0 . . . 2 0.8, 0.7, 0.4, 0.3 14 %
0.8, 0.7, 0.4 5 %

n � 7, l � 4 . . . 6 2, 0.8, 0.7, 0.4 6 %
2, 0.8, 0.4 3 %

n � 7 . . . 10, l � 4 2, 0.7 6 %

n � 7 . . . 10 2, 0.8, 0.7, 0.3 23 %
2, 1.6, 0.8, 0.7, 0.3 21 %
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Figure 5.5: Optimized pulses yielding the maximum target occupations at the end of
the pulse for each target in Table 5.1. Adapted from Paper III.
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Figure 5.6: (a) Optimized pulse for the target n � 7, l � 0 . . . 2, (b) its time-dependent
power spectrum , and (c-e) the populations of different eigenstates. Adapted from
Paper III.

5.3.4 Physical origins of optimized population transfer

The population transfer mechanisms behind the optimized pulses in Fig. 5.5
can be analyzed in multiple ways. Let us consider the target n � 7, l � 0 . . . 2
as an illustrative example. For this target our scheme achieves a 14 % final
population with the channel combination 800, 700, 400, and 300 nm. The
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population dynamics start – as in all the optimal pulses we have found – with a
2s to 2p transition. This is demonstrated in Fig. 5.6. In this example, the initial
2s→2p transition was attributed to the weak 700 nm channel, and without it
the target population would drop down to 0.2 %. However, generally speaking,
an initial 2s→2p transition with a comparable fidelity can be achieved also
without the resonant 700 nm channel. For more information, we refer the
reader to Paper III and its supplementary online material.

We have found the population transfer mechanisms after the initial 2s→2p
transition to be much more complicated. They can be analyzed by, e.g., using
instantaneous pairwise transfer rates between the bound states. For the target
n � 7 . . . 10, l � 4 these pairwise transfer rates reveal relatively simple excitation
paths, as we have analyzed further in Paper III. However, even the pairwise
transfer rates do not provide much deeper insight in most of the optimized
pulses but rather paint a picture of a complex population transfer processes,
whose common core mechanisms are not easily understood.

5.3.5 Summary

In Paper III we have investigated the applicability of few-color femtosecond
waveform synthesis for optimal control of exciting lithium – or more generally
alkali metal – atoms from their ground state to a set of Rydberg states. Our
proposed control and pulse shaping scheme was found to yield up to 23 %
target populations for a few selected states, but the scheme lacks the finesse to
target any individual state. Modifications to the proposed optimization scheme
for increased efficiency are discussed below in Ch. 6.

We have demonstrated how the optimized population transfer processes can be
analyzed by investigating the populations of individual states and instantaneous
pair-wise transfer rates. The optimized processes deliver a much more complex
picture of the system dynamics compared to the traditional two-step excitation
process or optimal control schemes with access to system resonances.
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5.4 Fiend – Finite Element Quantum Dynamics

5.4.1 Motivation and goal

During the last decade, ultrafast strong-field and attosecond communities
have focused their attention to laser-driven phenomena in nanostructures and
nanostructure-enhanced gaseous media. Nanostructures shape the driving
laser electric field by plasmonic and geometric effects, giving birth to high field
gradients and amplitude enhancement [381]. This results in a wide variety
of strong field phenomena that differ from their atomic counterparts. Recent
studies have addressed, e.g., HHG and ATI from nanostructure-enhanced
gases [382–384], and electron emission from nanostructures such as tips [123,
125, 385–392] and rods [393–397].

Electromagnetic (EM) fields around a nanostructure are highly inhomoge-
neous [398], and they cannot be described by the typical dipole approximation
Hamiltonian. Hence, many of the currently available high-performance soft-
ware for the simulation of ultrafast strong-field physics in atoms and molecules
are not applicable to these systems. Indeed, efficient and accurate simulation
of laser-matter interaction in nanostructures and nanostructure-enhanced
gases requires specialized time-dependent Schrödinger equation (TDSE)-
solvers.

In Paper IV, we have developed a TDSE solver for nanostructures and nan-
odevices. The software, FIEND, is based on finite element (FE) discretization
of the Schrödinger equation introduced in Sec. 4.3. FIEND has been written
in Python 3.6, and it utilizes well-tested state-of-the-art numerical libraries.
For implementation details, we refer the reader to Paper IV and the project
website at https://gitlab.com/solanpaa/fiend.

5.4.2 Applicable systems and implementation

Fiend is designed for the simulation of SAE systems in cylindrically symmetric
potentials. The Hamiltonian of these systems can be written as

Ĥ � T̂ρ +
p̂2

z

2 + V(ρ̂, ẑ) + W(ρ̂, ẑ , p̂ρ , p̂z , t), (5.12)

https://gitlab.com/solanpaa/fiend
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where Ŵ is the laser-electron interaction operator. All cylindrically symmetric
interaction operators are supported, and we have implemented the following
commonly used forms: the dipole approximation with the laser vector potential
A � f (t)ez in the LG

WLG � −∂ f (t)
∂t

ẑ , (5.13)

and in the VG
WVG � f (t)p̂z , (5.14)

and for the quasistatic approximation beyond dipole terms we provide the
interaction operator

Winhomogeneous �
1
2 f (t)As · p +

1
2 f (t)p ·As

+
1
2 f (t)2∥As(ρ̂, ẑ)∥2.

(5.15)

5.4.3 Example applications

5.4.3.1 High-harmonic generation

In Paper I we optimized the HH response of a 1D hydrogen atom. Extending
the optimization study to a 3D model atom would require us to describe the
system in a large simulation domain due to a long excursion of the electron
wave function as demonstrated for 1D in Paper I. FIEND provides an efficient
way to simulate these systems since the spatial accuracy of the simulation can
be position-dependent.

As an example and for validating the software, we compute the HH response
of a 3D hydrogen atom interacting with a laser pulse with carrier frequency
corresponding to 800 nm, intensity FWHM 4.8 fs, and electric field peak inten-
sity 36 GV/m. The interaction is modeled within the dipole approximation in
the VG and the computation mesh is set to high accuracy at the origin and
it gradually sparsens for larger radii up to the simulation domain radius of
42 nm. Our computation results in Fig. 5.7 show a typical HHG spectrum
from a femtosecond laser pulse. The computed HH response ends with a
cut-off beginning at ∼ 48 eV in a good agreement with the three-step model’s
prediction ∼ 45 eV [200, 215].
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Figure 5.7: High harmonic spectrum of a hydrogen atom under a few-cycle 800 nm
femtosecond laser pulse. Adapted from Paper IV.

5.4.3.2 Metal nanotips and inhomogeneous fields

Strong-field phenomena at metal nanotips have recently attracted attention due
to their ability to shape and strengthen EM fields at the tip apex via plasmonic
effects (see, e.g., Refs. [123, 125, 385–392]). In Paper IV we demonstrate
Fiend’s capabilities by computing single-electron dynamics of such metal
nanotapers using the correct form [Eq. (5.15)] of the interaction operator for
the inhomogeneous laser field.

The first step is to compute the plasmon-enhanced near field. In Paper IV
we consider a gold nanotip with apex radius 7 nm and full opening angle
of 20 ◦ demonstrated in Fig. 5.8(a). Figure 5.8(b) shows the resulting spatial
distribution ∥As(ρ, z)∥. The field strength is maximized at the tip apex and
it decays rapidly with distance to the tip. Remarkably, this quasistatic model
correctly yields the experimental field-enhancement factor f ≈ 10 [121].

For quantum dynamics, we prepare the electron in a Gaussian wave packet
[Fig. 5.8(c)]. It interacts with a femtosecond infrared (IR) pulse4. The evolution
of the electron density is demonstrated in Figs. 5.8(c)-(f), where as expected, the
electron emission is concentrated at the tip apex where the field enhancement
is at its highest. At the end of the simulation, only ∼2 % of the electron density
has been absorbed by the boundary.

4See Paper IV for the laser parameters.
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Figure 5.8: (a) Setup of the nanotip geometry where we have a sharp boundary
between the gold nanotip and vacuum. (b) Computed spatial enhancement profile of
the electric near field in a quasistatic approximation. (c)-(f) Snapshots of the electron
density during time evolution. Adapted from Paper IV.

5.4.4 Summary

In Paper IV we introduced Fiend – a finite element method (FEM) simulation
suite for quantum dynamics of cylindrically symmetric nanostructures. Fiend
targets a gap in the existing set of QM simulation codes: simulation of the
quantum dynamics of nanodevices with the correct laser-matter interaction
operator for inhomogeneous EM fields. We demonstrated the use of the
software by simulating HHG in a 3D hydrogen atom and photoemission from
an ultra sharp gold nanotip.
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6 Conclusions

In this thesis we have investigated the applicability of tailored femtosecond
laser pulses for the control and optimization of strong-field processes in the
attosecond time scale. In Paper I we investigated optimal control of high-order
harmonic generation (HHG) – an ultrafast strong-field process where the
driving laser field induces nonlinear emission of high-energy radiation from
individual atoms in the target gas. In HHG, the strength of total emitted field
accumulates coherently as the driving field and the emitted field propagate
through the gas, known as phase-matching. Our optimization scheme was
shown to increase the efficiency of the single-atom high-order harmonic (HH)
response in a one-dimensional (1D) model with tailored femtosecond laser
pulses. The proposed scheme simultaneously increases HH yield and the
maximum output frequency for a fixed input energy. The enhanced HHG was
explained in terms of a semiclassical three-step model.

Similar optimization schemes for HHG have later been adopted by other
groups in, e.g., Refs. [97, 120, 399]. The scheme has been shown to provide
increased HH energies also in three-dimensional (3D) models [97, 399], and
the single-atom optimized HHG can also be coherently phase-matched in the
medium [120, 281]. However, a more complete model of the setup should be
adopted for the ultimate optimization of HHG in gas-jet devices. Accurate
modeling of the single-atom response via time-dependent Schrödinger equation
(TDSE) in contrast to approximate models is important especially for capturing
the emitted HH yield correctly [400]. In addition, even many-body effects
may need to be included in the single-atom response [401]. Finally, while
phase-matching of single-atom optimized HHG can be achieved retroactively
as in Refs. [120, 281], one might improve results by optimizing the macroscopic
HH response instead of only the single-atom response.

In Paper II we demonstrated optimal control of above-threshold ionization
(ATI) by driving it with tailored femtosecond laser pulses that can be generated
in modern waveform synthesizers. Our optimization scheme was shown to
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simultaneously increase the yield of the photoelectron signal as well as the
maximum electron energies in a 1D model atom. These optimizations of
the photo-electron spectrum (PES) were explained in terms of a semiclassical
model, similarly to the optimized HHG in Paper I. With the studied waveform
synthesizer setup, our scheme yields electron energies in the 0.5 keV range,
and with further tweaking of the laser parameters this could be extended even
to the keV range.

Our optimization/control scheme for the PES as well as those in, e.g., Refs. [246,
402], already demonstrate the controllability of the ATI process. However, the
proposed schemes are still one step away from optimizing self-interrogation
spectroscopy methods. For laser-induced electron diffraction (LIED) and HH
spectroscopy, the optimization target should encode not the terminal velocity,
but rather the high-energy rescattering or recombination events (see, e.g.,
Refs. [51, 52, 61, 63, 403, 404]), preferably weighted with the interaction duration
for optimizing also the temporal resolution. For electron holography, our
scheme should be extended to optimize not only the total PES but individually
the direct and the rescattering components to be able to use their interference
pattern as a structural probe for the parent ion or molecule [64, 70, 71, 405, 406].

In Paper III we developed an optimization scheme for ultrafast excitation of
alkali metals in their Rydberg states with waveform-synthesized femtosecond
laser pulses. The optimized excitation processes decrease the initialization
times for Rydberg-state qubits by several orders of magnitude, but in its current
form our scheme lacks the finesse to target individual states and provides too
low fidelities. However, we expect these issues to be addressable with, e.g.,
more freedom in the temporal profile of the laser pulse or using slightly longer
tailored pulses available from, e.g., spectral synthesizers [407]. In addition,
changing the atomic species to rare gas atoms might improve the results due
to more prominent frustrated tunneling [175, 408, 409]. Furthermore, we
have applied the scheme for targeting low angular momentum states, whereas
targeting the population of circular Rydberg states might be more efficient but
would require, e.g., the inclusion of a weak magnetic field or optimizing the
field polarization (see, e.g., Refs. [410–412]).

In addition to the optimization schemes provided in papers I – III, we have
developed and released software for the simulation and analysis of optimal
control of HHG and ATI in 1D model systems and extended the 3D TDSE solver
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Qpropwith an optimization package for control studies with experimentally fea-
sible tailored femtosecond pulses. The software are freely available in Ref. [143].
However, the emergence of attosecond science in nanoscale devices [278, 351,
413] requires the development of new TDSE solvers for simulating strong-
field phenomena in spatially inhomogeneous driving laser fields. We have
addressed this issue in Paper IV, where we developed FIEND – a modern finite
element method (FEM) suite for simulating nonlinear light-matter interaction
in nanodevices.

Finally, the optimization and control of strong-field phenomena has mainly
focused on the optimization of the driving laser field. In gas-jet setups, there
are studies optimizing the macroscopic parameters of the target gas (see, e.g.,
Refs. [414, 415]), but the emergence of nanoscale attosecond science is opening
up new avenues. Nanostructures can be shaped almost arbitrarily (see, e.g.,
Refs. [416, 417]), and it will be feasible to optimize not only the temporal profile
of the driving laser field but also its spatial profile via the nanostructure shape.
This will open up possibilities for, e.g., optimizing nanostructure-enhanced
generation of ultrashort attosecond light and electron bursts. Going even
further and bringing nanostructure-enhancement to solid-state attosecond
phenomena will face the issue of solving the coupled Maxwell-Schrödinger
system for interacting electrons. This is a topic of ongoing investigations (see,
e.g., Refs. [418–424]). However, the simulation and especially the optimization of
nanostructure-enhanced strong-field attosecond phenomena in the solid state
might even be out of reach with current computing technologies, requiring us
to wait till the exascale era [425–429] of supercomputing.
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At the core of attosecond science lies the ability to generate laser pulses of subfemtosecond duration. In
tabletop devices the process relies on high-harmonic generation, where a major challenge is to obtain high
yields and high cutoff energies required for the generation of attosecond pulses. We develop a computational
method that can simultaneously resolve these issues by optimizing the driving pulses using quantum optimal
control theory. Our target functional, an integral over the harmonic yield over a desired energy range, leads
to a remarkable cutoff extension and yield enhancement for a one-dimensional model H atom. The physical
enhancement process is shown to be twofold: the cutoff extension is of classical origin, whereas the yield
enhancement arises from increased tunneling probability. The scheme is directly applicable to more realistic
models and, within straightforward refinements, also to experimental verification.
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The revolution of attosecond science, i.e., monitoring and
controlling the dynamics of electrons in their native time scale,
relies on the generation of laser pulses with duration of a
few dozen attoseconds [1]. Such pulses can be generated by
using large-scale free-electron laser facilities [2] or in tabletop
devices using high-harmonic generation (HHG), an ultrafast
frequency conversion process [1]. Using tabletop devices,
however, comes with a price: the generated attosecond pulses
are often too long and they suffer from low intensity [1].

A high-harmonic spectrum has an energy range of nearly
constant intensity (plateau), which ends in a distinctive
cutoff [3]. Attosecond pulses are formed from the harmonics
on the plateau [1]. Hence, the low amplitude of the pulses is
due to low harmonic yield and the pulse duration is determined
by the cutoff energy (the higher the energy, the shorter the
pulse) [1]. The objectives of increasing the yield and reducing
the pulse duration can be addressed by temporal shaping of the
driving pulse—already experimentally realizable either with
multicolor fields or with more sophisticated techniques [4].
Yet a crucial question remains unanswered: how to find the
optimal shape of the driving pulse to enhance HHG.

Numerous previous studies have tackled the issues of cutoff
and yield; for a recent review see, e.g., Refs. [5,6]. The main
scheme behind the cutoff extension has been using two-color
laser fields [7,8] or chirped pulses [9–11], but also steepening
of the carrier wave [12] or even using a sawtooth pulse
should extend the cutoff [13]. In addition, combined temporal
and spatial synthesis of the driving field has been shown to
extend the cutoff [14]. A previous study based on quantum
optimal control theory (QOCT), for example, demonstrated
some cutoff extension, albeit with a low yield, by maximizing
the ground-state occupation at the end of the pulse [15].

*janne@solanpaa.fi
†esa.rasanen@tut.fi

Yield increase of the plateau has been accomplished, e.g.,
by two-color fields [16–21] and also by using a mixture of two
target gases [22]. In a separate work [23], some of the authors
of the present work addressed the selective enhancement of
harmonic peaks; selective harmonic enhancement has been
studied using QOCT also in Ref. [24], and experimentally, e.g.,
in Ref. [25]. Recently also the attosecond pulse generation has
been optimized using genetic algorithms [26].

In this paper, we provide an efficient computational method
to simultaneously enhance both the yield and the cutoff energy
of the harmonic plateau by optimizing the driving pulses with
QOCT [27–29]. The optimal pulses are found by maximizing
the target functional, an integral over the harmonic yield over
a desired energy range. Surprisingly, the enhancements are
achieved with fixed-fluence pulses; i.e., the search is performed
over the set of pulses with equal duration and fixed fluence
(integrated intensity). We examine in detail the physical origin
behind the enhancement, which is found to be of classical
nature to a significant extent.

To demonstrate our method, we use one-dimensional hydro-
gen with the soft-Coulomb potential [30] V(x) = −1/

√
x2+1

as our model system and the laser-electron interaction is
calculated in the dipole approximation. The harmonic spectra
are calculated from the Fourier transform of the dipole accel-
eration d̈(ω) as S(ω) = |d̈(ω)|2/ω2 as suggested in Ref. [31].
Unless otherwise specified, Hartree atomic units (a.u.) are used
throughout the paper, i.e., � = qe = me = 1/(4πε0) = 1. The
time-evolution operator is calculated using the exponential
midpoint rule [32] with the Lanczos algorithm [33] for the
operator exponential; during time propagation we also use
imaginary absorbing boundaries. We use box sizes of 4000–
6000, grid spacings of 0.2–0.3, and time steps of 0.03–0.05;
the parameters have been checked to ensure full convergence.
Most of the calculations—including QOCT discussed
below—are done in length gauge using the OCTOPUS code [34].

In QOCT one solves for a laser pulse ε(t) that maximizes
a target functional J1[ε]. To optimize the harmonic spectrum,

1050-2947/2014/90(5)/053402(5) 053402-1 ©2014 American Physical Society
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we have implemented a target of the form

J1[ε] =
∫ ωb

ωa

|d̈[ε](ω)|2 dω, (1)

where [ωa,ωb] is the frequency range for the desired en-
hancement of the HHG spectrum. The field ε is represented
by a set of parameters, and maximization of the functional
defined in Eq. (1) amounts to a function maximization for
those parameters. We have used both a gradient-free algorithm
(NEWUOA [35]) and the gradient-based Broyden-Fletcher-
Goldfarb-Shannon (BFGS) algorithm [36] (the expression for
the gradient is supplied by the QOCT). As we will see, both
algorithms provide similar enhancements in the harmonic
spectrum. The optimized pulses are constrained by (i) a finite
number of frequencies with the maximum frequency ωmax,
(ii) a fixed pulse length, and (iii) a fixed fluence which is set
to that of a single-frequency reference pulse, whose shape is
shown in the figures below. For each set of pulse constraints,
we begin the optimization from several (5–10) random initial
pulses and report here the best result; it is important to note
that QOCT always converges into a local maximum in the
parameter space.

First we apply the NEWUOA algorithm to optimize a laser
pulse for HHG in the target interval ω ∈ [1.3,4] a.u. The pulse
length is fixed to T = 1104 (26.7 fs) and the carrier frequency
of the reference pulse is ω = 0.0569 a.u. (wavelength λ ≈
800 nm corresponding to the typical range of Ti:sapphire
lasers), which we choose to keep as the maximum allowed
frequency of the optimized pulse to prevent the formation
of complicated pulses with high-frequency components. The
peak intensity of the reference pulse is 6 × 1013 W/cm2, and
the fluence is kept constant in the optimization. The reference
and optimized pulses are shown in Fig. 1(a) as red (light
gray) and blue (dark gray) lines, respectively. The optimized
harmonic spectrum in Fig. 1(b) completely fulfills the desired
target, and in addition to the cutoff extension, the yield is also
increased by several orders of magnitude.

Next we comment on the two most obvious characteristics
of the optimized pulse in Fig. 1(a). First, it is important
to note that the high-intensity half cycle in the beginning
is not responsible for the significant increase in the HHG
yield and cutoff. If this part were later in the pulse, the
cutoff would be at ω ≈ 2.5 a.u. A similar effect is seen
if, e.g., the last low-intensity peak is missing. Second, as
shown in the inset of Fig. 1(a), the optimized pulse contains
lower-frequency components. Indeed, the standard theoretical
HHG considerations predict that lower frequencies should lead
to higher cutoff energy due to higher ponderomotive energy.
However, merely using low-frequency single-color pulses
produces very low yields. It is the shaped multifrequency
pulses that produce both the large cutoff and high intensities.
Furthermore, in the case of HHG resulting from pulses that
have a single carrier frequency, the harmonic peaks are equally
separated by twice the carrier frequency. In the case of
optimized pulses, however, we find no connection between
the frequency components in the pulse and the HHG peak
separations. This is expected in view of the complexity of the
optimized pulse in the time-frequency plane, even though we
applied rather simple pulse constraints as explained above.
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FIG. 1. (Color online) Optimization results for the HHG spec-
trum with the target range ω ∈ [1.3,4] a.u. The pulse length is
T = 1104 a.u. and the frequency of the reference pulse is ω = 0.0569
a.u., equal to the maximum frequency in the optimization. The fluence
is kept constant. (a) Optimized [red (light gray)] and reference [blue
(dark gray)] pulses and their frequencies (inset). (b) High-harmonic
spectra for optimized [red (light gray)] and reference [blue (dark
gray)] pulses. The target range is shown with vertical dashed lines.
(c) Quantum-mechanical time-dependent harmonic spectrum in log
scale [color (gray scale)] and return energies calculated from the
semiclassical model (solid line). Spurious branches from a uniform
tunneling rate are shown with dashed lines (see text).

The emission process is further demonstrated in Fig. 1(c),
where the color (gray scale) image shows the time-frequency
map of the quantum dipole acceleration, d̈(t,ω). The time-
frequency map is calculated as a discrete short-time Fourier
transform (STFT) [37] using the Blackman window func-
tion [38]. In essence, the time axis is split into multiple
overlapping windows, and the dipole acceleration is Fourier
transformed in each window. Finally, we plot the quantity
S(t,ω) = |d̈(t,ω)|2/ω2 in log scale in analog with the harmonic
yield; here t corresponds to the middle of each time window of
the STFTs. S(t,ω) essentially describes HHG in time. Bicubic
interpolation is used for slight visual improvements. The cutoff
extension up to ω � 2.5 a.u. occurs throughout the pulse as it
is the effect of the high-intensity peak. The full extension up to
ω = 4 a.u., however, occurs only at the end of the pulse. This
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clarifies the above-mentioned fact that the complete structure
of the optimized pulse is important.

Next we examine the physical origin of the cutoff extension
in more detail by employing semiclassical simulations. An
ensemble of classical trajectories is propagated with initial
times t0 distributed according to either a uniform tunnel-
ing rate w(t0) ∼ 1 or exponential tunneling rate w(t0) ∼
exp{−[2(2Ip)3/2]/[3|ε(t0)|]} [39–41], where Ip = 0.669 a.u.
is the ionization potential of our system. At the tunnel exit
obtained from the classical turning point equation V (x) +
Fx(t)x = −Ip, the velocity is set to zero and the electron is
propagated classically. Upon return of the tunneled electron to
the origin, a photon is emitted with frequency corresponding
to the kinetic energy of the electron; also later returns are
recorded and taken into account. Note that in contrast to
the three-step (simple man) model [42], where the electron
starts from the origin and moves in the laser field only, the
electron in our model starts at the tunnel exit and moves in the
combined force field of the laser and the atomic potential. It
should be noted that in contrast to our semiclassical simulation
taking the atomic potential into account, the three-step model
underestimates the cutoff energy. For the parameters of Fig. 2
the cutoff calculated from the three-step model corresponds
to 3.2 a.u. (compare to 4.2 a.u. predicted by semiclassical
simulations with binding potential shown in Fig. 2).

The return energy maps of the semiclassical model as a
function of the return time (solid curves) are compared with
the time-dependent harmonic spectrum in Fig. 1(c). Due to
the pulse shape, the electron can return only once to the
origin. With uniform tunneling distribution, the semiclassical
model exhibits a few spurious branches (dashed black curves),
which are suppressed when using the exponential tunneling
rate. The remarkable agreement between the semiclassical
and quantum descriptions highlights the classical origin of
the cutoff extension.

In Fig. 2(a) we show a BFGS-optimized pulse [red (light
gray)] with the same reference pulse [blue (dark gray)]
as in Fig. 1. The target range is now ω ∈ [1,5] a.u., i.e.,
considerably larger than in the previous case. Despite a slightly
more complicated temporal shape of the optimized pulse, the
resulting HHG spectrum [Fig. 2(b)] is similar to the first case.
Now, however, the optimized pulse allows multiple returns of
the electron to the origin as shown in Fig. 2(c) when using an
exponential tunneling rate. Not all of the quantum-mechanical
harmonic emissions can be found in the semiclassical model
with exponential tunneling distribution. They are, however,
allowed by the semiclassical model and visible when using
a uniform tunneling rate. Therefore, the semiclassical picture
does agree with the quantum description, but the exponential
tunneling distribution does not produce all tunneling events.

Next we double the pulse length while keeping the peak
intensity of the reference pulse, the maximum frequency, and
the target HHG range the same (note that the fluence is also
doubled). The BFGS-optimized pulse of Fig. 3(a) now leads to
complete extension of the cutoff all the way up to ω = 5 a.u., as
demonstrated in Fig. 3(b). This is likely due to higher fluence
and more freedom in the shaping of the longer pulse.

The effect of late returns [see, e.g., Fig. 2(c)] can be
analyzed in the semiclassical picture. The harmonic spectrum
can be calculated as a histogram of the electron energies
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FIG. 2. (Color online) Same as Fig. 1 but for an extended
target range (up to ω = 5 a.u.) and for the gradient-based BFGS
optimization algorithm. In (c), energies of an electron calculated
from the semiclassical model upon its first, second, third, and fourth
return to the origin are shown with black, blue (medium gray), white,
and cyan (light gray) curves, respectively.
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FIG. 3. (Color online) Same as Figs. 2(a) and 2(b) but for a longer
pulse with T = 2209 a.u. (53.5 fs).
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upon return to the origin with weights from the exponential
tunneling rate (see above). The resulting spectra demonstrate
varying contributions of late returns between different pulses.
Even in the case of pulse of Fig. 2(a), where late returns are
evident, their contributions to the spectra in the semiclassical
models are minimal. In contrast, for the optimal pulse of Fig. 3,
also the second return plays an important role in enhanced
HHG.

The yield increase can be attributed to the increased tunnel-
ing probability compared to the reference pulses. Indeed, the
yield increase of comparable, albeit slightly larger, magnitude
can be found when using single-frequency pulses with the
same maximum amplitude as in the optimized pulses, but
the extension of the cutoff does not reach the optimized
results. Sensitivity of HHG to the pulse amplitude has been
previously reported in, e.g., Refs. [18,43]. The sensitivity is
also obvious from the analytic factorization of the HHG rates in
Ref. [44]. We emphasize that the yield increase of the presented
optimized HHG arises from an increased tunneling rate, not
from resonances as, e.g., in Ref. [16]: in our case a minimum
of seven-photon absorption would be required, which is highly
unlikely.

Finally, we verify which stationary states are involved in
the enhanced HHG process. For this purpose, we solve the
time-dependent Schrödinger equation in momentum space
and velocity gauge by expanding the state in terms of the
eigenstates of the field-free Hamiltonian [45]. Note that the
occupations are gauge dependent. We find that approximately
four lowest bound states are essential for the enhanced HHG,
but ten are required for (nearly) full convergence of the spec-
trum; the numbers are similar for reference pulses. However,
in the optimized HHG much of the electron density reaches
high-energy continuum states, whereas for the reference pulse
the electron occupation is mostly in the bound states and in
the low-energy continuum (see Fig. 4).

To summarize, we have developed an optimal-control
scheme to simultaneously enhance both the yield and the
cutoff energy of HHG. Our target functional, an integral
over the harmonic yield in a desired energy range, leads to
a significant increase in the HHG yield and cutoff energy
within two different optimization algorithms. Furthermore, we
have shown through semiclassical studies that the extension
of the cutoff is of classical origin. Instead, the increase
in the harmonic yield is found to be due to increased
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FIG. 4. (Color online) Occupations (log scale) of stationary
states in velocity gauge for the reference (gray bulb-shaped structures
at the bottom) and optimized (colored structures elsewhere) pulse of
Fig. 1.

tunneling probability arising from increased peak amplitudes,
while the fluence is kept constant in the optimization. We note
that in higher-dimensional models, the harmonic yield will be
affected by transversal spreading of the electron wave packet.
However, our preliminary results (not shown here) demon-
strate even the one-dimensional-optimized pulses provide
qualitatively similar cutoff extension and no significant loss of
yield also when applied to a two-dimensional model; we expect
a similar tendency also for three dimensions. In addition, by
doing the optimization within the same dimensionality, there
can be additional degrees of freedom in the pulse regarding,
e.g., polarization, number of frequency components, and pulse
sources, which will help counter the issue of wave packet
spreading.

We leave the detailed analysis of realistic pulse constraints
to three-dimensional and many-electron models, where such
analysis will be more relevant. With such refinements, we
expect our method to be usable also in experimental applica-
tions, which can have direct implications in the development of
efficient, flexible, and tunable light-emitting tabletop devices.
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Recent experimental techniques in multicolor waveform synthesis allow the temporal
shaping of strong femtosecond laser pulses with applications in the control of quantum
mechanical processes in atoms, molecules, and nanostructures. Prediction of the
shapes of the optimal waveforms can be done computationally using quantum optimal
control theory (QOCT). In this work we demonstrate the control of above-threshold
photoemission of one-dimensional hydrogen model with pulses feasible for experimen-
tal waveform synthesis. By mixing different spectral channels and thus lowering the
intensity requirements for individual channels, the resulting optimal pulses can extend
the cutoff energies by at least up to 50% and bring up the electron yield by several
orders of magnitude. Insights into the electron dynamics for optimized photoelectron
emission are obtained with a semiclassical two-step model.
DOI: 10.1080/09500340.2017.1317857

1. Introduction

When atoms, molecules, and bulk matter interact with strong and short laser fields new
and peculiar phenomena appear, configuring what nowadays we know as attosecond
physics or attosecond science [1]. In particular, the so-called above-threshold ionization
(ATI) has been a particularly appealing subject in both experimental and theoretical
physics. In ATI, an atomic or molecular electron is pulled out to the continuum by
the action of the laser electric field and, after a subsequent dynamics, which includes
the recollision mechanism, either the electron energy or several components of the
electron momentum are experimentally measured (see e.g. [2] for a review about both
experimental and theoretical developments). The ATI phenomenon was first observed
more than three decades ago by Agostini et al. [3], and it was established that it occurs
when an atom or molecule absorbs more photons than the minimum threshold number
required to ionize it, hence the name ATI, leaving the leftover energy being converted
to the kinetic energy of the released electron.

With the constant advances in laser technology, it is routine today to generate
few-cycle pulses, i.e., laser pulses whose electric field comprises only one or two
complete optical cycles, which find an ample range of applications in basic science,
for instance, in the control of chemical reactions and molecular motion [4, 5]. From
a technological viewpoint they are the workhorses in the generation of high order
harmonics in atoms and molecules and the creation of isolated extreme ultraviolet

https://doi.org/10.1080/09500340.2017.1317857
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(XUV) pulses [6, 7]. In a few-cycle laser pulse the electric field can be characterized
by its duration in time and by the so-called carrier-envelope phase (CEP), defined
as the relative phase between the maximum of the pulse envelope and the nearest
maximum of the carrier wave. When compared with a multicycle pulse, the electric
field of few-cycle pulses changes dramatically its temporal shape with the CEP [8, 9].
From a more fundamental viewpoint, it has been experimentally observed that the
CEP plays an instrumental role in high-order-harmonic generation [10], the emission
direction of electrons from atoms [11], and in the yield of nonsequential double
ionization [12]. Currently, investigations of ATI generated by few-cycle driving laser
pulses have attracted so much interest due to the strong sensitivity of the energy and
angle-resolved 2D photoelectron spectra to the absolute value of the CEP [13, 14].
Consequently, this feature of the laser ionized electron renders the ATI phenomenon
as a very valuable tool for few-cycle laser pulse characterization. One of the most
widely used techniques to characterize the CEP of a few-cycle laser pulse is to measure
the so-called backward-forward asymmetry of the energy-resolved ATI spectrum,
from which the absolute value of the CEP can be directly inferred [11]. In addition,
nothing but the high-energy region of the photoelectron spectra appears to be the
most sensitive one to the absolute CEP and, consequently, electrons with large kinetic
energy are needed in order to characterize it [15].

Recent experiments using plasmon field enhancement have demonstrated that
the high-order harmonic generation (HHG) cutoff and ATI photoelectron spectra
could be extended further [16, 17]. Plasmonic-enhanced fields appear when a metal
nanostructure or nanoparticle is illuminated by a short laser pulse. These fields are
spatially inhomogeneous in a nanometric region, due to the strong confinement of
the so-called plasmonics ’hot spots’ and the distortion of the electric field by the
surface plasmons induced in the nanosystem. One should note, however, that a recent
controversy about the outcome of the experiments of Ref. [16] has arisen [18–20].
Consequently, alternative systems to the metal bow-tie-shaped nanostructures have
appeared [21]. From a theoretical viewpoint, however, these experiments have sparked
an intense and constant activity [22–44].

An step forward would be to use multicolor waveforms or field transients to drive
the ATI phenomenon (for a recent article see e.g. Ref. [45]). These laser sources present
unique characteristics, as noticeable sub-fs changes in the laser electric field [46, 47].
In addition, a large set of parameters is available to control, with great precision, the
shape of the laser electric field. For instance, by manipulating both the amplitude and
relative phases of the different colors, it would be possible to tailor the laser electric
field with an attosecond precision [48].

Clever design of the shape of the laser electric field gives us the ability to control
quantum mechanical (QM) processes. Prediction of the parameters for the waveforms
can be achieved either via genetic evolution of the laser parameters in learning-loop
experiments (see, e.g., Ref. [49] and references therein) or via quantum optimal control
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theory (QOCT) simulations [49–52], where computational tools are used to predict the
optimal pulse shapes for a given target, i.e., the desired outcome of the QM process.
QOCT has been successfully used to control, e.g., ultrafast strong-field phenomena such
as high-harmonic generation [53–55], strong-field ionization [56–59], and photoelectron
emission [45].

However, in ultrafast strong-field physics, there have yet to be any experiments
using laser pulses designed with QOCT. This is in contrast to many other fields within
the QOCT community (see, e.g., Ref. [60] and the references therein). The reason may
be, in part, due to the fact that several previous studies using QOCT in controlling
strong-field phenomena produce laser pulses that are not fully compatible with
experimental multicolor waveform synthesis despite several advances in incorporating
constraints to QOCT (see, e.g., Refs. [52, 61] and the references therein). A recent work
by B. Bódi et al. in Ref. [62] brings QOCT within ultrafast strong-field physics towards
predicting experimentally feasible waveforms. In their work, the total laser electric
field is a superposition of four predefined pulses of different colors (channels) that are
obtained from experimental setups. This computational scheme, simulating a single
multicolor waveform synthesizer, allows experimental compatibility, in principle.

As in the work by B. Bódi et al., we present the optimizable pulse as a superposition
of component pulses (channels), but do not address any specific light-field synthesizer.
Hence, instead of using channel information from an existing experimental setup, each
channel is represented by a single-frequency carrier wave with a Gaussian envelope.
This analytical basis has several advantages: while providing experimentally feasible
pulses, we can (1) easily change the channel specifications and (2) use gradient-based
optimization methods if desired. We note that QOCT-schemes representing the field
in a basis have been proposed and applied earlier to a variety of systems [63–68]. In
contrast to previous methods, in our scheme we aim at compatibility with modern
waveform synthesizers for ultrashort strong-field physics. First, we use the most
natural analytical basis for pulses produced for such systems, and second, we add
CEP as an optimizable quantity. With respect to physical constraints, our method can
enforce arbitrary constraints for the total laser electric field as well as the component
channels.

In the next Sections we describe the scheme and use it to optimize multicolor
waveforms or field transients for different targets, namely the photoelectron yield
and/or the ATI energy cutoff. The ultimate goal is to push the limits in the energy
conversion, in the sense to reach as energetic electrons as possible, with a given input
laser energy.

2. Optimization scheme

We describe the total electric field as a superposition of N channels represented as
ultrashort pulses consisting of a single-frequency carrier wave with a gaussian envelope.
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Each of the channels has their own amplitude Ai , carrier frequency ωi , center time τi ,
carrier-envelope phase (CEP) ϕi , and duration σi , i.e.,

ϵ[u](t) �
N∑︂

i�1
Ai cos

[︂
ωi(t − τi) + ϕi

]︂
exp

[︂
− ln (2) (t − τi)2 /σ2

i

]︂
, (1)

where u denotes the optimizable parameters. We can choose at will the number of
component pulses N , and which parameters are kept fixed and which are optimized.
Note that chirp, and in higher dimensions also polarization, can be easily added to the
representation as optimizable parameters. The total field of Eq. (1) always satisfies
ϵ(−∞) � ϵ(∞) � 0 and

|︁|︁∫ ϵ(t)dt
|︁|︁ ≈ 0 whenever σi ≳ 200 a.u. for wavelengths < 2 µm;

If σi ≲ 200 a.u., one would need to add
∫
ϵ(t)dt � 0 as a global optimization constraint

to have the optimized pulses strictly conform to Maxwell’s equations, although we
omit this in the following demonstrations.

We test our scheme in a one-dimensional (1D) hydrogen-like atom, but full 3D
approaches and multielectronic systems within the single active electron approximation
(SAE) could be used. The pulses are optimized to maximize the photoelectron yield
and energy. We take up to N � 3 channels, each with a fixed frequency and duration.
Thus, the optimizable parameters are the amplitudes A, CEPs ϕ, and time-delays via
τs in line with modern waveform synthesis experiments (see, e.g., Refs. [47, 69, 70]).
The 1D Hamiltonian of our system can be written as

Ĥ �
p̂2

2 + V(x̂) + x̂ϵ[u](t), (2)

where V(x) � −1/
√

x2 + 1 is the soft Coulomb potential. We represent the system on a
real space grid of length L ≈ 530 nm (10,000 a.u.) with a spacing ∆x ≈ 13 pm (0.25
a.u.).

The time propagation begins from the ground state, and the time evolution
is calculated by the exponential mid-point rule with time step ∆t ≈ 1.2 as, i.e.,
Û(t → t + ∆t) ≈ exp

[︁−i∆tĤ(t + ∆t/2)]︁ . Action of the matrix exponential on the state,
i.e., Û |ψ⟩, is done using the new algorithm from Ref. [71] as implemented in SciPy [72].

To target the photoelectron spectrum (PES), we optimize the integral of the PES
over some energy range [Ea , Eb] (see Ref. [53] for a similar target in HHG). Calculation
of the PES is done according to Ref [73], i.e., we calculate the PES at the end of the
pulse using an energy window technique. This target functional can be written as

G[u] � ⟨Ψ[u](T)|Ô |Ψ[u](T)⟩, (3)

where

Ô �

Eb∫
Ea

dE PES(E) �
Eb∫

Ea

dE
γ4(︁

Ĥ0 − E
)︁4

+ γ4
, (4)
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and γ is half of the energy resolution (∆E ≈ 0.6 eV for the cases studied in the present
work).

Optimization of this target can be achieved in two ways. First, we can increase the
yield of the photoelectrons (larger integrand values), or second, as the PES has a sharp
cutoff, we can extend the cutoff energy (provided that Eb has been set large enough).
In practice, the optimal pulses typically fill both these goals, i.e., we get increase both
in the photoelectron yield and in the cutoff energy.

These ingredients are already enough for gradient-free optimization schemes,
which we will use in the rest of the paper. Calculation of the gradient of Eq. (3) for the
pulse representation in Eq. (1) would be trivial following, e.g., Ref. [52]. However, we
found that calculation of an auxiliary wavefunction called the costate, at the end of the
pulse, was numerically challenging for the chosen target operator. For other methods
of calculating the PES it could be easier to obtain the costate (and hence the gradient).
For instance, calculating the PES as a projection to plane waves would result in the
costate at the end of the pulse being just a band-pass filtered final wavefunction.

Optimization of the target is done with Multi-Level Single-Linkage (MLSL) global
optimizer [74]. The MLSL algorithm conducts a series of local optimization searches
within a bounded domain while avoiding (1) repeated searches of previously found
local maxima and (2) starting local searches near the search space boundaries [74, 75].
For local optimization, we employ a gradient free algorithm called Bound Optimization
by Quadratic Approximation (BOBYQA [76, 77]) [78] which, together with MLSL, allows
us to bound the optimization variables. In particular, the amplitude of each channel is
capped to A ∈ [0.03, 0.13] a.u., the full-width half maximum (FWHM) to σ ∈ [3.6, 9.7]
fs and the maximum time-delay between channels to ∼ 9.7 fs. The pulse constraints
(fluence and peak intensity) are nonlinear in the search space and can not be handled
by bounds for the optimization variables. These global constraints are enforced via the
augmented lagrangian technique [79, 80]. For the optimization algorithms, we use the
nlopt library [75] implementations.

The optimization routine begins from a random pulse configuration usually giving
low yield and small cutoff energies for the PES. During the optimization, the algorithms
find several locally optimal pulses for our target. Here we show the best of the locally
optimal pulses and compare it with:

i) a commonly available reference pulse with carrier wavelength of 800 nm with
the same fluence and peak intensity as the optimized pulse and

ii) the separate channels of the optimized pulse.

3. Optimization results

The easiest way to increase the photoelectron energies would be to increase the peak
intensity or the wavelength of the driving laser pulse. There is, however, a limit
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Figure 1: (a) Optimized photoelectron spectrum (PES) with a two-channel pulse
(black) demonstrates up to 3 orders of magnitude increase in the yield and over 100
eV extension of the cutoff energy compared to the nm single-channel (800) reference
pulse [green (light gray) curve], and single channels of the optimal pulse [blue lines].
(b) The optimized pulse (black) is composed of two channels (dark blue and blue), and
the reference pulse (green) has the same peak intensity and fluence as the optimized
pulse, but different spectral range. The power spectral distributions of the pulses are
shown in the inset.

to the dominant wavelength of strong femtosecond laser pulses, and currently, in
experimental multicolor waveform synthesis, it is easier to distribute energy between
different channels than to concentrate it all to a single channel [69].

Hence, we begin by setting up two spectral channels, the simplest possible multicolor
waveform configuration. The channels have partially overlapping spectral shapes with
central frequencies corresponding to wavelengths of 1.6 µm and 1.9 µm. Furthermore,
the peak laser electric field is constrained below 0.09 a.u. (corresponding to a peak
intensity ≈ 2.8 · 1014 W/cm2), and the fluence to 3 a.u., but it turns out that the peak
field constraint is more restricting than the fluence constraint in this case. The targeted
energy range is approximately from Ea � 110 eV (∼ 4 a.u.) to Eb � 330 eV (∼ 12 a.u.)
shown as vertical lines together with the spectra in Fig. 1(a).

The optimized spectrum [black curve in Fig. 1(a)] has a cutoff energy of ∼ 300 eV.
This is ∼ 50 % more than for the 1.9 µm channel of the optimized pulse (dark blue
curve), and in addition, the yield is increased by up to 3 orders of magnitude. If we
compare the optimized spectrum to what is obtained for a commonly available 800 nm
pulse (green curve), we observe even more dramatic enhancements.

The optimized pulse [black line in Fig. 1(b)] mixes the 1.6 µm and 1.9 µm channels
roughly in proportions of one to three when comparing their respective intensities.
Essentially, the optimization algorithm finds the correct CEP and time-delay for each
channel in order to increase the peak intensity and fluence of the total field compared
to the 1.9 µm channel only. This achieves the desired effect, i.e., the enhancement of
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Figure 2: (a) Optimized photoelectron spectrum (PES) with a three-channel pulse
(black) shows a yield enhancement up to 6 orders of magnitude and a dramatic cutoff
extension (more than 100 eV) compared to the single-channel (800 nm) reference pulse
(green), and single channels of the optimal pulse (blue lines). (b) The optimization
changes the dominant spectral contribution to lower frequencies as seen from the
power spectral densities (PSDs) of the laser pulses in the inset, and it also increases the
duration of the major cycle of the optimized pulse.

the PES without concentrating all the pulse energy to a single channel.
The pulse shapes allowed by the two-channels are quite restricted, and we can in-

crease the degrees of freedom by adding in another spectral channel. The three-channel
optimization is conducted with central frequencies of the channels corresponding to
wavelengths 0.8 µm, 1.6 µm, and 1.9 µm, and we also increase the peak field constraint
to 0.11 a.u. The target remains the same as for two-channel optimization, i.e., from
Ea � 110 eV to Eb � 330 eV. Figure 2(a) shows the optimized PES (black) and compares
it to the reference spectrum of the 800 nm pulse (green) and the spectra obtained for
single channels of the optimized pulse (blue lines). The optimal pulse increases the
yield up to six orders of magnitude and extends the cutoff energy by over 100 eV, and
as in the two-channel case, the optimal pulse wins over the single channel results.

The optimal three-channel pulse [black line in Fig. 2(b)] mixes the 0.8 µm, 1.6
µm, and 1.9 µm channels in (intensity) proportions of around 5-1-11. This lowers
the intensity requirement for the long-wavelength channels as in the two-channel
setup described above. It is of interest to note that the changes in the PES are due
to mixing lower-wavelength channels, channels which alone give spectra with much
lower energy cutoffs.

One of the advantages of the 1D models is the possibility to scrutinize the time and
spatial electron dynamics in a direct way. To this end in Fig. 3(a) we show the electron
density |Ψ(x , t)|2, whereΨ(x , t) is the spatio-temporal electron wavefunction, for the
optimal three-channel laser pulse used in Fig. 3(b). The reason why such a simple
pulse optimizes the spectrum is that the last dominant cycle in the laser pulse packs as
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Figure 3: (a) Electron density corresponding to the optimized 3-channel pulse in Fig.
3, (b) 106 corresponding (semi)classical trajectories, and (c) the terminal kinetic energy
as a function of the time of tunneling.

much energy in the ejected electron wavepacket as possible. To better illustrate this
idea, we employ a semiclassical two-step model similar to the three-step model used
in Ref. [53].

An ensemble 106 trajectories is simulated as follows:

1. The tunneling times (start times of the trajectories) t0 are randomized following
the exponential tunneling rate [81–85]

w (t0) ∼ exp
{︂
−
[︂
2
(︁
2Ip

)︁3/2 ]︂
/
[︂
3|ϵ(t0)|

]︂}︂
, (5)

where Ip � 0.669 a.u. is the ionization potential of our system.

2. The trajectories start with zero velocity at the tunnel exit, which is located at the
classical turning point on the farther side of the tunneling barrier.

3. After tunneling, the trajectories are propagated classically, i.e., following New-
ton’s equations, using the 8th order Dormand & Prince algorithm with adaptive
step size control (see e.g. [86]).

Figure 3(b) shows all the 106 trajectories calculated using the semiclassical model.
The trajectories start around peak field strenghts [see the black line in Fig. 2(b)], and
most of them end up at x < 0 at the end of the simulation (the uniform black area). We
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see a clear correspondence to the QM simulation in Fig. 3(a): quantum mechanically
high-density areas are filled with semiclassical trajectories whereas QM low-density
areas have only few trajectories. By increasing the ensemble size by a few orders of
magnitude, better agreement with the QM low-density region could be obtained.

In the semiclassical model, the maximum kinetic energy is obtained for tunneling
events between the two dominant subcycles of the pulse i.e., slightly before t0 � 0 as
shown in Fig. 3(c) illustrating the terminal kinetic energy as a function of the tunneling
time of the trajectory. For the trajectories tunneling out near t0 � 0, the semiclassical
model yields the maximal terminal kinetic energy of 315 eV, i.e., at the beginning of the
cutoff of the optimized QM spectrum of Fig. 2(a). The electron trajectories that tunnel
out near the field minimum at t0 ≈ 0 feel only the full effect of the later dominant
half cycle of the pulse, thus contributing to the cutoff region of the PES. An electron
tunneling out earlier would be slowed down by the previous half-cycle, and an electron
tunneling out later would not obtain the maximum energy from the latter half-cycle.

4. Summary

We have presented a computational optimal control scheme that composes experi-
mentally feasible multicolor waveforms from analytical pulse components (channels).
As a case study we apply the scheme to the optimization of photoelectron spectra
in a one-dimensional hydrogen-like system. The scheme provides substantial yield
enhancement and cutoff extension compared to single 800 nm pulses with the same
peak intensity and fluence or the component channels of the optimized pulse. By
mixing a few different spectral channels, the proposed method decreases the need
for high intensities in single spectral channels. Simultaneously, the scheme provides
significant enhancements in the photoelectron spectrum yield and cutoff. In addition,
we have shown that the physical working mechanisms behind the optimal pulses can
be inspected with simple semiclassical models.

With the chosen channel configurations and target energies the scheme already
provides photoelectrons with ∼ 0.5 keV energies. By suitable modifications in the
channel configuration and pulse constraints, the scheme could provide a way to
generate ultrashort electron pulses with sufficient yield even in the keV regime. Such
electron pulses can be used for diffraction experiments, and could, e.g., provide
improvements to the celebrated laser-induced electron diffraction (LIED) technique
(see, e.g., Refs. [87, 88]) by increasing its spatial resolution.

In addition, an extension of our optimal control scheme with realistic waveforms
to 3D and many-electron systems is straightforward. The scheme can be modified to
use most of the existing optimization algorithms to account for different search space
landscapes in other systems, and it can be readily be implemented in existing optimal
control software or as an external module to all state-of-the-art software packages
for single- or many-electron simulations. This provides straightforward access to a
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multitude of different applications including, e.g., optimization of high-harmonic
generation, atomic transitions between states, and electron dynamics in molecular and
nanoscale devices.
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We investigate computationally a method for ultrafast preparation of alkali-metal atoms in their Rydberg
states using a three-dimensional model potential in the single active electron approximation. By optimizing laser
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optimized pulses are shown to be much more complicated than in the traditional optical two-photon preparation
of Rydberg states.

DOI: 10.1103/PhysRevA.98.053422

I. INTRODUCTION

Rydberg states have been observed in numerous systems
including, e.g., alkali-metal atoms [1] and larger systems such
as water [2] and NO molecules [3]. Their features include
long lifetimes [1], macroscopic extent of the electron wave
function, and large dipole moments [4]. These features make
them prime candidates for applications in, e.g., quantum
information and quantum computing [5]. They are also of
fundamental interest in the study of quantum chaos [6].

Experimental preparation of isolated alkali-metal atoms
in Rydberg states can be achieved with two-photon absorp-
tion [4]. In rubidium, the successive absorption of 480- and
780-nm photons can excite the valence electron to a high-n
Rydberg state with up to 80 % probability [7]. However,
the two-photon absorption technique requires (i) tuning of
the laser frequencies to the desired resonances and (ii) long
irradiation durations to achieve reasonable yields [7].

Addressing these drawbacks may be achieved by using
laser pulses with tailored temporal profiles. Standard tech-
niques exist for the production of tailored femtosecond laser
pulses [8], and their applicability has been demonstrated for
controlling various dynamical phenomena in atoms such as
above-threshold ionization [9,10] and high-order-harmonic
generation [11–16,17(a),18]. Population and excitation con-
trol of atoms with femtosecond pulses has been studied to
some extent both experimentally [17(b),19–21] and computa-
tionally [19,20]. However, control of the excitation to high-n
Rydberg states using multicolor fields from modern light-field
synthesizers has yet to be demonstrated.

In this work, we investigate the applicability of tailored
femtosecond laser pulses to ultrafast excitation of alkali atoms
to their Rydberg states. Using a computational optimization
scheme similar to Ref. [10], we optimize a set of exper-
imentally feasible pulse parameters and find optimal laser
pulses that can achieve up to 20% population transfer to the
targeted states. The pulse durations are typically less than

*janne@solanpaa.fi
†esa.rasanen@tut.fi

a few dozen femtoseconds—demonstrating the possibility of
ultrafast Rydberg state preparation.

This paper is organized as follows. In Sec. II, we intro-
duce the numerical methods and the optimization scheme.
In Sec. III, we discuss the optimal pulse shapes for ultra-
fast Rydberg state preparation and investigate the underlying
dynamical processes. Finally, in Sec. IV we summarize our
findings.

II. NUMERICAL METHODS

As a prototype atom for optimization simulations, we use
lithium within the single active electron (SAE) approximation
with the static potential V0(r ) introduced in Ref. [22]. The
optimization scheme is independent of the precise atomic
model, and the scheme is readily applicable to other mod-
els of alkali-metal atoms. The laser-electron interaction is
included in the dipole approximation, yielding the velocity
gauge Hamiltonian (in Hartree atomic units [23])

Ĥ (t ) = p̂2

2
+ V0(r̂) + Az(t )p̂z, (1)

where we have restricted ourselves to linearly polarized laser
fields, and the diamagnetic A(t )2

2 term has been gauge trans-
formed away.

Our goal is to transfer the maximum amount of popula-
tion from the initial state, 2s, (with zero azimuthal quantum
number, m = 0) to a certain set I of Rydberg states |φn,l〉
(preserving m = 0). This can be achieved by maximizing the
target functional

G[u] =
∑

|φn,l〉∈I
|〈φn,l|ψ (Tmax)〉|2, (2)

where u is the set of optimizable parameters and |ψ (Tmax)〉 is
the electron state at the end of the laser pulse.

The optimizable parameters u define the temporal shape of
the laser vector potential Az[u](t ). Similarly to the approaches
in Refs. [10,24], the pulse is constructed as a superposition of

2469-9926/2018/98(5)/053422(7) 053422-1 ©2018 American Physical Society
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multiple channels, each with a single central wavelength, i.e.,

Az(t ) =
N∑

i=1

Ai

ωi

env(t − τi, σi ) cos [ωi (t − τi ) + φi], (3)

where Ai , ωi , τi , φi , and σi are the amplitude, frequency, time
of envelope maximum, carrier-envelope phase, and envelope
full width at half maximum (FWHM) of each channel. The
channel envelopes are given by

env(t − τ, σ ) =
{

exp
[− log(2)

1−( t−τ
2σ

)2

(
t−τ
σ

)2]
, |t − τ | < 2σ

0, otherwise
.

(4)
This is a modified Gaussian which goes to zero at twice the
FWHM, and it is infinitely times differentiable everywhere.
This pulse parametrization allows us to model realistic pulse
shapes that can be generated with modern light field synthe-
sizers [8].

Calculation of the target functional in Eq. (2) for each pulse
shape requires us to (i) compute stationary states |φn,l〉 of the
system and (ii) propagate the initial state of the system under
the laser vector potential. The stationary states are obtained
by solving the effective radial equation for each angular
quantum number l with first-order finite differences. Time
propagation of the electron wave function is carried out with
the QPROP software, version 2.0 [25] using the Crank-Nicolson
scheme [26]. For simulation parameters, we have used the
radial grid spacing 0.1 a.u. (0.005 nm), radial grid length
300 a.u. (16 nm), l quantum numbers up to 50, imaginary
absorbing potential of width 50 a.u. (2.6 nm), and time step
0.02 a.u. (0.5 as) for the simulations. Convergence of a few
selected results was checked with higher accuracy.

The QPROP software was modified and wrapped for use
within PYTHON 3 [27] for interfacing with the optimization
library NLOPT [28]. Optimization is performed with a two-
step scheme: Global optimization is carried out with multi-
level single-linkage (MLSL) algorithm [29], which essentially
restarts local optimization while avoiding previously found
local extrema [28], and for local optimization we use the
derivative-free, trust-region-based algorithm called the con-
strained optimization by linear approximations (COBYLA)
method [28,30]. This derivative-free optimization scheme
does not require the computation of the gradient of Eq. (2).

The optimization routine is provided with one to six dif-
ferent channels with fixed central wavelengths 300 nm, 400
nm, 700.2243 nm, 800 nm, 1.6 μm, and 2 μm. The value
close to 700 nm is in resonance with the 2s → 2p transition.
Furthermore, each channel is constrained to maximum electric
field amplitude of Ai � 67 GV/m. The time of the envelope
maximum is allowed to vary ±6 fs, and the field FWHM of
each channel can have values between 2.4 and 15 fs.

III. OPTIMIZATION RESULTS

A typical optimization process is shown in Fig. 1. It begins
with a random initial pulse within the constrained search
space, and local optimizer looks for a local maximum of the
target functional. After a local maximum has been found, ap-
proximately at iteration number 102, the global optimization
routine takes over and provides the local optimizer a new

0 25 50 75 100 125 150
optimization iteration
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FIG. 1. Total population of the target states as a function of the
optimization iterations demonstrating the working principle of the
two-step optimization scheme. After convergence of the first local
optimization [orange (gray) curve], the global optimizer restarts the
local optimizer in a different region of the search space [at iteration
number 102, blue (black) curve]. Here we have targeted the states
n = 7, l = 0 . . . 2.

initial guess, causing a sharp drop in the target value. A typ-
ical optimization simulation runs approximately 100 to 200
optimization steps, providing up to a few local maxima. Opti-
mization of the pulse parameters is indeed crucial for reaching
reasonable target populations. In the example of Fig. 1, the
optimization starts with a random pulse combination reaching
barely 1% target population, but the optimization shapes the
pulse to provide up to 5% target population (at iteration
number 149).

The best results for each set of target states are collected in
Table I. We only show the best one or two channel combina-
tions for each target, but all possible channel combinations
were tested. The optimized target populations range from
90% for the simplest target down to 3% for more difficult to
reach target states such as n = 7, l = 4 . . . 6. We have also
investigated the excitation of the system to a single target
state: For 7f, we have reached up to 2.5% population and
for 8i up to 1.7%. These moderate populations of single-
target states suggest the scheme lacks the finesse to target
single Rydberg states. However, due to finding only a few
local extrema per target for each channel combination, it may

TABLE I. Summary of maximum achieved target populations for
different pulse channel combinations.

Target Channels (μm) Max. population

2p 0.7 91%

n = 7, l = 0 . . . 2 0.8, 0.7, 0.4, 0.3 14%

0.8, 0.7, 0.4 5%

n = 7, l = 4 . . . 6 2, 0.8, 0.7, 0.4 6%

2, 0.8, 0.4 3%

n = 7 . . . 10, l = 4 2, 0.7 6%

n = 7 . . . 10 2, 0.8, 0.7, 0.3 23%

2, 1.6, 0.8, 0.7, 0.3 21%
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FIG. 2. (a) The optimized laser pulse for populating the 2p state,
(b) the power spectral density of the laser electric field, and (c)–(e)
the populations of the stationary states.

be possible to improve these results with more optimization
simulations and/or gradient-based algorithms.

The maximum populations in Table I are less than those
achieved in previous works on optimal control of population
transfer in atoms and molecules, e.g., in Refs. [31,32]. How-
ever, one must take into account the extremely constrained
pulse combinations required by modern waveform synthesiz-
ers. In particular, the pulses with fixed channel wavelengths
lack the ability to play with the resonances of the system.
Moreover, the Gaussian envelope of each channel forbids any
sudden changes in the temporal profiles of the pulses, and
shortness of the resulting pulses forces the control scheme to
consider multiple complex transitions between the states.

Next we will inspect the population transfer mechanisms
behind the optimal pulses for a few select examples from
Table I. The simplest transition to consider is 2s → 2p. This
is forbidden for hydrogen, but for Li the transition is allowed.
This transition also serves as the first step in the optical prepa-
ration of Rydberg states through a two-step excitation [4].
We find the optimal population transfer to be achieved with a
pulse consisting only of the 700-nm channel—not surprising
since the channel is in resonance with the transition. The pulse
and the populations of the few lowest states are show in Fig. 2.
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FIG. 3. (a) The optimized laser pulse for populating the set
of states n = 7, l = 0 . . . 2 using the channels 800, 700, 400, and
300 nm, (b) the power spectral density of the electric field, and
(c)–(e) the populations of the stationary states.

The optimal pulse has a small peak electric field to avoid
ionization, and a 90% population transfer is achieved with
a pulse duration (intensity FWHM) less than 10 fs. Merely
increasing the pulse duration would not improve the result
since the initial state, 2s, is already depleted with the current
pulse shape. At first, the population transfer 2s → 2p seems
like a simple few-level process. Indeed, a two-level model
with the states 2s and 2p under the laser pulse of Fig. 2
already yields an 80% population transfer. However, even a
bound-state model with all states up to n = 10 fails to reach
the 90% yield of the full model. This suggests either the
involvement of very high Rydberg states or perhaps even the
continuum in the full population transfer.

Let us turn our attention to ultrafast population of Rydberg
states. Targeting the states n = 7, l = 0 . . . 2, our scheme
yields a solid 14% final population using the channels 800,
700, 400, and 300 nm (see Fig. 3). These channels are mixed
with peak electric field ratios of 35 : 1 : 13 : 16. While the
700-nm channel is relatively weak compared to others, it is of
utmost importance and without it the final target population
would drop to 0.2%. The optimized population transfer is
somewhat akin to the traditional two-step excitation: First the
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FIG. 4. (a) The optimized laser pulse for populating the set of
states n = 7, l = 4 . . . 6 using the channels 2 μm, 800 nm, 700 nm,
and 400 nm, (b) the power spectral density of the electric field, and
(c)–(j) the populations of the stationary states.

electron is excited from 2s to 2p by the weak 700-nm com-
ponent; however, the second step is a much more complicated
process involving multiple transitions resulting in most of the
final target population in the 7d state.
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FIG. 5. Same as Fig. 4, but without the 700-nm channel.

Next, we will focus our attention on a more complicated
target, n = 7, l = 4 . . . 6, which cannot be reached with two-
photon absorption, in contrast with the previous example. An
optimized pulse of duration less than 30 fs can transfer up to
6% of the electron population to the target states. The pulse,
shown in Fig. 4(a), mixes the channels 2 μm, 800 nm, 700 nm,
and 400 nm in ratios of electric field peak amplitude as
1 : 1.8 : 2.25 : 0.04. The 800- and 700-nm channels activate
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FIG. 6. (a) The optimized laser pulse for populating the set of
l = 4 states with principal quantum numbers n = 7 . . . 10 consists
of first a few-cycle 700-nm primer followed by single-cycle 2-μm
pulse, (b) the power spectral density of the electric field, and (c)–(g)
the populations of the stationary states.

simultaneously, while the 2-μm channel activates 6 fs later
than the previous ones. The channels overlap significantly
in time, yielding a complicated process for the population
transfer. The first few femtoseconds, up to approximately
t = 12 fs, transfer the population from 2s to higher states with
l ≈ 1 . . . 3, whereas the rest of the pulse makes the electron
population oscillate between multiple states and partly ionize.

A question arises of whether the 700-nm pulse is an
essential primer to achieve the initial 2s → 2p excitation. This
is not the case, as demonstrated in Fig. 5 where we optimize
the same target as previously but without the 700-nm channel.
A good initial population transfer to the 2p state can still
be found; however, rest of the population transfer process is
naturally different due to different pulse temporal shape.
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FIG. 7. (a) The optimized laser pulse for populating the set of
states n = 7 . . . 10 using the channels 2 μm, 800 nm, 700 nm, and
300 nm, (b) the power spectral density of the electric field, and (c) the
final populations of the stationary states.

We will now turn our attention to targeting the population
of a single angular quantum number, e.g., l = 4 with n =
7 . . . 10. The optimal pulse, shown in Fig. 6(a), is a sequence
of 700-nm and 2-μm channels providing us final target pop-
ulation of 6%. To analyze the population transfer process via
pairwise transfer rates, notice first that the state populations
|cn,l |2 = |〈φn,l|ψ (t )〉|2 are equivalent in the Schrödinger and
interaction pictures of quantum mechanics. In the interaction
picture, the expansion coefficients obey the system of ordinary
differential equations [33]

d

dt
cI

(n,l)(t ) = −iAz(t )
∑
(n′,l′ )

W(n,l),(n′,l′ )

× exp{i[E(n′,l′ ) − E(n,l)]t}cI
(n′,l′ )(t ), (5)

where W(n,l),(n′,l′ ) is the z component of the (n, l), (n′, l′)
momentum matrix element in the Schrödinger picture. Now,
the pairwise transfer rates are given by

T(n,l),(n′,l′ )(t ) = Az(t )2|W(n,l),(n′,l′ )|〈φS
n,l|ψS (t )〉|2. (6)
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The transfer rates T for the optimized population transfer
to l = 4, n = 7 . . . 10 are shown as a function of time in the
animation that can be found in Supplementary Material [34].
The first, 700-nm pulse excites the system from the initial
2s state to a set of l = 3 states (n = 4 . . . 10) via 2p. Some
population is left in the 2p and 3d states. The second, 2-μm
pulse first transfers population leftovers from the 2p state via
4d state to the f states, and after its first optical cycle, the
second pulse transfers the population from the f states to
the targeted g states. Because of weak pulses, the system is
essentially not ionized, but the rest of the population escapes
to higher bound states. Transfer rates seem the obvious choice
for interpreting the optimal population transfer processes for
each target, but they turn out to be significantly more compli-
cated for most of the other targets.

As a final demonstration, we target the states with principal
quantum numbers n = 7 . . . 10 without restrictions to the
angular quantum number. Because of the larger number of
targeted states, the total target population reaches over 20%
with the optimal pulses with the highest yield achieved with
the channels 2 μm, 800 nm, 700 nm, and 400 nm, shown
in Fig. 7. Most of the final target population is in low-l
states, peaking at 7p and 8p followed by their neighbours by
coupling, 8d and 9d.

IV. SUMMARY

We have demonstrated the applicability of a few-color fem-
tosecond pulses realizable by modern waveform synthesis [8]
to optimal control of population transfer from ground state
to a set of Rydberg states. Our control scheme was found to
achieve up to 23% Rydberg-state populations when transfer-

ring population to a few selected states, but when targeting
a single state these experimentally restricted pulse combina-
tions do not seem to allow sufficient control over the excitation
process.

Typical simulations with such realistic multicolor wave-
forms yield complicated dynamical processes which usually
cannot be easily interpreted with clear few-step excitation
paths. In this respect, our results also demonstrate a very
different optimized dynamical process compared to having
longer and less constrained pulses, which allows the exploita-
tion of the resonances.

We expect that with refinements to the available pulse
configurations and more powerful, gradient-based optimiza-
tion algorithms one can further increase the total achieved
target population. These enhancements could also allow us to
target smaller sets of states while still retaining compatibility
with experimentally feasible wave forms. In addition, further
investigation would be warranted to study the applicability
of our scheme to, e.g., the preparation of circular Rydberg
states, including field polarization as an additional control
knob, and to full multielectron models with possibly even
more complicated optimization landscapes.
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We present Fiend – a simulation package for three-dimensional single-particle time-
dependent Schrödinger equation for cylindrically symmetric systems. Fiend has
been designed for the simulation of electron dynamics under inhomogeneous vector
potentials such as in nanostructures, but it can also be used to study, e.g., nonlinear
light-matter interaction in atoms and linear molecules. The light-matter interaction
can be included via the minimal coupling principle in its full rigour, beyond the
conventional dipole approximation. The underlying spatial discretization is based on
the FEM, and time-stepping is provided either via the generalized-α or Crank-Nicolson
methods. The software is written in Python 3.6, and it utilizes state-of-the-art linear
algebra and FEM backends for performance-critical tasks. Fiend comes along with
an extensive API documentation, a user guide, simulation examples, and allows for
easy installation via Docker or the Python Package Index. Keywords: Time-dependent

Schrödinger equation, finite element method, atoms, nanostructures, light-matter
interaction, strong field physics
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PROGRAM SUMMARY
Program Title: Fiend
Licensing provisions: MIT License
Programming language: Python 3.6
Computer: Tested on x86_64 architecture.
Operating system: Tested on Linux and macOS.
RAM: Simulation dependent: from megabytes to hundreds of gigabytes.
Parallelization: MPI-based parallelization. Thread-based parallelization via BLAS and
LAPACK backends.
External routines/libraries:
PETSc, SLEPc, FEniCS, HDF5
petsc4py, slepc4py, mpi4py, h5py, numpy, scipy, matplotlib, psutil, mypy, progressbar2
Nature of problem:
Solution of time independent and time dependent single active electron Schrödinger
equations in cylindrically symmetric systems including interactions with spatially
inhomogeneous vector potentials.
Solution method:
Finite element discretization of the Schrödinger equation. Time evolution via the
generalized-α or Crank-Nicolson methods.
Restrictions:
Cylindrically symmetric single active electron systems.
Unusual features:
Finite element discretization of the equations allowing inhomogeneous spatial dependence
of the vector potential (e.g., plasmon-enhanced fields). Integration with the FEniCS finite
element suite. Installable from the Python Package Index. Pre-installed Docker images
available.
Additional comments:
The source code is also available at https://fiend.solanpaa.fi.
Python package available at https://pypi.org/project/fiend/.
Docker images are available at https://hub.docker.com/r/solanpaa/fiend/.
Running time:
From minutes to weeks, depending on the simulation.

https://fiend.solanpaa.fi
https://pypi.org/project/fiend/
https://hub.docker.com/r/solanpaa/fiend/
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1. Introduction

Simulation of three-dimensional (3D) single particle quantum mechanics (QM) is still
one of the most used computational approaches in the strong field and attosecond
communities. In these fields, the nonlinear interaction of the atomic or molecular
electron with the driving laser field requires fast and accurate integration of the 3D
time dependent Schrödinger equation (TDSE). Recent applications include, e.g., bench-
marking of approximate models [1–6], study of high-order harmonic generation [7–9],
and the study of photoionization [10–14].

Recently the strong-field and attosecond communities have turned their attention
to related phenomena in nanostructures. There the nanostructure geometry and
plasmonic effects cause the electromagnetic (EM) field to become extremely inhomo-
geneous [15] which, in turn, causes significant differences to the traditional ultrafast
and strong-field phenomena in atoms and molecules. Recent studies include, e.g.,
nanostructure-enhanced photoionization of gases [16–18] and electron emission from
nanostructures such as tips [19–28] and rods [29–33].

There are already multiple software designed for integrating the three-dimensional
time-dependent Schrödinger equation (TDSE). Open-source software include, e.g.,
Qprop [34], Octopus [35, 36], QnDynCUDA [37], and WavePacket [38], but there are also
plenty of other options such as SCID-TDSE [39], tRecX [40, 41], and ALTDSE [42]. Qprop,
SCID-TDSE, and QnDynCUDA solve the TDSE using a grid-based representation of
the radial coordinates and spherical harmonics for the angular dependence; TRecX
and WavePacket support multiple basis sets; Octopus relies on a real-space grid; and
ALTDSE requires end-user to provide the matrices in an appropriate eigenbasis.

However, efficient and accurate simulation of ultrafast and strong-field phenomena
in nanostructures and nanostructure-enhanced gases requires specialized TDSE-solvers.
Most importantly, since the laser electric field has strong spatial inhomogeneity, it is
imperative to have position-dependent control of simulation accuracy. In addition, it
would be beneficial to have the TDSE-solver directly interface with a solver for the EM
problem.

To this end, we have developed Fiend, a QM simulator based on the FEM. Fiend
provides solvers for the time independent and time-dependent single active elec-
tron Schrödinger equations in cylindrically symmetric systems1 for solving time-
independent and time-dependent Schrödinger equations in cylindrically symmetric
systems. We have designed Fiend to integrate with the open source FEniCS finite ele-
ment (FE) suite [43–49] allowing for easy description of complicated system geometries.
Being FEM-based, Fiend also allows the use of potentials with integrable singularities.
Fiend is written in Python 3.6, but much of the heavy number-crunching is

delegated to well-tested and efficient external libraries. The software is modular and
easy to extend. We also provide a comprehensive unit- and integration-test suite to
ensure reliability. Moreover, we provide straightforward installation methods either
via the Python Package Index [50] or as Docker images [51].

This paper is organized as follows. In Sec. 6 we describe the FE discretization of the

1Although the restriction to cylindrically symmetric systems can be lifted relatively easily if
needed.
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Schrödinger equations and the time-propagation schemes. Section 6 focuses on the
design and implementation of Fiend. Section 6 provides a few example simulation,
and finally, in Sec. 6 we summarize this paper and possible extensions of the presented
software suite.

2. Finite element quantum mechanics

2.1. Systems

Fiend is designed for simulating cylindrically symmetric single (active) electron
systems interacting with time and (optionally) position dependent vector potentials.
The Hamiltonian operator of these systems can be written as

Ĥ � T̂ρ +
p̂2

z

2 + V(ρ̂, ẑ) + W(ρ̂, ẑ , p̂ρ , p̂z , t), (6)

where ρ̂ is the planar radial coordinate operator, ẑ the z-coordinate operator, T̂ρ the
kinetic energy operator with respect to planar radial motion2, p̂z the z-component of
the momentum operator, V the static potential, and W the light-matter interaction
operator.
Fiend readily supports three types of interaction operators W . First, for linearly

polarized vector potentials A � f (t)ez in the length gauge the interaction operator is
given by

WLG � −∂ f (t)
∂t

ẑ , (8)

secondly, in the velocity gauge the interaction operator reads

WVG � f (t)p̂z , (9)

and finally for more general cylindrically symmetric inhomogeneous vector potentials
A � As(ρ, z) f (t)we provide the interaction operator

Winhomogeneous �
1
2 f (t)As · p +

1
2 f (t)p ·As

+
1
2 f (t)2∥As(ρ̂, ẑ)∥2.

(10)

Moreover, Fiend supports all interaction operators of the form Ŵ � W(ρ̂, ẑ , p̂ρ , p̂z , t).
2Note that T̂ρ is not proportional to the square of the planar radial momentum operator, i.e.,

T̂ρ � −1
2

(︄
∂2

∂2
ρ

+
1
2
∂
∂ρ

)︄
≠

1
2

[︃
−i

(︃
∂
∂ρ

+
1

2ρ

)︃]︃2
�

p̂2
ρ

2 .

(7)

This is a peculiarity of quantum mechanics in cylindrical coordinates [52].
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Figure 1: (a) Simulation domain Ω is a truncation of the full ρ ≥ 0 half-plane. We can
impose both Dirichlet and Neumann boundary conditions at will on different sections
(ΓD , ΓN ) of the domain boundary ∂Ω. (b) Triangular mesh of the domain Ω supports
arbitrary spatial refinement.

The above interaction operators conserve the magnetic quantum number m, and by
default, we simulate only the m � 0 subspace. Correspondingly, the coordinate space
domain is a two-dimensional slice of the cylindrical coordinates, Ω∞ �

{︁
ρ ≥ 0, z ∈ R}︁,

which we truncate for numerical simulations to a finite domain Ω [see Fig. 1(a)].

2.2. Time independent Schrödinger equation

On the domain ΩTI the time-independent Schrödinger equation (TISE) can be written
as

− 1
2ρ

∂
∂ρ

(︃
ρ
∂ψk

∂ρ

)︃
− 1

2
∂2ψk

∂z2 + V(ρ, z)ψk � Ekψk , (11)

where Ek , ψk is the kth eigenpair. This equation is accompanied by continuity boundary
condition at ρ � 0,

lim
ρ→0+

(︃
ρ
∂ψ

∂ρ

)︃
� 0. (12)

Elsewhere on the boundary ∂ΩTI we can choose freely between zero Neumann
boundary conditions (ZNBCs) and zero Dirichlet boundary conditions (ZDBCs) –
depending on the requirements of our model. For example, in Fig. 1(a) where we have
imposed ZNBC on the upper boundary of the simulation domain, ΓN , and ZDBC on
the arc ΓD .

To discretize TISE, we begin by looking for eigenpairs Ek ∈ R, ψk ∈ F of the weak
form corresponding to Eq. (11) and the boundary conditions described above. The
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weak form is given by

− 1
2

∫
ΩTI

∑︂
α�ρ,z

∂χ
∂α

∂ψk

∂α
ρ dρ dz

+

∫
ΩTI

χV(ρ, z)ψkρ dρ dz

� Ek

∫
ΩTI

χψkρ dρ dz ∀χ ∈ F,

(13)

where F �
{︁
ψ ∈ H1(ΩTI) | ψ(ΓD) � 0

}︁
is the standard Sobolev space on ΩTI of real-

valued L2-integrable functions with L2 integrable first derivatives. Notice also that F
includes ZDBCs, and the natural inner product is⟨︁

χ
|︁|︁ψ⟩︁

�

∫
ΩTI

χ(ρ, z)∗ψ(ρ, z) ρ dρ dz. (14)

Furthermore, we must restrict ourselves to a finite dimensional approximation of F.
First, the simulation domain ΩTI is described using an unstructured triangular mesh
which supports arbitrary refinement [see, e.g., Fig. 1(b)]. Next, we construct a basis of
continuous low-order Lagrange polynomials ϕi , each with compact support on the
mesh elements. This basis spans a finite dimensional function space

Fh � span
{︁
ϕi

}︁N−1
i�0 ⊂ F (15)

where the TISE weak form [Eq. (13)] can be written as a finite dimensional generalized
Hermitian eigenvalue equation

(T + V)ψk � SEkψk . (16)

Here ψk is a vector of the real-valued expansion coefficients of the kth eigenstate, Ek
the corresponding eigenvalue, and

Si j �
⟨︁
ϕi

|︁|︁ϕ j
⟩︁
, (17)

Ti j � −1
2

∑︂
α�ρ,z

⟨︃
∂ϕi

∂α

|︁|︁|︁|︁∂ϕ j

∂α

⟩︃
, and (18)

Vi j �
⟨︁
ϕ
|︁|︁V(ρ, z)ϕ j

⟩︁
(19)

are the overlap, kinetic energy, and potential energy matrices, respectively. Note that
since the static potential of the system is implemented only via Eq. (19) which involves
integration, we can use any static potential for which Eq. (19) is finite, e.g., the Coulomb
potential.
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2.3. Time dependent Schrödinger equation

In a similar manner as with TISE, TDSE can be discretized as

iSψ̇(t) � (T + V + W)ψ(t), (20)

where ψ(t) is a vector of the complex-valued expansion coefficients ci(t) of the wave
function ψ(ρ, z , t) � ∑︁

ci(t)ϕi(ρ, z). S, T, and V are constructed the same way as for
TISE (except we add an imaginary absorbing potential to V), and the light-matter
interaction matrix is given by

Wi j �

⟨︃
ϕi

|︁|︁|︁|︁Ws

(︃
ρ, z ,

∂
∂ρ
,
∂
∂z
, t

)︃|︁|︁|︁|︁ϕ j

⟩︃
(21)

The basis of the discrete function space for TDSE can, in general, be different
from the one used for TISE. This is useful in practice since often the stationary states
can be computed in a much smaller simulation domain than needed for an accurate
description of the TDSE. We can change the function space by three methods: (1)
using a larger simulation domain for the TDSE, (2) refining the mesh according to the
requirements of the TDSE simulation, and (3) change the degree of our basis functions
according to the required accuracy.

For evolving the discretized state, i.e., the expansion coefficients ψ(t) according to
Eq. (20), Fiend implements two approximations of the time evolution operator: the
Crank-Nicolson (CN) method [53] and the generalized-α method [54].

The Crank-Nicolson (CN) method can be written as

ψ(t + ∆t) �
[︃
S +

i∆t
2 H

(︃
t +
∆t
2

)︃]︃−1

[︃
S − i∆t

2 H
(︃
t +
∆t
2

)︃]︃
ψ(t) + O(∆t2),

(22)

and it is a unitary time-reversible transformation [53] as long as the matrix inversion is
performed to a sufficient accuracy.

The generalized-α method was originally developed for integrating the equations
of motion arising from fluid dynamics [54], but we have successfully applied it to the
TDSE integration. To the best of our knowledge, the α-method has not been proven to
be unitary nor is it exactly time-reversible. Nevertheless, we have achieved accuracies
comparable to the CN method – and in the case of extremely inhomogeneous vector
potentials, the generalized-α method seems to be significantly more stable than CN.

2.4. Incorporation of boundary conditions

The continuity boundary condition at ρ � 0 and ZNBCs are automatically included
by dropping the boundary integrals when deriving Eqs. (13) and (18). However, the
ZDBCs must be included in the system matrices via the following modifications: the
rows and columns of S, T, V, and W corresponding to the degrees of freedom (DOFs)
on the boundary ΓD with ZDBCs set to zero. Only for S we must set the corresponding
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diagonal elements to one to ensure invertibility. Note that it’s crucial to zero out not
only the rows but also the corresponding columns of the matrices to retain hermiticity.

Embedding ZNBCs via the vanishing boundary terms when deriving Eqs. (13)
and (18) causes a practical issue: Some operators such as p̂z � −i∂z , p̂ρ � −i

(︂
∂ρ + 1

2ρ

)︂
,

and A · p + p · A become non-Hermitian. Minor adjustments at the boundaries can
remedy this, namely,

p̂ρ → −i
[︃
∂ρ +

1
2ρ −

1
2 δ(r − ΓN )nρ(r)

]︃
, (23)

p̂z → −i
[︃
∂z − 1

2 δ(r − ΓN )nz(r)
]︃
, and (24)

1
2 (A · p + p ·A) → 1

2 (A · p + p ·A) − i
2A · n(r)δ(r − ΓN ), (25)

where n(r) � [nρ(r), nz(r)]T is the outwards facing unit normal on the simulation
domain boundary at point r. This trick has been previously used to obtain the correct
Hermitian operators in hyperspherical coordinates [52].

Another aspect to consider is the weak enforcement of ZNBCs compared to ZDBCs.
If there was significant electron density on the Neumann boundary ΓN , it will start to
oscillate and eventually violate the ZNBC. This can be remedied when operating with
matrix inverses as in the second step of the CN-propagator. We can add an extra error
term, e.g., of the form

γ
∑︂

i

|︁|︁|︁|︁|︁|︁
∫
ΓN

χ∗i (ρ, z)∇ψ(ρ, z , t) · dS

|︁|︁|︁|︁|︁|︁
2

, γ ∈ R (26)

to the error estimator in our numerical implementation. This will remove – or at least
lessen – the issue arising from the weak enforcement of ZNBCs.

3. Implementation

3.1. Overview

We have implemented FE discretization of TISE and TDSE in the Python software
package Fiend following the recipes of Sec. 6. Fiend is written in Python 3.6 and it
utilizes reliable libraries commonly pre-installed in high-performance clusters and
supercomputers. For sparse linear algebra we use the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [55–57] and the Scalable Library for Eigenvalue
Problem Computations (SLEPc) [58, 59]. Meshing and other standard FEM-related
parts are built on top of the components of the FEniCS project [43–49], and filesystem
IO is largely based on HDF5 [60] via h5py [61, 62]. In postprocessing and visualization
we use also numpy [63], scipy [64], and matplotlib [65]. Fiend is parallelized using
MPI via mpi4py [66–68].

The PETSc-dependency is slightly complicated as PETSc needs to be compiled either
with real number support (x)or with complex number support. Fiend, on the other
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hand, needs real numbers for TISE and post-processing but complex numbers for
propagation. Consequently, the user must install both the real and complex versions
of PETSc/SLEPc stacks and switch between these for different simulation steps. This
factitious requirement for two different installations of PETSc can be revisited in the
future upon the completion of DOLFIN-X [69] and FFC-X [70] including the merge of
complex number support in FEniCS [71],

To ease installation, we provide a Docker [51] container with Fiend and all its
dependencies preinstalled, see https://hub.docker.com/r/solanpaa/fiend/ for
more details. In the same spirit, Fiend is also available in the Python Package
Index [50] and can be installed with pip [72].

3.2. Library usage and numerical methods

A typical usage of the Fiend suite is demonstrated in Fig. 2. First we solve the TISE
to obtain a set of stationary states. This includes meshing the domain for the time
independent simulation and assembling the system matrices (17)–(19) with appropriate
boundary conditions (see Sec. 6).

The TISE eigenproblem, Eq. (16), is solved (by default) with Rayleigh Quotient
Conjugate Gradient (RQCG) method combined with classical Gram-Schmidt orthogo-
nalization of the Krylov subspace basis with adaptive iterative refinement for increased
numerical stability. RQCG is a variational method which essentially minimizes the
Rayleigh quotient

ψ†kH0ψk

ψ†kSψk
(27)

of a desired number of orthonormal vectors with respect to the bilinear product
induced by S [59]. Upon convergence, this corresponds to k smallest real eigenpairs of
TISE.

Step 2 (see Fig. 2) is to prepare the discrete description of the TDSE. This includes
meshing the domain for the time dependent problem, interpolating stationary states
to the new mesh, and also assembly of the system matrices (17)–(19) and the time-
independent part(s) of Eq. (21).

The propagation in Step. 3 (Fig. 2) requires the user to load the environment with
complex number PETSc. The time-dependent Hamiltonian is constructed from the
matrices computed in the previous step, and the discrete TDSE (20) is solved with
PETSc’s propagators. We also provide code templates for easy implementation of new
propagators.

Finally, we provide a set of example scripts for postprocessing. These scripts
include, e.g., visualization of the integrated electron density in time and temporal
shape of the laser field, but there are also scripts to compute more complex observables
such as the high-harmonic and photoelectron spectra.

All the numerical methods in Fiend depend on efficient sparse linear algebra
operations implemented in PETSc. By default, matrix inversions and the solution
of linear equations are carried out with Generalized Minimal RESidual method
(GMRES) [73], where the convergence criterion is computed with respect to the norm
induced by the inner product in Eq. (14). Unfortunately, the PETSc linear algebra

https://hub.docker.com/r/solanpaa/fiend/
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1. Solve TISE

• Mesh ΩTI

• Assemble matrices

• Solve eigenproblem

• Save results

2. Preparation step

• Mesh ΩTD

• Remesh stationary states if necessary

• Assemble matrices

• Save matrices and states and convert them to complex numbers

3. Propagation

• Load matrices and states from step 2

• Construct time-dependent Hamiltonian

• Compute ψ(t) and save data

4. Analysis

• Post-processing

• Multiple example scripts available

Load FEniCS/PETSc with real numbers

Switch to PETSc with complex numbers

Switch to PETSc with real numbers

Figure 2: Typical simulation structure with Fiend together with the required changes
to the runtime environment between the steps.
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backend does not allow us to build the basis of the Krylov subspace with respect to
a custom inner product. However, we have found the basis built with the standard
Hermitian inner product to be sufficient performance-wise. Direct solvers such as
SuperLU_DIST [74–76] and MUMPS [77, 78] are supported only with matrices that can be
explicitly constructed without too high cost.

3.3. Note on meshing

We provide a way to generate meshes with arbitrary refinement in the coordinate space.
The user should supply a function returning the maximum allowed cell circumradius3
at coordinate r, and the mesh can be refined until all cells of the mesh have circumradius
below the desired one.

By default, the maximum cell circumradius is given by [79]

max CR(r) � CRasymp

[︃
1 −

(︃
1 − CRref

CRasymp

)︃
× Rref

r
tanh

(︃
r

Rref

)︃
exp

(︄
− r2

R2
trans

)︄]︄
.

(28)

For r < Rref the cell circumradii are below CRref, and as r → Rtrans, the maximum cell
circumradius increases monotonically to CRasymp.

4. Examples and test cases

4.1. Field-free propagation

To assess the stability and accuracy of the numerical methods implemented in Fiend,
we compute a field-free propagation of an electron prepared in a superposition of
Hydrogen 1s and 2s states,

ψ(t � 0) � 1√
2

(︁
ψ1s + ψ2s

)︁
. (29)

This state is propagated up to 100 a.u. of time. The simulation domain up to R � 30 a.u.
is meshed using the default refinement introduced in Sec. 6 with Rref � 4 a.u.,
Rref � 10 a.u., CRref � 0.01 a.u. and CRasymp � 0.5 a.u. We assess the accuracy of
the numerical solution by comparing the simulated state to the exact result:|︁|︁1 − | ⟨︁ψexact

|︁|︁ψFiend⟩︁ |2|︁|︁ . (30)

The stability is investigated by evaluating how much the norm of the state differs from
unity, i.e., |︁|︁1 − ∥ψFiend∥2|︁|︁ . (31)

Both the α-propagator and the CN propagator reach an accuracy of 0.00524 % for
the overlap with the time-step 0.05 a.u., and the norm of the simulated state deviates
from unity only by 3.22 · 10−5 %. This demonstrates the applicability of the propagators
for the simulation of FE-discretized TDSE in cylindrical coordinates.

3Radius of the smallest circle enclosing the given triangular cell.
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Figure 3: High-order harmonic spectrum of a hydrogen atom under a few-cycle
femtosecond laser pulse.

4.2. High-harmonic generation

Next we demonstrate the applicability of Fiend to simulate high-order harmonic
generation (HHG). According to the three-step model [80, 81], an atomic electron is
excited to continuum and driven to oscillate around the atom [82]. Upon recombination
with the parent ion, the excess energy is released as high-energy photons.

Full 3D simulation of HHG via TDSE is a difficult task due to the long extent of
the electron wave function when driven by a short laser pulse. In order to obtain a
decent description of the single-atom response for HHG, a large simulation domain is
needed. We setup a simulation domain of radius 800 a.u. with a more refined mesh at
the origin and gradually sparser mesh for larger radii.

The intensity spectrum of the single-atom response is proportional to the square of
the Fourier transform of the dipole acceleration [83],

S(ω) ∝ |︁|︁⟨︁D̈z
⟩︁ (ω)|︁|︁2 , (32)

where we compute the dipole acceleration via Ehrenfest’s theorem [84], i.e.,⟨︁
D̈z

⟩︁ (t) � ⟨︃
ψ(t)

|︁|︁|︁|︁−∂V
∂z

|︁|︁|︁|︁ψ(t)⟩︃ . (33)

In Fig. 3 we show the computed high-order harmonic spectrum computed for a
hydrogen atom under a laser pulse with carrier frequency corresponding to 800 nm,
intensity full width at half maximum 4.8 fs, and electric field peak intensity 36 GV/m.
The spectrum is a typical HHG spectrum from a femtosecond laser pulse, and it ends
at the cut-off energy ∼ 2 a.u. in a decent agreement with the three-step model’s cutoff
∼ 1.7 a.u. [80, 81].

4.3. Metal nanotips and inhomogeneous fields

Metal nanotips have recently attracted attention due to their ability to enhance the
laser electric field at the tip apex via plasmonic effects (see, e.g., [19–28]). Fiend is
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Figure 4: (a) Setup of the nanotip geometry where we have a sharp boundary between
the gold nanotip and vacuum. (b) Computed spatial enhancement profile of the electric
near field in a quasistatic approximation. (c)-(f) Snapshots of the electron density
during time evolution.

capable of computing single-electron dynamics of these metal nanotapers including
correctly the interaction with the inhomogeneous plasmon enhanced laser field.

The first step is to compute the plasmon enhanced near field. Here we consider a
gold nanotip with apex radius 7 nm and full opening angle of 20 ◦ as demonstrated
in Fig. 4(a). For typical laser wavelengths, such as 800 nm used here, a quasistatic
description of the laser vector potential is applicable, i.e.,

A(r, t) � As(r) f (t), (34)

where the spatial form As is the same as for the electric field

As(r) � E(r) � −∇U(r). (35)

The electrostatic potential U(r) can be computed from the Poisson equation

− ∇ · [ϵ(r)∇U(r)] � 0, (36)

where ϵ(r) is the dielectric function of the material at position r. Inside the gold nanotip
the complex dielectric function (at 800 nm) is ϵAu � −24.061 + 1.5068 i [85, 86] and at
vacuum ϵvac � 1.
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We can describe Eq. (38) using cylindrical coordinates. The interface condition

ϵAu∇u |r→Γtip-vac − ϵvac∇u |r→Γvac-tip � 0 (37)

gives rise to the weak form

ϵvac

∫
vacuum

∇v∗(r) · ∇u(r) ρ dρ dz

+ ϵAu

∫
tip

∇v∗(r) · ∇u(r) ρ dρ dz � 0 ∀v ∈ Û
(38)

with the test function space

Û �
{︁

v : Ω→ C | Re(v), Im(v) ∈ H1(Ω) :
v(ΓD) � 0

}︁ (39)

and the trial function space

U �
{︁

u : Ω→ C | Re(u), Im(u) ∈ H1(Ω) :
u(r ∈ ΓD) � z

}︁
.

(40)

The simulation domain is a rectangular area, and the ZDBCs described above are
imposed on the external boundaries denoted by ΓD . Note that Fig. 4(a) demonstrates the
domain and boundaries for the quantum simulation – for Poisson equation we employ a
much larger simulation domain. The equation (38) can be solved easily with the FEniCS
FEM-suite and we provide an example script at demos/nanotip/1_near_field.py

The computed spatial distribution of the field, ∥As(x , y , z)∥, is demonstrated in
Fig. 4(b). The field is at its maximum at the nanotip apex and decays rapidly with the
distance to the tip. We note that this quasistatic solution provides field-enhancement
factor of f ≈ 10 which is comparable with experimental results [87].

In TDSE, we use a potential well for the static potential,

U(r) �
{︃

0, vacuum
−Φ, inside the tip, (41)

where Φ � 5.31 eV is the work function of Au (111)-surface [88].
We prepare the electron as a Gaussian wave packet [Fig. 4(c)] and assemble the sys-

tem matrices – including the inhomogeneous field – withdemos/nanotip/3_prepare_tdse.py.
The preparation step is slightly more complex than for linearly polarized vector po-
tentials, but the provided example script should work as a template for further
expansions.

We use a 800 nm pulse with 15 fs full width at half maximum for the Gaussian
envelope. The maximum electric field amplitude without nanostructure enhancement
is set to 30 GV/nm. Snapshots of the electron density during propagation are shown in
Figs. 4(c)-(f). As expected, the electron emission is concentrated at the tip apex where
the field enhancement is at its highest. Only a small percentage (∼2 %) of the electron
density is absorbed at the simulation box boundary.



163

5. Summary

We have presented Fiend – a versatile solver for single-particle quantum dynamics in
cylindrically symmetric systems. This Python package provides an easy path for the
study of nonlinear strong-field phenomena in atoms and nanostructures under both
homogeneous and inhomogeneous vector potentials. Moreover, the FE discretization
used by Fiend can adapt to complicated system geometries. The package is parallelized
using MPI, and much of the high-performance computing is delegated to state-of-
the-art numerical libraries. Fiend is modular and easy to extend, and we provide
comprehensive documentation for the program code.

We have demonstrated the capabilities of Fiend by simulating two different scenar-
ios. The simulation of high-order harmonic generation from a laser-driven hydrogen
atom shows that Fiend can be applied to traditional strong-field phenomena in
atoms. Furthermore, a simulation of the photoionization of a gold nanotip demon-
strates Fiend’s suitability for studying plasmon-enriched strong-field phenomena in
nanostructures.

6. Acknowledgements

We are grateful to Matti Molkkari and Joonas Keski-Rahkonen for insightful discussions.
This work was supported by the Alfred Kordelin foundation and the Academy of
Finland (grant no. 304458). We also acknowledge CSC – the Finnish IT Center for
Science – for computational resources.

[1] N. Suárez, A. Chacón, J. A. Pérez-Hernández, J. Biegert, M. Lewenstein, and M. F.
Ciappina, High-order-harmonic generation in atomic and molecular systems, Phys. Rev. A 95,
033415 (2017).

[2] N. I. Shvetsov-Shilovski et al., Semiclassical two-step model for strong-field ionization, Phys.
Rev. A 94, 013415 (2016).

[3] A. Galstyan et al., Reformulation of the strong-field approximation for light-matter interactions,
Phys. Rev. A 93, 023422 (2016).

[4] M. Klaiber, J. Daněk, E. Yakaboylu, K. Z. Hatsagortsyan, and C. H. Keitel, Strong-field
ionization via a high-order Coulomb-corrected strong-field approximation, Phys. Rev. A 95,
023403 (2017).

[5] A.-T. Le, H. Wei, C. Jin, and C. D. Lin, Strong-field approximation and its extension for
high-order harmonic generation with mid-infrared lasers, J. Phys. B 49, 053001 (2016).

[6] S. Majorosi, M. G. Benedict, and A. Czirják, Improved one-dimensional model potentials for
strong-field simulations, Phys. Rev. A 98, 023401 (2018).

[7] L. Wang, G.-L. Wang, Z.-H. Jiao, S.-F. Zhao, and X.-X. Zhou, High-order harmonic
generation of Li + with combined infrared and extreme ultraviolet fields, Chin. Phys. B 27,
073205 (2018).

[8] Z. Abdelrahman et al., Chirp-control of resonant high-order harmonic generation in indium
ablation plumes driven by intense few-cycle laser pulses, Opt. Express 26, 15745 (2018).

https://doi.org/10.1103/PhysRevA.95.033415
https://doi.org/10.1103/PhysRevA.95.033415
https://doi.org/10.1103/PhysRevA.94.013415
https://doi.org/10.1103/PhysRevA.94.013415
https://doi.org/10.1103/PhysRevA.93.023422
https://doi.org/10.1103/PhysRevA.95.023403
https://doi.org/10.1103/PhysRevA.95.023403
https://doi.org/10.1088/0953-4075/49/5/053001
https://doi.org/10.1103/PhysRevA.98.023401
https://doi.org/10.1088/1674-1056/27/7/073205
https://doi.org/10.1088/1674-1056/27/7/073205
https://doi.org/10.1364/OE.26.015745


164 Fiend – Finite Element Quantum Dynamics

[9] A.-T. Le, H. Wei, C. Jin, V. N. Tuoc, T. Morishita, and C. D. Lin, Universality of Returning
Electron Wave Packet in High-Order Harmonic Generation with Midinfrared Laser Pulses,
Phys. Rev. Lett. 113, 033001 (2014).

[10] C. Hofmann et al., Interpreting electron-momentum distributions and nonadiabaticity in
strong-field ionization, Phys. Rev. A 90, 043406 (2014).

[11] V. P. Majety, A. Zielinski, and A. Scrinzi, Mixed gauge in strong laser-matter interaction, J.
Phys. B 48, 025601 (2015).

[12] A. M. Sayler et al., Accurate determination of absolute carrier-envelope phase dependence using
photo-ionization, Opt. Lett. 40, 3137 (2015).

[13] X. Y. Lai, W. Quan, S. G. Yu, Y. Y. Huang, and X. J. Liu, Suppression in high-order
above-threshold ionization: destructive interference from quantum orbits, J. Phys. B 51, 104003
(2018).

[14] D. Zille, D. Adolph, M. Möller, A. M. Sayler, and G. G. Paulus, Chirp and carrier-envelope-
phase effects in the multiphoton regime: measurements and analytical modeling of strong-field
ionization of sodium, New J. Phys. 20, 063018 (2018).

[15] J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma,
Plasmonics for extreme light concentration and manipulation, Nat. Mater. 9, 193 (2010).

[16] L. Ortmann et al., Emergence of a Higher Energy Structure in Strong Field Ionization with
Inhomogeneous Electric Fields, Phys. Rev. Lett. 119, 053204 (2017).

[17] L. Ortmann and A. S. Landsman, Analysis of the higher-energy structure in strong-field
ionization with inhomogeneous electric fields, Phys. Rev. A 97, 023420 (2018).

[18] M. F. Ciappina et al., Emergence of a Higher Energy Structure in Strong Field Ionization with
Inhomogeneous Laser Fields, in High-Brightness Sources and Light-driven Interactions
(2018).

[19] B. Piglosiewicz et al., Carrier-envelope phase effects on the strong-field photoemission of
electrons from metallic nanostructures, Nat. Photonics 8, 37 (2013).

[20] M. Kruger, M. Schenk, M. Forster, and P. Hommelhoff, Attosecond physics in photoemission
from a metal nanotip, J. Phys. B 45, 074006 (2012).

[21] L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Ropers,
Terahertz control of nanotip photoemission, Nat. Phys. 10, 43 (2014).

[22] R. Bormann, S. Strauch, S. Schäfer, and C. Ropers, An ultrafast electron microscope gun
driven by two-photon photoemission from a nanotip cathode, J. Appl. Phys. 118, 173105 (2015).

[23] G. M. Caruso, F. Houdellier, P. Abeilhou, and A. Arbouet, Development of an ultrafast
electron source based on a cold-field emission gun for ultrafast coherent TEM, Appl. Phys. Lett.
111, 023101 (2017).

[24] B. Barwick, C. Corder, J. Strohaber, N. Chandler-Smith, C. Uiterwaal, and H. Batelaan,
Laser-induced ultrafast electron emission from a field emission tip, New J. Phys. 9, 142 (2007).

[25] G. Herink, D. R. Solli, M. Gulde, and C. Ropers, Field-driven photoemission from nanos-
tructures quenches the quiver motion, Nature 483, 190 (2012).

[26] R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin, and C. Ropers, Tip-Enhanced
Strong-Field Photoemission, Phys. Rev. Lett. 105, 147601 (2010).

[27] B. Förg et al., Attosecond nanoscale near-field sampling, Nat. Commun. 7, 11717 (2016).

https://doi.org/10.1103/PhysRevLett.113.033001
https://doi.org/10.1103/PhysRevA.90.043406
https://doi.org/10.1088/0953-4075/48/2/025601
https://doi.org/10.1088/0953-4075/48/2/025601
https://doi.org/10.1364/OL.40.003137
https://doi.org/10.1088/1361-6455/aabc83
https://doi.org/10.1088/1361-6455/aabc83
https://doi.org/10.1088/1367-2630/aac3ca
https://doi.org/10.1038/nmat2630
https://doi.org/10.1103/PhysRevLett.119.053204
https://doi.org/10.1103/PhysRevA.97.023420
https://doi.org/10.1364/HILAS.2018.HM4A.5
https://doi.org/10.1038/nphoton.2013.288
https://doi.org/10.1088/0953-4075/45/7/074006
https://doi.org/0.1038/nphys2974
https://doi.org/10.1063/1.4934681
https://doi.org/10.1063/1.4991681
https://doi.org/10.1063/1.4991681
https://doi.org/10.1088/1367-2630/9/5/142
https://doi.org/10.1038/nature10878
https://doi.org/10.1103/PhysRevLett.105.147601
https://doi.org/10.1038/ncomms11717


165

[28] S. V. Yalunin et al., Field localization and rescattering in tip-enhanced photoemission, Ann.
Phys. 525, L12.

[29] R. G. Hobbs et al., High-density Au nanorod optical field-emitter arrays, Nanotechnology
25, 465304 (2014).

[30] F. Kusa, K. E. Echternkamp, G. Herink, C. Ropers, and S. Ashihara, Optical field emission
from resonant gold nanorods driven by femtosecond mid-infrared pulses, AIP Adv. 5, 077138
(2015).

[31] A. Grubisic et al., Plasmonic Near-Electric Field Enhancement Effects in Ultrafast Photoelectron
Emission: Correlated Spatial and Laser Polarization Microscopy Studies of Individual Ag
Nanocubes, Nano Lett. 12, 4823 (2012).

[32] R. G. Hobbs et al., High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical
Field Electron Emitter Arrays, ACS Nano 8, 11474 (2014).

[33] A. Grubisic, V. Schweikhard, T. A. Baker, and D. J. Nesbitt, Coherent Multiphoton
Photoelectron Emission from Single Au Nanorods: The Critical Role of Plasmonic Electric
Near-Field Enhancement, ACS Nano 7, 87 (2013).

[34] D. Bauer and P. Koval, Qprop: A Schrödinger-solver for intense laser–atom interaction,
Comput. Phys. Commun. 174, 396 (2006).

[35] M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, octopus: a first-principles tool for
excited electron–ion dynamics, Comput. Phys. Commun. 151, 60 (2003).

[36] A. Castro et al., octopus: a tool for the application of time-dependent density functional theory,
Phys. Stat. Sol. (b) 243, 2465 (2006).

[37] C. Ó. Broin and L. Nikolopoulos, A GPGPU based program to solve the TDSE in intense
laser fields through the finite difference approach, Comput. Phys. Commun. 185, 1791 (2014).

[38] B. Schmidt and U. Lorenz, WavePacket: A Matlab package for numerical quantum dynamics.
I: Closed quantum systems and discrete variable representations, Comput. Phys. Commun.
213, 223 (2017).

[39] S. Patchkovskii and H. Muller, Simple, accurate, and efficient implementation of 1-electron
atomic time-dependent Schrödinger equation in spherical coordinates, Comput. Phys. Commun.
199, 153 (2016).

[40] A. Scrinzi, Infinite-range exterior complex scaling as a perfect absorber in time-dependent
problems, Phys. Rev. A 81, 053845 (2010).

[41] L. Tao and A. Scrinzi, Photo-electron momentum spectra from minimal volumes: the time-
dependent surface flux method, New J. Phys. 14, 013021 (2012).

[42] X. Guan, C. J. Noble, O. Zatsarinny, K. Bartschat, and B. I. Schneider, ALTDSE: An
Arnoldi–Lanczos program to solve the time-dependent Schrödinger equation, Comput. Phys.
Commun. 180, 2401 (2009).

[43] The FEniCS Project Version 1.5, Archive of Numerical Software 3 (2015).

[44] A. Logg, K.-A. Mardal, and G. Wells, eds., Automated Solution of Differential Equations
by the Finite Element Method: The FEniCS Book, Vol. 84, Lecture Notes in Computational
Science and Engineering (Springer-Verlag Berlin Heidelberg, 2012).

[45] A. Logg and G. N. Wells, DOLFIN: Automated Finite Element Computing, ACM Transactions
on Mathematical Software 37, 20 (2010).

https://doi.org/10.1002/andp.201200224
https://doi.org/10.1002/andp.201200224
https://doi.org/10.1088/0957-4484/25/46/465304
https://doi.org/10.1088/0957-4484/25/46/465304
https://doi.org/10.1063/1.4927151
https://doi.org/10.1063/1.4927151
https://doi.org/10.1021/nl302271u
https://doi.org/10.1021/nn504594g
https://doi.org/10.1021/nn305194n
https://doi.org/10.1016/j.cpc.2005.11.001
https://doi.org/10.1016/S0010-4655(02)00686-0
https://doi.org/10.1002/pssb.200642067
https://doi.org/10.1016/j.cpc.2014.02.019
https://doi.org/10.1016/j.cpc.2016.12.007
https://doi.org/10.1016/j.cpc.2016.12.007
https://doi.org/10.1016/j.cpc.2015.10.014
https://doi.org/10.1016/j.cpc.2015.10.014
https://doi.org/10.1103/PhysRevA.81.053845
https://doi.org/10.1088/1367-2630/14/1/013021
https://doi.org/10.1016/j.cpc.2009.03.005
https://doi.org/10.1016/j.cpc.2009.03.005
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1145/1731022.1731030


166 Fiend – Finite Element Quantum Dynamics

[46] R. C. Kirby and A. Logg, A Compiler for Variational Forms, ACM Transactions on
Mathematical Software 32, 417 (2006).

[47] K. B. Ølgaard and G. N. Wells, DOLFIN: Automated Finite Element Computing, ACM
Transactions on Mathematical Software 37, 8 (2010).

[48] Unified Form Language: A domain-specific language for weak formulations of partial differential
equations, ACM Transactions on Mathematical Software 40, 9 (2014).

[49] R. C. Kirby, Algorithm 839: FIAT, a New Paradigm for Computing Finite Element Basis
Functions, ACM Transactions on Mathematical Software 30, 502 (2004).

[50] J. Solanpää, Fiend in PyPI, (2018) https://pypi.org/project/fiend (visited on
11/19/2018).

[51] Docker Inc., Enterprise Container Platform, (2018) https://www.docker.com (visited on
11/19/2018).

[52] G. Paz, On the connection between the radial momentum operator and the Hamiltonian in n
dimensions, European Journal of Physics 22, 337 (2001).

[53] J. Crank and P. Nicolson, A practical method for numerical evaluation of solutions of partial
differential equations of the heat-conduction type, Adv. Comput. Math. 6, 207 (1996).

[54] K. E. Jansen, C. H. Whiting, and G. M. Hulbert, A generalized-α method for integrating the
filtered Navier–Stokes equations with a stabilized finite element method, Computer Methods
in Applied Mechanics and Engineering 190, 305 (2000).

[55] S. Balay et al., PETSc Users Manual, tech. rep. ANL-95/11 - Revision 3.9 (Argonne
National Laboratory, 2018).

[56] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient Management of Parallelism
in Object Oriented Numerical Software Libraries, in Modern Software Tools in Scientific
Computing, edited by E. Arge, A. M. Bruaset, and H. P. Langtangen (1997), pp. 163–202.

[57] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using
Python, Advances in Water Resources 34, New Computational Methods and Software
Tools, 1124 (2011).

[58] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A Scalable and Flexible Toolkit for the
Solution of Eigenvalue Problems, ACM Trans. Math. Software 31, 351 (2005).

[59] J. E. Roman, C. Campos, E. Romero, and A. Tomas, SLEPc Users Manual, tech. rep. DSIC-
II/24/02 - Revision 3.9 (D. Sistemes Informàtics i Computació, Universitat Politècnica
de València, 2018).

[60] The HDF Group, Hierarchical Data Format, version 5, (2018) http://www.hdfgroup.org/
HDF5/.

[61] HDF5 for Python, http://www.h5py.org (visited on 11/19/2018).

[62] A. Collette, Python and HDF5 (O’Reilly, 2013).

[63] T. E. Oliphant, A guide to NumPy, 2nd ed. (CreateSpace Independent Publishing Platform,
2015).

[64] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools for Python,
(2001) http://www.scipy.org/ (visited on 11/19/2018).

[65] J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engi-
neering 9, 90 (2007).

https://doi.org/scho10.1145/1163641.1163644
https://doi.org/scho10.1145/1163641.1163644
https://doi.org/10.1145/1644001.1644009
https://doi.org/10.1145/1644001.1644009
https://doi.org/10.1145/2566630
https://doi.org/10.1145/1039813.1039820
https://pypi.org/project/fiend
https://www.docker.com
https://doi.org/10.1088/0143-0807/22/4/308
https://doi.org/10.1007/BF02127704
https://doi.org/0.1016/S0045-7825(00)00203-6
https://doi.org/0.1016/S0045-7825(00)00203-6
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1145/1089014.1089019
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
http://www.h5py.org
http://www.scipy.org/
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55


167

[66] L. Dalcin, P. Kler, R. Paz, and A. Cosimo, Parallel Distributed Computing using Python,
Advances in Water Resources 34, 1124 (2011).

[67] MPI for Python: performance improvements and MPI-2 extensions, Journal of Parallel and
Distributed Computing 68, 655 (2008).

[68] MPI for Python, Journal of Parallel and Distributed Computing 65, 1108 (2005).

[69] FeniCS/dolfinx: Next generation FEniCS problem solving environment, (2018) https:
//github.com/FEniCS/dolfinx (visited on 11/19/2018).

[70] FeniCS/ffcx: Next generation FEniCS Form Compuler, (2018) https://github.com/
FEniCS/ffcx (visited on 11/19/2018).

[71] I. Baratta, Complex Number support in FEniCS, (2018) https://gist.github.com/
IgorBaratta/c7ca5252834f2c70efe0d233a3acecb4 (visited on 11/19/2018).

[72] Python Software Foundation, Installing PythonModules, (2018) https://docs.python.
org/3/installing/ (visited on 11/19/2018).

[73] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing 7,
856 (1983).

[74] X. S. Li, An Overview of SuperLU: Algorithms, Implementation, and User Interface, TOMS
31, 302 (2005).

[75] X. Li, J. Demmel, J. Gilbert, iL. Grigori, M. Shao, and I. Yamazaki, SuperLU Users’ Guide,
tech. rep. LBNL-44289 (Lawrence Berkeley National Laboratory, 1999).

[76] X. S. Li and J. W. Demmel, SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct
Solver for Unsymmetric Linear Systems, ACM Trans. Mathematical Software 29, 110 (2003).

[77] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A Fully Asynchronous Multifrontal
Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and
Applications 23, 15 (2001).

[78] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for the
parallel solution of linear systems, Parallel Computing 32, 136 (2006).

[79] F. Gygi and G. Galli, Real-space adaptive-coordinate electronic-structure calculations, Phys.
Rev. B 52, R2229 (1995).

[80] J. L. Krause, K. J. Schafer, and K. C. Kulander, High-order harmonic generation from atoms
and ions in the high intensity regime, Phys. Rev. Lett. 68, 3535 (1992).

[81] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, Theory of
high-harmonic generation by low-frequency laser fields, Phys. Rev. A 49, 2117 (1994).

[82] M. Lewenstein and A. L’Huillier, Principles of Single Atom Physics: High-Order Harmonic
Generation, Above-Threshold Ionization and Non-Sequential Ionization, in Strong Field Laser
Physics, edited by T. Brabec (Springer, New York, USA, 2008), pp. 147–184.

[83] J. A. Pérez-Hernández and L. Plaja, Comment on ’On the dipole, velocity and acceleration
forms in high-order harmonic generation from a single atom or molecule’, J. Phys. B 45, 028001
(2012).

[84] A. Gordon and F. X. Kärtner, The Ehrenfest Theorem and Quantitative Predictions of
HHG based on the Three-step Model, in Ultrafast Optics V, edited by S. Watanabe and
K. Midorikawa (Springer New York, New York, 2007), pp. 183–186.

https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2005.03.010
https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/ffcx
https://github.com/FEniCS/ffcx
https://gist.github.com/IgorBaratta/c7ca5252834f2c70efe0d233a3acecb4
https://gist.github.com/IgorBaratta/c7ca5252834f2c70efe0d233a3acecb4
https://docs.python.org/3/installing/
https://docs.python.org/3/installing/
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1145/1089014.1089017
https://doi.org/10.1145/779359.779361
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1016/j.parco.2005.07.004
https://doi.org/10.1103/PhysRevB.52.R2229
https://doi.org/10.1103/PhysRevB.52.R2229
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevA.49.2117
https://doi.org/10.1007/978-0-387-34755-4
https://doi.org/10.1007/978-0-387-34755-4
https://doi.org/10.1088/0953-4075/45/2/028001
https://doi.org/10.1088/0953-4075/45/2/028001
https://doi.org/10.1007/978-0-387-49119-6_23


168 Fiend – Finite Element Quantum Dynamics

[85] Optical constants of the noble metals, Phys. Rev. B 6, 4370 (1972).

[86] M. N. Polyanskiy, Refractive index database, 2018-11-19, https://refractiveindex.info.

[87] C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau, and T. Elsaesser, Localized Multiphoton
Emission of Femtosecond Electron Pulses from Metal Nanotips, Phys. Rev. Lett. 98, 043907
(2007).

[88] H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys. 48,
4729 (1977).

https://doi.org/10.1103/PhysRevB.6.4370
https://refractiveindex.info
https://doi.org/10.1103/PhysRevLett.98.043907
https://doi.org/10.1103/PhysRevLett.98.043907
https://doi.org/10.1063/1.323539
https://doi.org/10.1063/1.323539





	Cover
	Title Page
	Abstract
	Tiivistelmä
	Preface
	Contents
	List of Publications
	List of Abbreviations
	Introduction
	Attosecond science and control of electron dynamics
	Research objectives and scope of the thesis
	Organization of the thesis

	Ultrafast strong-field physics
	Atoms in ultrafast laser fields
	Quantum description of light-matter interaction
	On the use of one-dimensional models
	Ionization in strong-fields
	Above threshold ionization
	Calculating photoelectron spectrum
	Emitted electromagnetic fields
	High-order harmonic generation
	Semiclassical model
	Rydberg states

	Control of ultrafast strong-field phenomena
	On finding recipes for quantum control
	Tailoring femtosecond laser pulses
	Algorithmic search for control of laser-driven atomic processes

	Numerical methods
	Overview
	Simulations with the semiclassical model
	Solving Schrödinger's equation
	Optimization methods

	Results
	Optimal control of high-order harmonic generation
	Optimal control of photoelectron emission
	Control of Rydberg state populations in alkali metal atoms
	Fiend – Finite Element Quantum Dynamics

	Conclusions
	References
	Original papers
	Optimal control of high-harmonic generation by intense few-cycle pulses
	Optimal control of photoelectron emission by realistic waveforms
	Control of Rydberg state population with realistic femtosecond laser pulses
	Fiend – Finite Element Quantum Dynamics


