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Abstract

In this thesis we present computational and theoretical developments for density functional
theory (DFT) and time dependent density functional theory (TDDFT). We have explored a
new possible route to improve exchange and correlation functionals (XCF) in DFT, tested
and developed numerical propagators for TDDFT, and applied a combination of optimal
control theory with TDDFT.

In recent years, DFT has become the most used method in the electronic structure field
thanks to its unparalleled precision/computational cost relationship. We can use DFT to accu-
rately calculate many physical and chemical properties of atoms, molecules, nanostructures,
and bulk materials. The main factor that determines the precision that we can obtain using
DFT is the XCF, an unknown object for which hundreds of different approximations have
been proposed. Some of these approximations work well enough for certain situations, but to
this day there is no XCF that can be reliably applied to any arbitrary system. Moreover, there
is no clear way for a systematic refinement of these functionals. We propose and explore, for
one-dimensional systems, a new way to optimize them, based on establishing a relationship
with the electron-electron interaction.

TDDEFT is the extension of DFT to time-dependent and excited-states problems, and it is
also one of the most popular methods (sometimes the only practical one) in the electronic
structure community to deal with them. Once again, the reason behind its popularity is its
accuracy/computational cost ratio, which allows us to tackle bigger, more complex systems.
It can be used in combination with Ehrenfest dynamics, a non-adiabatic type of molecular
dynamics. We have furthermore combined both TDDFT and Ehrenfest dynamics with
optimal control theory, a scheme that has allowed us, for example, to predict the shapes of
the laser pulses that induce a Coulomb explosion in different sodium clusters. Despite the
good numerical performance of TDDFT compared to other methods, we found that these
computations were still quite expensive.

Motivated by this fact, we have also dedicated a part of the thesis work to computational
research. In particular, we have studied and implemented families of numerical propagators
that had not been tested in the context of TDDFT. More concretely, linear multistep schemes,

exponential Runge-Kutta formulas, and commutator-free Magnus expansions. Moreover,



we have implemented modifications of these commutator-free Magnus methods for the
propagation of the classical-quantum equations that result of combining Ehrenfest dynamics
with TDDFT.



xi

Resumen

En esta tesis se presentan avances computacionales y tedricos en la teoria de funcionales
de la densidad (DFT) y en la teoria de funcionales de la densidad dependientes del tiempo
(TDDFT). Hemos explorado una posible nueva ruta para la mejora de los funcionales
de intercambio y correlacion (XCF) en DFT, comprobado y desarrollado propagadores
numéricos para TDDFT, y aplicado una combinacién de la teoria de control 6ptimo con
TDDFT.

En los dltimos afios, DFT se ha convertido en el método mas utilizado en el area de
estructura electrénica gracias a su inigualable relacién entre coste y precision. Podemos
usar DFT para calcular multitud de propiedades fisicas y quimicas de &tomos, moléculas,
nanoestructuras, y materia macroscopica. El factor principal que determina la precision
que podemos alcanzar usando DFT es el XCF, un objeto desconocido para el cual se han
propuesto cientos de aproximaciones distintas. Algunas de estas aproximaciones funcionan
correctamente en ciertas situaciones, pero a dia de hoy no existe un XCF que pueda aplicarse
con certeza sobre su validez a un sistema arbitrario. Mds ain, no hay una forma sistematica
de refinar estos funcionales. Proponemos y exploramos, para sistemas unidimensionales,
una nueva manera de estudiarlos y optimizarlos basada en establecer una relacién con la
interaccion entre electrones.

TDDFT es la extension de DFT a problemas dependientes del tiempo y problemas con
estados excitados, y es también uno de los métodos mds populares (a veces el tinico método
que se puede poner en practica) en la comunidad de estructura electrénica para tratar con
ellos. De nuevo, la razén detrds de su popularidad reside en su relacion precision/coste
computacional, que nos permite tratar sistemas mayores y mas complejos. Puede usarse en
combinacion con la dindmica de Ehrenfest, un tipo de dindmica molecular no adiabatica.
Hemos ido més alld y hemos combinado TDDFT y la dindmica de Ehrenfest con la teoria de
control 6ptimo, creando un instrumento que nos permite, por ejemplo, predecir la forma de
los pulsos laser que inducen una explosién de Coulomb en clusters de sodio. A pesar del
buen rendimiento computacional de TDDFT en comparacion con otros métodos, hallamos

que el coste de estos calculos era bastante elevado.



Motivados por este hecho, también dedicamos una parte del trabajo de la tesis a la
investigacion computacional. En particular, hemos estudiado e implementado familias
de propagadores numéricos que no se habian examinado en el contexto de TDDFT. Mas
concretamente, métodos con varios pasos previos, férmulas Runge-Kutta exponenciales, y las
expansiones de Magnus sin conmutadores. Finalmente, hemos implementado modificaciones
de estas expansiones de Magnus sin conmutadores para la propagacion de las ecuaciones

clasico-cudnticas que resultan de la combinacién de la dindmica de Ehrenfest con TDDFT.
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Chapter 1
Introduction

In recent years, the ab initio modeling techniques (also called first principles techniques)
for Chemistry, Material Sciences and Molecular Physics have grown past the point where
the results obtained could only be thought of as a qualitative aid. Simply put, we are
entering the age where we can use these techniques as an accurate substitute for otherwise
expensive experiments, both for academic endeavors and for industry applications [71-73].
Mainly thanks to the increase in the power and availability of hardware and software, the
rise in popularity of first principles modeling can also be attributed to the improvement of
the algorithms and theories. Also, the development and consolidation of nanotechnology
has allowed the experiments to reach the size scale available to the current first principles
simulations.

Already past the base-research-only phase, the field of ab initio modeling has matured and
keeps growing. Some examples of this spread within the modeling community are: the study
of atomic nuclear structure [8, 151] (in this case, the main advantage of first principles models
over phenomenological ones is the generality with which both the nuclear structure and its
associated processes can be treated); the modeling of point defects in materials [213, 93];
and even large biological problems like tumor cell populations [46], DNA [162, 135, 177],
proteins [223], and viruses [184, 126] (including their symptomatic responses [63]), have
also been studied using ab initio techniques.

Looking beyond these individual examples, there are a few indicators that help us to

understand the current relevance of ab initio modeling:

1. The number of scientific publications, and their average impact index, is growing
faster than the scientific average. Various studies like Refs. [71, 72] show that the
growth of the number of papers about electronic structure calculations and its impact

is significantly faster than that of the full of science.
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2. The number of patents, which are traditionally used as a measure of the return-on-
investment of research, has started to grow. These patents are mainly from the field
of electronic structure and, to a lesser extent, organic chemistry and related areas.
Goldbeck [71] reports a growth from 30 patents in 2002 to 150 in 2011.

3. The number of scientists working on modeling, both developers and users, have also
increased in the last years. This increase has happened in both the private sector and
the academy, and the number of trained people in simulations grows every year. For
example, Dederichs et al. [159] reported more than 22000 authors in the field of ab

initio simulation in 2008.

4. The software industry in the field of ab initio modeling has consolidated during the
last decades, and has developed numerous commercial and free codes. Nowadays, this
industry is well past the “spin-off” phase. It is estimated that there are 30 companies

working in ab initio codes [71].

“First principles methods” may be applied to different objects of study; in this thesis
the term is mainly referring to the problem of electronic structure (i.e. the many-particle
problem for fermions), coupled perhaps to the underlying nuclei, treated classically with
Molecular Dynamics techniques. As described above, the field of electronic structure is
nowadays an active area of research, and has found practical use in both the academic and
private sectors. From a purely theoretical point of view, however, the solution to any problem
posed in this field has been known since the decade of the 1920s: write the many-body
Schrodinger equation for the system you wish to study, solve it to find the wave function, and
then use this result to calculate the desired observables. Sadly, when we take this idea into
practice we run into insurmountable technical problems mainly derived from the size of the
many-body Schrodinger equation. Quoting Paul Dirac [53], “The underlying physical laws
necessary for the mathematical theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble. It therefore becomes desirable
that approximate practical methods of applying quantum mechanics should be developed,
which can lead to an explanation of the main features of complex atomic systems without
too much computation.” A straightforward approach to the many-body Schrédinger equation
is thus unfeasible from a practical point of view, and for this reason many theories and

approximations have been developed. Even with these more sophisticated techniques, we



still find many numerical complications, due to the notorious bad scaling with the size of
the system. This motivates scientists all over the world to look for new methods to tackle
the many-body problem that are more computational-friendly, and to improve the existing
algorithms.

There are three types of necessary work related to first principles modeling: research
and improvement of the theories to be used to solve the many-body problem, technical
implementation of this theory in a code, and finally the subsequent application to a physical
system and problem (which is, ultimately, the main goal). In this thesis we have somehow
contributed to all three lines of work. First of all, to contribute to the solution of the
long-standing many-electron theoretical problem, in this thesis we present work on the
development of ab initio theories, more concretely on the improvement of the exchange and
correlation functionals (XCFs) in density functional theory (DFT). Second, from a technical
point of view, we have studied and implemented different families of numerical propagators
for the equations of motion of time dependent density functional theory (TDDFT). We have
also shown how to combine quantum optimal control theory (QOCT) with a non-adiabatic,
classical-quantum hybrid molecular dynamics model, the Ehrenfest model (EMD). Finally,
we have also worked on applications of these theories and methods: we have used the
QOCT+EMD+TDDFT formalism to optimize the ability of a laser pulse subject to a series
of restrictions (fluence, duration and frequency) to induce the Coulomb explosion of small
sodium clusters. Therefore, the research described in this thesis has somehow required a
sample of those three necessary skills in the field of first principles electronic structure. In

the remaining of this Introduction, we briefly describe these lines of work.

Let us start by stating the theoretical problem. As we have mentioned before, the main
task in the electronic structure field is to find a way to deal with the many-body Schrédinger
equation. Although the general theory of quantum mechanics was essentially completed
in the 1930s, it was not until the 1960s that computers had enough power and memory to
solve the Schrodinger equation for small atoms and molecules with a minimum accuracy.
The first general and minimally accurate method that was developed and employed was the
Hartree-Fock approximation. This is a variational method that consists of assuming, as an
approximation to the full multi-electronic wave function, a single Slater determinant formed

by monoelectronic orbitals. This wave function is affected by the external potential generated
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by the fixed nuclei of the system, the classic electrostatic repulsion generated by the electrons,
and a non-local exchange potential which provides short range repulsion among electrons
with the same spin. The variational principle is then applied to this ansatz, and the resulting
equations are nonlinear and must be solved self-consistently — which is the reason that this
scheme was also called the self-consistent field method. The equations include the exchange
operator, which depends on the orbitals of the system, and is non-local. For this reason it
was prohibitively expensive for the first half of the XX century. In 1951, Slater proposed to
replace the exchange operator with an orbital average which came to be known as the Slater
potential, speeding up significantly the computations. This approximation, unfortunately,
does not include many correlation effects. Chemists require more complex and accurate
choices for the many-electron wave function. Likewise, solid state physicists preferred to use
simplified model Hamiltonians borrowed from quantum field theory.

In his Nobel lecture from 1999 [105], Walter Kohn eloquently explains the difficulties
of using variational wave function methods that attempt to go beyond the Hartree-Fock
approximation. In short, the number of parameters required to reach chemical accuracy
grows exponentially with the number of particles involved, a phenomenon dubbed the
“exponential wall”. Of course, this means that, with the exception of very small atoms or
molecules — or situations with an exceptional number of symmetries that we can use to
simplify the problem —, the direct, straightforward methods are not feasible for large systems
with the current level of technology, and probably will never be.

This prompted the search for better ways to tackle the solution of the many-body
Schrodinger equation, looking for reinterpretations of the quantum theory, or less com-
putationally expensive approaches for the calculation of the wave function. Here we cite
some of the most popular theories:

* (Full) Configuration interaction [49]: This is, in fact, the straightforward route. The
first post Hartree-Fock method, used for the first time in 1928. Instead of a single
Slater determinant, in configuration interaction the wave function uses more than one
determinant weighed with a set of coefficients that can be varied. Its name comes
from the fact that one must choose a configuration of Slater determinants used to
form the wave function, whereas the mix of different electronic states gives us the
interaction. If all the possible variations of the coefficients are used, it is denominated
full configuration interaction, and the result is exact.

* Multi-configuration self consistent field [203]: In this approach, one takes the same
idea of configuration interaction, and optimizes not only the coefficients of the trial

wave function, but also its orbitals.



* Random phase approximation [44]: Although presented by Bohm and Pines at the
beginning of the 1950s in the context of plasma theory, in 1957 Gell-Mann and
Brueckner [67] reformulated the random phase approximation in a way that easily
extended to nonuniform systems, which is when quantum chemists started to take
an interest in this theory. The name of the theory comes from the way it deals with
the contribution of the electric potential (the sum of the external perturbing potential
and the screening) to the dielectric function, which is averaged out. For some time,
random phase approximation and time dependent Hartree-Fock were used as synonyms,

because getting rid of the screening term results in the Hartree-Fock method.

* Mgller-Plesset perturbation theory [48]: First described by Mgller and Plesset in
1934 [150], this approach uses perturbation theory to take into account the correlation

missing in the Hartree-Fock method.

* Coupled cluster [231]: Used mainly in computational chemistry and nuclear physics,
it was born at the end of the 1950s in the field of nuclear physics and applied to the
problem of electronic structure for the first time in the 1960s. This numerical technique
uses an exponential ansatz of cluster operators applied the initial wave function, where

this initial guess is built from the orbitals found through a Hartree-Fock calculation.

¢ Quantum Monte Carlo [7]: All the methods based on the Monte Carlo stochastic
numerical techniques as applied to the many-electron Schrodinger’s equation are
united under this label. The common factor among them is the use of random sampling
to obtain its results.

Although these theories are improvements over the original Hartree-Fock method in essen-
tially every relevant aspect, all of them still carry the burden of a bad scaling with respect to
the size of the system, and thus they become computationally too expensive for problems
that involve more than a few atoms.

In any case, the quest for a solution based on the approximation to the many-electron
wave function, such as all the methods mentioned above do, was the only alternative until,
in 1964 the seminal paper by Pierre Hohenberg and Walter Kohn [90] gave birth to DFT. In
this work they proved that the electron density of a system is enough to fully characterize the
ground state of a many-electron system, avoiding the use of the wave function. In order to
do so, Hohenberg and Kohn showed that the external potential of a system can be written

as a unique functional of the density, a result that is nowadays called the Hohenberg-Kohn
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theorem. The conceptual origins of DFT, however, can be traced back to the 1920s, to the
works of L. H. Thomas [207], E. Fermi [61] and P. A. M. Dirac [52]. They proposed that the
kinetic and exchange energy of many-electron systems could be locally modeled using the
density. The so called Thomas-Fermi theory [120] thus obtained was an approximation to
the electronic structure of a system that only relied on the electronic density. Unfortunately,
this theory fails even qualitatively, as it cannot reproduce the atomic shell structure, and is
unable to bind molecules. Furthermore, the Thomas-Fermi equations were not based on the
firm theoretical grounds demonstrated in 1964 by Hohenberg and Kohn.

The next landmark in this field was set the following year, when in 1965 Walter Kohn
and Lu Jeu Sham [106] demonstrated a practical way to compute the density and energy of
the exact many-electron problem from a set of one-particle equations, which would come to
be known as the Kohn-Sham equations. These equations describe an auxiliary system of non-
interacting electrons (the Kohn-Sham system) subject to a certain potential that reproduces
the electronic density of the real system. In this way, one can calculate the electronic density
from this set of more computer-friendly equations.

Although formally exact, one of the components in the potential of the non-interacting
system in DFT is the the exchange-correlation potential, which is derived from the so-called
exchange and correlation energy functional, a functional of the electronic density. This is an
unknown object that has to be approximated to be used in practical applications. The first
proposal for this object was already given by Hohenberg and Kohn in their 1964 paper: it is
the local density approximation (LDA), an XCF that remains popular today. Many different
alternatives have been proposed during the last 50 years, and the search for the exact XCF is
still the primary theoretical problem in DFT.

Through the 1970s and 1980s, many simulations on different materials showed that DFT
could be used with predictive power. However, it was not until the late 1980s that, with the
significant improvement of the XCFs, the degree of accuracy obtained for molecular calcu-
lations convinced many quantum chemists, and the first commercial DFT codes appeared.
The improvement on the functionals was led by Perdew et al., who developed what we know
today as the generalized gradient approximation (GGA) [163, 169]. This helped to spread
DFT, and thanks to its relatively low cost/accuracy ratio it became the main tool for the
calculation of specific properties for atoms, molecules, liquids, solids, and nanostructures.
A crucial date for the popularization of DFT was 1992, when Pople et al. [99] showed that,
for 32 different molecules, DFT outperformed the best wave function computations at the
time. This fact, and the subsequent inclusion of DFT in the widely used Gaussian computer
program, helped many chemists and physicists to recognize the value of DFT. In 1998, Kohn



and Pople received the Nobel Prize in Chemistry for their development of computational
methods in quantum chemistry.

Although DFT has a great track of successes, there are still many areas where it fails to
give even a qualitatively correct answer. Some of the most challenging problems for DFT
are:

1. The underestimation of the fundamental gaps of bulk solids [167].
2. Most XCF:s fail to approximate or even include the van der Waals forces [51, 116].
3. It produces poor results for strongly correlated problems [164, 107].

4. DFT, in its standard formultion, is not a good scheme to study excitations [118, 226]
(although see below for the solution provided by TDDFT).

5. While it certainly is one of the cheapest computation schemes, it still has problems

when dealing with very large problems.
6. It fails for the paradigmatic problem of the stretched Hydrogen molecule [47].

7. DFT cannot be improved by just adding computational power, in contrast to wave
function based methods, whose results are improved by simply enlarging the basis
sets and variational search space. The accuracy of DFT depends on the quality of the

chosen XCEF, and there is no recipe to refine these functionals in a systematic manner.

There is no universal solution to solve all these problems, even if there are some good
fixes for some of them, individually. This fact implies that the user of DFT has to become an
“expert” in the use of the wide array of necessary tools to perform the calculations: XCFs,
basis sets, parameters, etc. Therefore, there are no black-box codes that can be easily used.
The learning curve of DFT thus becomes one of the greatest obstacles for its spread within
the scientific community and the industry. For a more detailed perspective on the last fifty
years of DFT, check Refs. [11, 228].

In this thesis we present work dedicated to deal with the issue of finding new and more
accurate XCFs, and doing it in a way that permits them to be systematically improved. The
key idea behind our approach is that a DFT can be constructed for any system of fermions
independently of the particle-particle interaction potential function (IF). Obviously, in the
“real world” this IF is the Coulomb function 1/r, but in fact the main theorems of DFT can
be formulated for a large set of admissible functions. The key idea is therefore the following:
Let us denote the set of admissible IFs by I'. From the basic DFT theorems, for each IF
y € I exists a corresponding XCF A. Let us denote the set of XCFs as A, where each A € A
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corresponds to an XCF. With these definitions, we can write the map [ between IFs and XCFs
established by DFT as:

I'T — A
y — (y)=4

Then, one may ask the inverse question: which is the IF (if it exists) that makes a given XCF
exact? And if it does not exist, which is the IF that makes its corresponding XCF as close
as possible to the exact one? The goal of this work is to develop a method that performs
an optimization procedure over this correspondence between IFs and XCFs. To carry this
optimization out, let us consider a given XCF A € A for whom we want to find the associated
IF 1 € I that makes A exact (or, if it does not exist, at least the best possible approximation).
We define, for each IF y and external potential v, the ground state density ny[v] (that we will
assume to be non-degenerate). For a given XCF A and external potential v we also define
the ground state density found using DFT as n5" ' [v]. Now, if y € [~!(1), both densities
coincide for any choice of external potential v. This is also a sufficient condition, and thus
if both densities coincide for any choice of external potential, then A is the exact XCF that
corresponds to the IF 7.

Setting up a set of trial external potential v;, we can now define a distance G between the

two densities as a functional of A, y and v:
Glpidom] = ¥ [dr (nylu] = nf w2
k

Minimizing this function(al) with respect to y will yield the corresponding IF for a given
XCF. The use of a set of external potentials instead of just one is due to the fact that the
solution has to hold for every external potential.

The final step in the procedure consists in finding, out of some pool of possible XCFs
{1}, the one whose corresponding IF 7 is as close as possible to the real Coulomb one.
This can be done with a further optimization step. Compared with previous attempts to
the creation and improvement of functionals, our proposal is radically different. Instead of
optimizing a set of parameters with respect to results obtained for a diverse set of molecules
(an approach that cannot be properly qualified as ab initio, and is limited by the size of the
sets of used molecules), we propose an ab initio systematic optimization where the target is
the Coulomb interaction. This is a truly universal object, and thus the optimized functional
will have similar accuracy for all the systems. In Chapter 3, we report our proof-of-concept

results for this scheme, for one-dimensional model systems.



We have seen how, at least from a formal point of view, DFT provides an exact method
to compute any ground state property of a system without the need of the wave function:
from Hohenberg and Kohn’s work we know that given a many-body quantum system one
can compute the value of any observable if we know its ground state density. It is natural
to consider the same question for the time-dependent case, that is, if the evolution of the
electronic density can be used instead of the many-body wave function to determine the values
of whatever magnitude. Although there were several previous time-dependent calculations
using density functionals, like Bloch’s time-dependent expansion of the Thomas-Fermi
theory [16] (thirty years before the foundation of DFT), the formal answer to that question
was found by Erich Runge and Hardy Gross in 1984 [179]. They proved that all the time-
dependent properties of a system can be determined with the help of the time-dependent
density n(r,t), and thus TDDFT was born. Analogous to the Hohenberg-Kohn theorem, the
Runge-Gross theorem states that there is a one-to-one correspondence between the time
evolving density of a system and its external potential (up to a purely time-dependent function,
as it only contributes to the wave function with a time-dependent phase factor that cancels
when we calculate expectation values from Hermitian observables). Now, one may then
wonder if there exists a Kohn-Sham system that reproduces the evolution of the density of a
real system, a problem denominated the question of non-interacting v-representability. In
1999 van Leeuwen [212] showed that for a given interacting system there exists a unique
time-dependent Kohn-Sham potential whose associated Kohn-Sham non-interacting system
has a density identical to that of the real system. The proof only demands that both the
potential and the density are time analytic (which in fact can can be a quite restrictive
constraint in some cases of interest).

The TDDFT theorems are also existence theorems, and therefore do not provide the full
recipe for the time-dependent many-electron problem solution. The existence of a Kohn-
Sham formulation, however, permits to work in an analogous manner than in the ground-state
case: work with the non-interacting system of electrons, that can be managed with a single
Slater determinant. These electrons evolve, therefore, following the time dependent Kohn-
Sham (TDKS) equations, a set of nonlinear, one-particle Schrodinger-like equations. These
fictitious electrons are under the effect of a potential consisting in the sum of the real external
potential of the system (for example, the one generated by the nuclei and/or a laser pulse),
a Hartree potential (the classical electrostatic potential due to the electron charge), and
the time-dependent exchange and correlation potential, the unknown piece that must be
approximated. This introduces the same problem as in DFT, that is, the precision of the

simulations will be determined by the approximated XCF.
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The problem is, unfortunately, harder than in standard DFT. First of all, formally speaking
the XCF is also now a functional of the initial state of the real system, and of the initial Slater
determinant chosen to start the evolution of the fictitious system. Normally (and this will
be the case in all the calculations shown below), one uses first ground-state DFT to obtain
the ground-state Slater determinant of the Kohn-Sham system (and the density), and starts
the TDDFT calculation from there. This eliminates this state-dependence problem. A more
severe problem is the memory dependence: the XC potential at a given time ¢ depends on
all the past densities n(¢'), ¢’ < r. In practical applications it is common to neglect the time
dependence, and so the XCF only takes into account the instantaneous density n(z), i.e., one
assumes the adiabatic approximation. A more exhaustive description of the history and
fundamentals of TDDFT can be found in Ref. [209, 141, 136].

Even with the problems that we have just outlined, TDDFT is one of the leading methods
for the simulation of time-dependent many-electron systems, thanks to its great balance be-
tween computational cost and accuracy. It is widely spread in the field of spectroscopy [157]
and real-time non-perturbative dynamics [220]. It is applied nowadays in the limits of its sup-
posed applicability range, such as for example the study of charge transfer processes [137],
nuclear collisions [194, 133] or out of equilibrium effects that require a non-adiabatic ap-
proach (like those deriving from the effect of a short laser pulse) [225, 227].

Our work on TDDFT in this thesis has focused on its combination with optimal control
theory (OCT), in particular on the application of this combination to one particular problem:
the optimal Coulomb explosion of clusters. In the following, we briefly introduce the basics
of this combination.

DFT takes care of the questions related to the ground state of a many-electron system;
TDDEFT gives us the tools to compute their evolution and reaction to any external perturbation.
A natural question is then the following: can we solve the inverse problem, i.e, find an external
perturbation capable of steering the system in a predefined way?

The preferred mathematical tool for this type of inverse problems is OCT. Born from the
general theory of calculus of variations, OCT is the branch of mathematics that studies the
optimization of a given objective functional through the steering of a dynamical system with
the purpose of driving the system in a desired way. There is some controversy about when
to date the exact origin of OCT: while some believe the formal theory was started by the
“Pontryagin Maximum Principle”, established by the soviet mathematician L. S. Pontryagin
and his group [17, 102], it is true that in some sense, already since ancient Greece times many



11

mathematicians have been concerned with optimization problems. The oldest one of them
may be the search for the shortest path between two points (the geodesic). One pivotal point
in the history of optimization problems was Johann Bernoulli’s challenge in 1696 to solve
the problem of the brachystocrone, that is, to find the curve that minimizes the time that takes
a point object to travel from point A to point B, subject only to its own weight. This problem
was first posed by Galileo in 1638 along with the catenary problem (i.e., which shape would
take a heavy chain suspended between two points), but it was not until Bernoulli’s challenge
that it was correctly solved. Besides Johann Bernouilli, five mathematicians answered the
challenge: Leibniz, Johann’s brother Jakob Bernoulli, Tschirnhaus, I’Hopital and Newton
(who submitted his solution anonymously). These works were published in 1697 in Acta
Eruditorum, and caused a significant increase in the popularity of this kind of problems. This
fact makes 1697 a good choice as the starting point for the theory of calculus of variations,
and derived from it, OCT. For a deeper historical review of OCT, check Refs. [202, 183].
Although similar at first glance, there is a key difference between the usual problem
solved by calculus of variations and OCT. The former deals with optimization problems

typically defined as the minimization of a functional such as

1= [ano).q.0,

with respect to g, where L is called the Lagrangian of our dynamical system, which is
constrained by some conditions ¢g(a) = ¢, and ¢(b) = ¢p. The minimization in OCT is done
over a certain set of curves C, determined by some given dynamical constraints. For example,
C could be defined as the set of all the curves r — ¢(t) that satisfies

q= f(Q(t>7u<t)7t)v

where u(t) are a set of “control” parameters over which the optimization is carried over.
Within this framework we have two objects to study, the functional to minimize J and
the dynamical control function f. This perhaps makes the search for the brachystochrone
problem the true starting point for OCT, as it is the first optimization problem with pure
dynamical constraints where the selection of an optimal path is the objective.

We are interested in the application of OCT to quantum systems, that is, those whose
evolution is given by Schrodinger’s equation, governed by an hermitian Hamiltonian. This
branch of OCT is called quantum optimal control theory. The corresponding experimental
discipline is usually called coherent control. With the advent of the ultrafast laser, it is an
area of physics that has grown rapidly in the last decades. More concretely, with the access

to very short laser pulses (in the range of femtoseconds), and the possibility of giving them
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complex shapes, the “real-time” laser control of chemical reactions was first realized in
the 90s (see for example Ref. [4]). The preferred experimental technique is the “adaptive
feedback control”’[101]: the yield of a given reaction is obtained at the end of the experiment,
and a computer analyzes the results, and modifies the pulse to optimize the yield. QOCT may
lend theoretical support, suggesting possibilities to carry out the modifications of the pulse.
Mathematically, the problem consists in the optimization of the parameters that control the
shape of the laser, subject to dynamical constraints, in the form of a control function. One
of the key theoretical results is a formula for the gradient of the functional to optimize with
respect to the control parameters. If this formula can be efficiently computed, it opens the
door to the use of all the gradient-based optimization algorithms.

In Chapter 4, we demonstrate the use of OCT to optimize the ionization, and subsequent
Coulomb explosion, of small sodium clusters irradiated with laser pulses with a duration of
a few tens of femtoseconds. The process is modeled with TDDFT, coupled with Ehrenfest
dynamics in order to account for the ionic movement. Ehrenfest dynamics differs from the
classical Born-Oppenheimer approach in that it treats both the nuclei and the electrons at
the same time, i.e., it is a non-adiabatic form of molecular dynamics. One of the advantages
of this kind of approach is that we can deal with far-from-equilibrium systems (like those
irradiated by a very short laser pulse, or when two molecules collide with each other).
Ehrenfest dynamics combine a quantum treatment of the electrons with classical, point
particle nuclei, which is why it is a form of hybrid dynamics.

Obviously, if the problem is how to induce a Coulomb explosion, an easy solution, for
any system, is to apply a very high intensity laser pulse that does away with the electrons.
The same problem, however, becomes difficult if one wants to get the same result, but with a
limited energy input. As a proof of the practicality of the QOCT+EMD+TDDFT model, we
placed restraints on the intensity of the pulse, and restricted its duration to a few femtoseconds
in order to avoid this trivial solution to the problem. Naively, one could think that the optimal
solution is however still obvious: just apply an harmonic pulse with frequency equal to the
main excitation frequency of the cluster, which would maximize the energy absorption, and
consecutively, the ionization. However, due to the fast nature of the process, it is unclear what
should be chosen as the main excitation frequency: the separation of the nuclei during the
pulse causes a redshift in this frequency, while the escape of electrons results in a blueshift.
Therefore, the optimal shape of the pulse is hard to approximate intuitively. In order to assess
the relevance of the ionic movement in this very fast process, we compared the results that we
found using the full hybrid propagation scheme with those where the nuclei remained fixed
during the application of the pulse, and came to the conclusion that even for short pulses of

~ 30 fs, the nuclear movement plays an important role during the application of the pulse, as
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some of the solutions found for the static simulations were unable to induce the Coulomb

explosion of the full moving system.

Although we managed to find successful solutions for all the studied systems, the cal-
culations were long and heavy. QOCT requires a high degree of precision in the time-
dependent simulations of the model. Even with a relatively cheap computational scheme as
the EMD+TDDFT combination, the size of the clusters that we could treat in practice was
rather limited. This motivated us to initiate the third line of work within this thesis, centered
in the development and implementation of new algorithms to ease the application of the
theories described above. In particular, we have searched and implemented new propagation
algorithms. In this thesis we focused first on numerical integration methods for the TDKS
equations (electronic-only systems), and then we adapted some of them to the EMD+TDDFT
model (electrons + nuclei).

When the Hilbert space is discretized, the TDKS equations turn into a system of ordinary
differential equations (ODEs). Since the inception of the differential equations (a work
already pioneered by Newton and Leibniz in the XVII century), hundreds if not thousands
of methods have been developed for the numerical propagation of the systems described
by ODEs. Nowadays, a rich body of literature dealing with this problem exists, but the
creation and development of numerical integrators is still an active area of research, as the
problems approached increase in size, and the computers used to solve them also change
their architecture and performance.

There are many different ways to categorize these propagators. For example, depending
on the number of previous steps required for the propagation: if the state of the system at a
given time step is computed using the state of the system at one previous step only, we have
one-step methods; otherwise we have multistep methods. If the equations of the integrator
involve the solution of an algebraic system of equations, we have an implicit method;
otherwise we talk about explicit propagators. If they preserve the (possible) symplecticity
of the ODE, we say that the integrator is symplectic. Likewise, the methods may (or not)
preserve other underlying geometric structures of the ODE system — e.g. the norm, the
energy. ..

One of the most widespread family of one-step propagators is the Runge-Kutta (RK)
family [27]. The explicit order four integrator (“RK4”) is the most commonly used (to the
point that it is usually simply referred as the Runge-Kutta method). The full family, however,
also has implicit propagators like the Gauss-Legendre collocation methods, which are also



14 Introduction

symplectic. Besides the standard RK integrators, many extensions and variations of the base
propagators exist, like RK methods with variable time-step, extrapolation coupled with RK,
partitioned RK. ..

Regarding the multistep methods, the most famous are the formulas of Adams [10]. This
family also encompasses explicit and implicit methods, and its main advantage is that the
computational cost is independent of the order of the propagator, although this comes at a
price: there is a trade of computation cost for memory (as higher order integrators require to
store a higher number of previous steps) and stability. Another important family of multistep
methods is the one of the backwards differentiation formulas, a family of implicit integrators
that use the previous steps of the propagation to approximate the derivative of the system
equations.

If the system of ODEs that must be solved is linear and autonomous (as in a quantum
problem where the Hamiltonian is time independent), simply applying the exponential of the
operator that defines the system (the Hamiltonian in our case) to the initial state is enough to
carry out the time propagation. The problem then reduces to the efficient implementations of
the exponential of the operator. Many alternatives exist, such as truncations of the Taylor
expansion [62], Leja and Padé’s interpolations[28] or Krylov [85] and Chebychev’s [45] poly-
nomial expansions. For systems with time-dependent Hamiltonians, i.e., for non-autonomous
systems of ODEs, we need to take the time-ordered exponential of the Hamiltonian. If the
time interval is small enough, we can approximate the Hamiltonian as a constant and use the
aforementioned methods for the computation of the exponential operator. If that is not the
case, the Magnus expansion [134] is one of the most popular methods to deal with this kind
of ODE systems.

There are also methods that attempt to take advantage of the structure of the equations
of motion. In our case, our target are the TDKS equations of TDDFT. The Kohn-Sham
Hamiltonian can be divided into a linear part, where the kinetic term is included, and a
nonlinear part, where the Hartree and XC potentials belong. Usually the kinetic operator
is the main source of trouble for the numerical integrators due to its unbounded nature.
Therefore, designing integrators with a more careful approach for that linear part can help to
alleviate the problems deriving from this term. As an example of this approach, the family of
exponential integrators [104] use this division into linear and nonlinear parts.

Unfortunately, the previous quick revision of propagator alternatives just starts to describe
the huge array of possibilities: for example, we can also cite the semi-global propagator of
Schaefer et al. [185], Fatunla’s algorithm [58, 59], etc. It becomes clear that the creation
and development of propagators is a very active field of research. For this reason, keeping

track of the state of the art methods, and identifying the most suitable one for a specific
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system can be a difficult task. The careful testing and benchmarking of numerical integrators
applied to different situations is an important aid for any type of research that requires ODE
systems. In particular, it is crucial for the time-dependent branch of ab initio modeling, as
the calculations are very computationally intensive — as we had the opportunity to note for
our sodium clusters calculations.

Motivated by this fact, we have contributed to this endeavor, and have studied the
accuracy and performance of different families of propagators for the TDKS equations that
have been scarcely (or not at all) tested in the context of TDDFT, and then moved onto the
implementation of the best methods found to the hybrid EMD+TDDFT model.

First, we studied different families of numerical propagators that previously had not been
considered within the field of electronic structure, applying them to the TDKS equations.
Namely, linear multistep schemes, exponential Runge-Kutta propagators, and commutator-
free formulas. We analyzed both the precision and performance of these methods, and
compared them with some well known integrators that we used as a benchmark. From this
study we found that the commutator-free Magnus expansion outclassed every other family of
propagators, both in accuracy and computational cost.

Then, we moved onto the implementation of the commutator-free methods for a full
Ehrenfest dynamics model. In order to do this, we had to reconcile the classical nature
of Newton’s equations that describe the evolution of the nuclei of the system with the
Schrodinger-like form of the TDKS equations for the electrons. The most common way
to deal with this kind of problem consists on applying a fast and computationally cheap
integration method for the nuclei and another, more precise propagator for the electrons. This
approach to the problem stems from the fact that the movement of the nuclei is significantly
slower than that of the electrons (around a thousand times slower in the most common
situations), so faster but less sophisticated methods are usually enough. However, doing this
can potentially destroy the properties of the propagators (symplecticity, time reversibility,
unitarity...), and thus it is preferable to use a single propagation method for the whole system.
We found that we could rewrite the equations of movement for the nuclei in a nonlinear
Schrodinger-like form, and then apply the same propagator to both the classical and quantum
parts of the system. This methodology not only assures the conservation of the propagator
features, but from a practical point of view simplifies the code implementation of the method.
We analyzed various commutator-free Magnus expansions, once again benchmarking the
accuracy and performance of the methods.
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This thesis is structured in the following way: chapter 2 presents the theoretical basis for
the works developed in this work. It starts with a review of DFT and TDDFT, and introduces
the hybrid classical-quantum Ehrenfest model. We provide some general notions about
ordinary differential equations and numerical propagators. It continues with QOCT and
its combination with TDDFT, and finally there is a brief introduction of the density matrix
renormalization group (DMRG) theory. Chapter 3 details the project on the study of the
XCFs and their relation to the electron-electron interaction potential, and presents a proof of
concept on the functional optimization scheme mentioned above. Then, in chapter 4 we show
an application of QOCT+TDDFT: a laser pulse under fluence, time and frequency restraints
is optimized to induce the Coulomb explosion of small sodium clusters. Chapter 5 presents
the work that we developed about numerical propagators for the TDKS equations: we prove
the symplecticity of the TDKS equations, study different families of integrators that had not
been tested in the context of TDDFT, and present a new method for the propagation of hybrid

classical-quantum systems. Finally, chapter 6 presents the conclusions of this thesis.



Chapter 2

Theory

2.1 Density Functional Theory

The objective of DFT is to solve the static many-body electronic problem, which can
be enunciated as the search for solutions of the Schrédinger equation for a system of N

interacting non-relativistic electrons:
HY;(x1,%2,....,x5) = Ef¥1(x1,%2,...,XN), (2.1)

where H is the many-electron Hamiltonian, V7 is an N-electron antisymmetric wave function
and the I-th eigenstate of A, and E; is its corresponding energy. We will use the notation
x; = (ri, 0;) for the spacial and spin coordinates of the electron i.

The N-electron Hamiltonian (in the absence of relativistic effects such as magnetic fields,

spin-orbit coupling, etc.) is given by
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where T and V are the kinetic and potential operators respectively, and W is the electron-

electron interaction operator, the usual choice being the Coulomb interaction w(r) = 1/r,
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1.e.:

(2.3)

l\.)l'—‘

N
Z, =
because it is the true interaction among electrons, relativistic considerations aside. We are
also interested in the expression of this Hamiltonian in the second quantization formalism,
as it is more fitting when dealing with lattice systems, that we will use later. The electronic
Hamiltonian takes the form

/dr% [——VZ}% +/drv (r)

(2.4)
#3 L far far e =)Ao ),

where ¥ (r) and W (r) are the creation/annihilation field operators at position r with spin
projection &, respectively, and the density operator is defined by A(r) = ¥ W (r) W (r). We
can identify the first term of Eq. 2.4 with the kinetic operator 7', the second one with the
external potential operator V and the last term with the electron-electron interaction operator
w.

If we know the wave function W; associated with the /-th eigenstate of the system we can
compute the expectation value O; of any physical observable O, in that state. For example,
for the lowest energy eigenstate I = 0, and for the Hamiltonian H we get the ground state
energy:

Eo = (Wo|H[Wy). (2.5)

The wave function holds all the information about the state of the quantum system, and
therefore on the possible outcomes of the measurement of any observable. From a formal
point of view, the many-electron problem is therefore completely solved by finding the
eigenstates of the system that we are studying. However, when we tackle problems with a
large number of electrons, we find that the number of parameters needed to construct accurate
wave functions capable of approximating these eigenstates grows exponentially with N, a
problem that has been denominated the “exponential wall”. In practical terms, just storing a
wave function for some tens of electrons becomes impossible. This is where DFT comes into
play. This theory allows us to compute properties of many-electrons systems without having

to manipulate the wave function, as we will show in the following sections.
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2.1.1 The Hohenberg-Kohn Theorem

The publication in 1964 of the proof of the Hohenberg-Kohn theorem [90] marks the origin
of DFT. Let us consider a system of N interacting electrons governed by the Hamiltonian 2.2.

The ground state electronic density is defined as:
— 2
l’lo(?‘) = NZ/dXz... /dXN |‘P0(l’(7,)€2, ...,)CN)| s (26)
o

where we use the notation [dx; =Y [ drj. As the density ny comes from the wave function
Oj

computed through Schrodinger’s equation, it follows that the ground state density, at least for

non-degenerate cases, is a functional of the external potential v(r), i.e., no(r) = no[v](r).

The opposite statement is also true, and it is known as the Hohenberg-Kohn theorem:

Hohenberg-Kohn Theorem. The external potential v(r), and hence the total energy, is a

unique functional of the electron density no(r).

For a proof of the theorem, besides the original 1964 paper, check for example Refs. [143,
209]. This is the most basic version of the theorem, where it is assumed that the ground state
of the system is not degenerate. It is possible to expand it to include cases with degenerate
ground states, as shown for example in Ref. [54].

Since 7 and W are fixed, one may conclude from Hohenberg-Kohn theorem that
the Hamiltonian 2.2 is a functional of the ground state density, i.e., H=H [no]. From
Schrodinger’s equation 2.1 it follows that all the eigenstates of the system are also functionals
of the density, ¥; = W;[ng|. In conclusion, all the properties of a given N-electron system
are determined by the ground state electronic density ny.

For example, from the Hohenberg-Kohn theorem it follows that the energy of the ground

state of a N-electron system is a functional of the electronic density n, that we can write as:
Eyln] = ($[n]|T +V +W[¥[n)), 2.7)

where W[n| is the ground-state wave function of a N-particle system whose ground state
density is n. This functional is defined for each choice of external potential v. And note that
it can only be defined for densities n for which there exists an external potential such that the
ground state density is precisely n (these are called the interacting v-representable densities).

From the variational principle, we can write:

EV[n] < Ep, n(r);éno(r),

(2.8)
E,[n] = Ey, n(r)=no(r).
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where Eq and ng are the ground state energy and density that correspond to v. This fact
suggests a procedure to obtain the ground state energy and density: minimize E,[n], which

may be done by finding the critical points of the corresponding Euler equation:

6f(r) [Ev[n] _u /dr'n(r')] —0, 2.9)

where U is a Lagrange multiplier multiplying a term introduce to ensure the conservation of
the number of electrons. In principle, from this equation we can find the ground state density
ngo avoiding completely the use of Schrodinger’s equation. In practice, however, it is not very
helpful since the form of functional E,[n] is unknown. Even its domain is unclear, as the
interacting v-representability has proven to be a difficult mathematical problem.

In their original paper, Hohenberg and Kohn defined E, by previously defining a so-called

universal functional F', such that:
Eyfn] = Fln] + /drn(r)v(r). 2.10)

This new functional F'[n] is called the universal functional because it is system-independent,
i.e., it is the same for any N-electron system with the same electronic interaction. It is defined

as the remaining energy of the system without the external potential contribution:
Fln] = (P[n]|T + W|¥[n]) = T[n] + Wn]. (2.11)

Using F, the Euler equation 2.9 takes the form:

OF [n] N
sui) T =R 2.12)

A reformulation in terms of a universal function will prove its usefulness in the following
section, as it circumvents some of the difficulties of the previous energy functional E[n] in
Eq. 2.9 — in particular the v-representability issue.

In conclusion, the Hohenberg-Kohn theorem allows us, in principle, to replace the N-body
wave function ¥ (a function of 3N variables) with the electronic density of the ground state
ng (a function of 3 variables), since it proves that no two different electronic systems can
have the same ground state density. Unfortunately, the theorem does not provide us with a
scheme to transform this knowledge into a practical procedure.
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2.1.2 Constrained Search Formalism

To ensure the existence of the derivatives in Egs. 2.9 and 2.12, we need that the density
n(r) corresponds to some ground state characterized by its external potential v(r), i.e. we
need them to be (interacting) v-representable. As mentioned above, the conditions for v-
representability are still unknown, so that the exploration of the domain of E[n] is to this day
an unsolved problem.

We can overcome (some of) the difficulties related to the domain of E[n] using the
Levy-Lieb constrained search formalism [117, 119]. This is in fact a reformulation of
Hohenberg-Kohn theorem, that somehow generalizes it. From the Rayleigh-Ritz method, we
know that we can express the ground state energy E as

Eo = min(P|T +V +W|¥), (2.13)

Yn
where W — n means that we have to trudge through the set of all the antisymmetric N-particle
wave functions W that have 7 as its corresponding density, until we minimize (\¥|H|¥). We
can approach this search in a sequential way: first, we look for the W that produces a given
density n(r) and minimizes the expectation value of the Hamiltonian, and then search for the
density that minimizes the density, that will correspond to the ground state density no(r). We

can write this sequential process to find the ground state density as:

Eo[n] :min{min<‘P]T—|—V+W|‘P>}. (2.14)

n Y—n

This expression suggests a new way to define the energy functional E,[n]:

Ey[n] = min (¥|T +V +W|¥), (2.15)
¥Y—n
where the minimization is carried over all the wave functions ¥ that produce the density n.

This also suggests a new definition for a universal functional F[n], as:

F[n] = min(¥|T +W|¥). (2.16)
Yon
Note that these definitions do not rely on the v-representability problem — only on the
so-called N-representability: a density is N-representable if there exists at least one many-
electron wave function that corresponds to it. This is a much easier condition, and any
reasonable density is in fact N-representable.
The constrained search formalism based on these definitions also permits to demonstrate

the Hohenberg-Kohn theorem [117], and arrive to the idea of a variational search to find
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the minimum of E), as a way to find the ground state energy and density. Unfortunately, the
functional form for F is unknown, and therefore one has to find a different route to solve the

problem in practice.

2.1.3 The Kohn-Sham Equations

Consider a non-interacting system (W = 0), described by the Hamiltonian

N
Hy=Ts+Vs=) (—%V,-anvs(fi)). (2.17)
i=1

The demonstration of the Hohenberg-Kohn theorem does not rely on a particular form for
the electron-electron interaction potential function w, and can also be applied to this non-
interacting case, in which w = 0. We therefore know that there is a one-to-one correspondence
between vg(r) and the ground state density of the non-interacting system. We may then write
the associated energy functional as

Eg[n] = Ts[n] + / dr n(r)vs(r). (2.18)

In this non-interacting case, the functional F is conventionally represented by Ts[n]. Eq. 2.9

then becomes:
6Es[l’l] . 5Ts[n]

on(r) — én(r)

and thus solving this equation we can obtain the ground-staet density ngs. In practice, Ty is

+vs(r) = i, (2.19)

not known explicitly as a functional of the ground state, and therefore this solution to the

problem would be limited by the accuracy of the approximations used for this term.
However, we do know how to solve the problem of a non-interacting system of electrons.

We recall that the many-body wave function of a non-interacting system is given exactly by a

single Slater determinant:

o1(x1)  @2(x1) on(x1)
‘Ps(xl,...,xN):% <p1(:xz) <pz(:x2) ¢N€x2) . (2.20)
o1(xn) @2(xn) ... on(xn)
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Here, the single-particle orbitals {¢;} are the lowest energy solutions to the single-particle

Schrodinger’s equation:

(—%Vz —|—vs(r)) ¢i(ro) = ;(ro), (2.21)

Since vg is a functional of the ground state density, the orbitals are also functionals of the

density. Inversely, one we can find ng from the orbitals as:

N
nos(r) =Y. Y |gi(ro)|*. (2.22)
o =1

The Kohn-Sham procedure [106] to approach the (interacting) many-electron problem
consists now of imagining a fictitious system of non-interacting electrons — the Kohn-Sham
system — such that its ground state density coincides with the one of the real interacting
system. Since the non-interacting system can be solved in an easy way as shown above,
the problem is translated to finding the appropriate external potential vg (the Kohn-Sham
potential). It turns out that this method to calculate ny has proved more convenient and
precise than attempting to directly solve Eq. 2.12. This single-particle picture is at the basis
of most of the current DFT applications.

It remains to see in which way to approach the problem of obtaining a working approxi-
mation for vg. The road starts with the following expression for the total energy functional,
already given by Kohn and Sham:

ﬂd:TM+WM+/&Mﬂmm

(2.23)
= Tyln] + [den(r)vs(r) + Euln] + Excl)
where Ey is the Hartree energy given by
1 /
Eyln] = —/dr/dr' M, (2.24)
2 |r—r'|
and Exc is the exchange and correlation energy functional, defined as:
Exc|n| =T|n|—Ts|n|+W|n|—Egin
xeln] = T n] = Ts[n] + Wln] — Exn .

= F[n| — Tg[n]| — Ey[n].
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Inserting Eq.2.23 into the Euler equation 2.9 and comparing the result with Eq. 2.19, we can

see that they are formally identical identifying

vs[n](r) = v(r) +vu[n](r) + vxcln(r), (2.26)

where vy is the Hartee potential

via[n](r) = 5;;1 fé’;] = / dr’ |:’(_rr),|, (2.27)

and we define the exchange and correlation potential vxc as

vxcln(r) = 55;‘8[)”]- (2.28)

The exchange and correlation energy potential constitutes a small but important fraction of
vs, and is the only unknown piece. Therefore, the problem of DFT reduces to finding a good
way to approximate Exc, and therefore, vxc.

Summarizing, the Kohn-Sham scheme consists of solving the single-particle Schrodinger-
like Kohn-Sham equations:

Hgs[n](r)@i(ro) = &@i(ro), (2.29)

where Hkg is the Kohn-Sham Hamiltonian defined by

Hgsn](r) = —%Vz +vg(r) = —%V2 +v(r) +vun|(r) +vxc(n](r), (2.30)

and then compute the density from the lowest N occupied orbitals:

N
no(r) =Y. ) @i(ro)?, (2.31)

o i=1
By construction, this will also be the density of the interacting system. The main advantage
of the Kohn-Sham equations is that they treat Ts exactly, leaving only the unknown Exc|n] to
be approximated. The contribution of Exc|n] to the total energy is significantly smaller than

the rest of the terms in Eq. 2.23, and so is the error derived from the approximation.
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2.1.4 The Exchange and Correlation Functional

In this subsection, we summarize the most important approximations to the exchange and
correlation functional, since one of the projects addressed in this thesis has been in fact the

analysis of this important object.

Local Density Approximation

Already proposed by Kohn and Sham in their 1965 article [106], the local density approx-
imation (LDA) expresses the exchange and correlation (XC) energy Exc[n] using the XC

energy per volume of a homogeneous electron gas e’

EXRM ] = [ar ehcllmnir (232)

The homogeneous electron gas is an ideal system formed by an infinite electron system
extended over all space, such that the density is equal everywhere. One cannot define a total
XC energy, but the XC energy per volume eé’(c(ﬁ), a function of the (constant) density of
the homogeneous gas. It is usually split into its exchange part ei‘(, which can be calculated
exactly, and its correlation part e}é, for which there exists highly accurate parameterizations.
The XC potential is then given by
h
_dexc

vxe Il (r) = =2l (2.33)

In short, the LDA means that, at each point of space r, we approximate exc(r) with the
one found from the homogeneous electron gas that has a constant density n(r). In practical
implementations, instead of LDA a more general form called local spin-polarized density
approximation (LSDA) is used, where

de’!
EPMno] = [drelicno(r). K nol(r) = g 230

In this case, the functionals depend on the two separate spin-densities, rather than on the
total.

While in the uniform limit LDA becomes exact, it is natural to think that for inhomo-
geneous systems LDA will only provide an accurate approximation if the density n(r) is

smooth enough. A scale to measure whether these variations of the density are slow enough
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can be found with the help of Fermi’s wave vector kf:
1 (9m\'/3
kF T (_) ’
rs 4

rs=|-—
5 4mn ’

where rg is the Wigner-Seitz radius, the radius of a sphere which on average contains one

(2.35)

electron, and 7 = N/V is the average electronic density for system with N electrons and a

volume V. With this we can write

|Va(r)]
n(r)

This condition is rarely met. For example, close to the nuclei |Vn(r)|/n(r) > kp(r). We

<L kp. (2.36)

should expect to be able to apply LDA only to simple metals, like bulk sodium where the
density variations are small. However, the LDA provides a great approximation for a wide
range of physical and chemical properties. For example, the ground state energies are usually
within 1-5% of the experimental values. The molecular geometries and bonding distances
typically agree within a 3% error.

We can partially explain the success of LDA looking at the homogeneous electron gas
that is used as its base. This system satisfies some exact conditions like the sum rules and
scale properties [143]. In contrast, LDA does not have the correct asymptotic behavior when
r — oo. Instead of going like —1/r, the LDA XC potential behaves as

lim VA e, (2.37)
r—>o00

The reason for this wrong behavior is that LDA is not free from self-interactions, which leads

to the following problems:

1. The Kohn-Sham energy eigenvalues are too low, with the energy of the highest occupied
Kohn-Sham orbital differing around 30-50% with the ionization energy.

2. LDA fails to predict many stable negative ions.

3. vl)“(%A lacks a discontinuity in its derivative. As a consequence, the band gaps in solids

are predicted rather poorly and the predicted dissociation limits in molecules are not
accurate.

As a final recap about LDA, we can say that while it generally predicts the correct

physical and chemical behavior of the systems, it lacks the accuracy required for most
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practical applications, specially in Chemistry. This fact motivated the search for new, more

accurate XC functionals.

Generalized Gradient Approximation

One obvious way to try to improve upon then LDA is to make the XC functional depend not
only on the density, but also on its gradient. The naive implementation of this idea results
in the gradient expansion approximation [106, 131] (GEA), where one assumes that the
condition 2.36 holds, allowing one to use the density gradient as a small parameter to expand
XC functionals in powers of the density. A popular choice to quantify the density gradient is

to use the reduced density gradient:

[Vn(r)]
=— . 2.38
) = e () (238)
This results in energy functionals with the form
EQEA ] = /dr (eél(c(n) —|—C)((2C)(n)s2 + ) , (2.39)

where eé‘(c is the XC energy per particle of the homogeneous electron gas and the terms
C)((l)C (n) are suitable functions of the density. Sadly, although a great deal of work has been
invested to find these functions [54, 143] the results are often even worse than those obtained
using LDA. The main reason behind this is the fact that the addition of these terms cause the
functional to violate sum rules and exact properties that are however respected by the LDA.

Fortunately, despite the failure of GEAs, a new class of gradient-based approximations to

the XC functional appeared, the general gradient approximation [169] (GGA):
EQSA ng) / dr 352 (ng (r), Vg (r)). (2.40)

Instead of trying to build the functional going through the expansions in terms of the
reduced density, what GGA searches for are explicit mathematical expressions for eg’gA that
satisfy exact known properties of the functional. With this approach we lose the systematic
methodology of the GEAs, as there is no road map to the formulation of eggA expressions.
This has resulted in the spawn of hundreds of GGAs functionals, many of them quite

successful [166, 165, 222].
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Chemical Accuracy

Exact Exchange
+

Partial Correlation

Hyper-GGA
Hybrid Functionals

Meta-GGA

GGA

LDA

Fig. 2.1 Jacob’s Ladder for DFT. Starting from the LDA, each rung represents a new family
of XCFs that takes us one step closer to the “heaven” of chemical accuracy.
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Jacob’s Ladder for the Exchange and Correlation Functionals

These two approaches to approximate the XC functionals, LDA and GGAs, permit to see
the pattern that was used for most later developments: add further ingredients, besides the
density and the gradient of the density, to the set of dependencies of the functional, in order to
increase its accuracy. This suggested John Perdew the metaphor of a “Jacob’s Ladder” [168]
of approximations. At each step of this ladder we get closer to the desired chemical accuracy
— the accuracy considered to be necessary to properly predict chemical properties of materials
and molecules, that conventionally is considered to be around 1 kcal/mol. Besides the LDA
and GGA that we have just presented, at the moment this ladder has three more rungs. The
current steps, from lower to higher are:

1. The local density approximation represents the lower level of the ladder, being deter-
mined by ng.

2. For the second rung we have the General Gradient Approximation, which includes
Vings.

3. Meta GGA adds V?n and extra semi non-local functionals of the occupied Kohn-Sham
orbitals 74:

ENGOAs) = /dre%SGA(nG,VnG,V%G,rG), (2.41)

w(r) = =Y [Vois|. (2.42)

4. The hyper-GGA and hybrid functionals add the exact exchange energy density, which
is a fully non-local functional of the occupied Kohn-Sham orbitals:

o Ly far R

GlJ 1 l"/’

While the whole class of functionals dependent on e*! (besides the dependence on
the density and its gradient) is labeled as hyper-GGAs, there is a subclass within it
that has seen a widespread use, the hybrid functionals. They are constructed using a
fraction 0 < a < 1 of the exact exchange energy functional and mixing it with LDA or
some GGA, like in this example:

E?(ycbrid —4 ;:(xact +(1— a)E)((}GA +EGGA_ (2.44)
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5. Exact exchange coupled with partial correlation, making use of both occupied and

non-occupied Kohn-Sham orbitals.

Exchange and Correlation Functionals in Lattice DFT

The XC functionals presented until now were devised for the “normal” DFT, built on the real,
continuous space. In this work, however, we will also consider the so-called “lattice models”.
The branch of DFT that deals with this kind of systems is called site-occupation DFT [78],
or simply lattice DFT. In purity, it is the same DFT after all, but it departs from the second
quantization Hamiltonian 2.4, and considers a basis change from the continuous creation and
annihilation operators to a new discrete set of site operators dj,o, dpe, corresponding to some
chosen basis — the sites of the lattice:
A=Y twddnc+ Y vatin+ Y. Yndhodydnedmo
n

mno mnoT

N R L o (2.45)
= Z tmndljngdnc + Zvnnn + Z Y|m—n|nmnn + Z Yormtim, -

mno n m#n m
Here n runs over the number of sites of the lattice, o corresponds to the spin projection of
the operator and the site operators dA,IG, d,o fulfill the anti-commutation relations:

A~

[dno,dl)+ = 8mbors [ die]+ = [dne,dnt)+ = 0. (2.46)

We have considered one-dimensional lattice models, as a starting point for our study of
the XC functional problem. One paradigmatic example is the Hubbard model (HM) [121],
for its simplicity and popularity. This model was originally proposed to describe solids
where the electrons are heavily localized around the atomic nuclei, neglecting the electronic
interaction between electrons pertaining to different nuclei. Consequently, in this model the
electron-electron interactions only occur when both electrons are in the same site. The one
dimensional model takes the form of a chain of length L (that can go up to infinity) with p

equidistant sites, and it has the following Hamiltonian:

A=—tY d\odi+Y vaiin+Uam Y fntitn , (2.47)
(m,n)o n n

where (m,n) denotes summation over nearest neighbors only and 7, = djc,cina is the density
operator for the site n with spin 0. The first term corresponds with the kinetic operator in
a lattice T and it is determined by the parameter #, the second one describes the external
potential V as a function of the values v,, on each site of the lattice, and the last term describes
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the electron-electron interaction on the sites, defined by the parameter Upy. Depending on
the form of the kinetic term on the extremes of the lattice, we can have periodic boundary
conditions or open boundary conditions.

The 1DHM can be solved (under certain conditions) using the Bethe ansatz [13]. This
fact is used in the construction of the Bethe ansatz local density approximation (BALDA), an
XC functional that departs from the same idea of using the homogeneity as the LDA, but
substitutes the electron gas system for the 1DHM accurately solved with the Bethe ansatz.
The homogeneity is ensured if V = 0, and the parameters ¢ and Uy are the same for every
site of the (infinite) chain. This results in the following expressions for the BALDA XC
energy functional E)%éLDA:

ERCHPA(n,U) = Y (€% (1, U) — % (1, 0)) (248)

n

where €M™ (n,,, U) denotes the energy per site of an infinite IDHM with interaction parameter
U and constant density 7n,, and the sum is carried over the p sites of the lattice. As we can see
from Eq. 2.48, to compute the XC energy we subtract the energy of the non interacting IDHM
from that of the interacting one with Uy = U. Using Lima et al.’s [124] parameterization
of BALDA, the energy per site for the homogeneous infinite IDHM with constant density 7
is expressed as

oM (7, U) = 0(1 — A)e"°™ (7, U) + (i — 1)e™*™ (7, U), (2.49a)
hom(n U) ZBiU) sin (/;;Z)) , (2.49b)
oM (7, U) = (i— 1)U + e (2 - 7,U), (2.49c¢)

where the subindexes < denote whether 71 < 1, 6 is the Heaviside function and B(U) is an

auxiliary function found solving the equation

- 2[37(;]) Si“( ) _4/ 1+exp (5?/2)] (2.50)

where Jy(x) and Jj (x) are the zero-th and first order Bessel functions.

From Eq. 2.49a one can see that the functional presents a cusp appearing at 7i = 1. This
implies a discontinuity in its derivative, that in turn results in a discontinuity in the Kohn-
Sham potential. Although this feature of the BALDA functional has in fact proven be useful
for some purposes (for example, in order to calculate the Mott gap [31]), the exact XC

functional does not have this discontinuity. Furthermore, this cusp can make the Kohn-Sham
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calculations difficult to converge when we are dealing with densities close to the discontinuity.
The solution that we chose for this problem was suggested by Kurth et al. [114], and consists

on the use a smoothing function around the conflicting range of densities.
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2.2 Time Dependent Density Functional Theory

In the previous section we reviewed the DFT formalism for an interacting nonrelativistic
electron system. This formalism is only valid to study ground-state problems. For the
project presented in chapter 4, however, we have required the simulation of time-dependent
phenomena, i.e. clusters irradiated with laser fields. For this reason, we briefly describe now
the expansion of the DFT formalism to include the time evolution of this class of systems.
The extension of the theory valid for this purpose is called time dependent density functional
theory (TDDFT).

To take into account this new situation, we modify the external potential V of the
Hamiltonian 2.23 making it time dependent:

N
V(t) =Y vi(#i1). (2.51)
i=1

Neither the kinetic operator 7" nor the interaction operator W change. Now we can write the

Hamiltonian as

1 N 1y 1 (2.52)
:__V2 iAiat A . '
2V L0t L
i#j

For an N-electron system with an initial state ¥, the many-body time-dependent Schrodinger
equation describes its evolution:

i%w(xla-xa; ;xN7l)(t) = H(t)lp(.x17x2, ...,XN,I). (253)

Once again, as it happens in the static case, the solution of this equation, despite its formal
simplicity, becomes numerically impossible due to the large size of the wave function as

soon as the number of particles is not very small.

2.2.1 Runge-Gross van Leeuwen Theorems

At the core of TDDFT there are two theorems which we will briefly recall in this section.
The first one is the fundamental existence theorem for TDDFT and was demonstrated by
Runge and Gross in 1984 [179] (check section 3.2 from Ref. [209] for a detailed proof):

Runge-Gross theorem. Two densities n(r,t) and n'(r,t) evolving from a common initial

many-body wave function ¥ under the influence of two different external potentials v(r,t)
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and V' (r,t) # v(r,t) + C(t) (both of them assumed Taylor-expandable around ty), will start
to become infinitesimally different after ty. Therefore, there is a one to one correspondence

between densities and potentials for any fixed initial state \Vy.

This one to one correspondence implies that the time-dependent density is a functional of
the external potential, n(r,¢) = n[v|(r,t), and the converse is also true: the external potential
v is also a functional of the time-dependent density. If v(r,t) = v[n|(r,2), then the full
Hamiltonian A (¢) and the many-body wave function P(z) are also functionals of n(r,¢). In
conclusion, the expectation values of all the observables O(¢) become functionals of the
density:

O[n, Wo](t) = (¥[n, ¥o]|O(t)|Wo[n, ¥o)), (2.54)

where here we have also explicitly considered the dependence on the initial state V.

From the Runge-Gross theorem we learn that, if we know the time-dependent density
of a system, we could in principle evaluate any observable of a many-body system. The
setback of this theorem is, of course, that it does not tell us a way to write the observables as
a function of the time-dependent density.

Other caveats of Runge-Gross theorem are the fact that the external potentials have to
be expandable in a Taylor series around #y, and the requirement for the externals potentials
to be scalar (leaving out the important situations where we have vector potentials). The
first problem is more a theoretical nuisance than a practical issue, but to tackle the second
problem, and being able to encompass magnetic perturbations, etc., one needs to expand the
theory to the so-called time-dependent current-DFT, which is out of the scope of this thesis.
For a more detailed explanation of these problems, check Ref. [209].

In any case, now that we know that we can express any many-body observable as a
functional of the time-dependent density, the next step is to find a practical way to compute
this functional. The obvious route to follow is to attempt a Kohn-Sham route similar to the
one of ground-state DFT, i.e. to substitute the interacting system with a non interacting one
that reproduces the same density like we did in DFT. The question of the existence of this

non interacting (“Kohn-Sham”) system is answered by the van Leeuwen theorem [212]:

van Leeuwen theorem. For a time-dependent density n(r,t) associated with a many-body

system with particle-particle interaction w(|r —r’|), external potential v(r,t) and initial state
W, there exists a different many-body system with an interaction w'(|r — r'|) and a unique
external potential V' (r,t) (up to a purely time-dependent C(t)) which reproduces the same
time-dependent density n(r,t). The initial state W, in this system must be chosen such that it

correctly yields the given density and its time derivative at the initial state.
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If we make w = w' and ¥y = ‘1’6, the van Leeuwen theorem states that there exists a
unique potential v/ (r,¢) that generates the time-dependent density n(r,1), i.e., we recover the
Runge-Gross theorem as a consequence of this one.

The new theorem, however, contains more information, if we now consider w’ = 0, i.e., a
non interacting system. Assuming the existence of an initial non interacting state ¥}, = ®
with the appropriate n(r,fo) and its first time derivative, there is a unique potential vg(r,¢) in
a non interacting system that produces the same time-dependent density n(r,7) of the real
system, at times ¢ > ty. Therefore, the theorem of van Leeuwen is a positive answer to the
question of the non-interacting time-dependent v-representability problem. Of course, it is an
existence theorem, and it provides no recipe to the construction of the Kohn-Sham potential.

For an in depth analysis of these issues, check [209].

2.2.2 Time-Dependent Kohn-Sham Equations

From the van Leeuwen theorem we know that the time evolution of a density n(r,¢) from
an interacting system can be reproduced by a non-interacting system evolving under the
effective potential

vs = vs[n, ¥o,Po](r,1), (2.55)

where W is the initial state of the real, interacting system, and ® is the initial state of the
non-interacting system. This notation stresses the fact that, in general, the time-dependent
Kohn-Sham potential vg is a functional of those two objects.

This dependency on W and ®( can be safely ignored, however, in the case in which
the system departs at 7y from the ground state — in fact, the most common scenario. In that
case, both initial wave functions are in fact functionals of the ground state density. Therefore,
most TDDFT calculations start in fact with a previous ground-state DFT calculation, i.e.
the solution of the Kohn-Sham equations, in order to find a single Slater determinant, as
described in section 2.1.3, formed by the Kohn-Sham orbitals (pio .

From ¢ = ty on, the evolution of the real system is driven by the action of v(r,7), whereas
the evolution of the fictitious Kohn-Sham system is driven by the action of vg(r,#). Both
gives rise to the time-dependent density n(r, ), that can be computed from the Kohn-Sham
orbitals:

N
n(rt) =Y |@i(r0)]%, (2.56)
=1
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These time-dependent Kohn-Sham orbitals ¢;(r,t) follow the time-dependent Kohn-Sham
(TDKS) equation:

1 d
——V2+V5[I’l](r,l) ¢i(r7t) = iE(Pi(nt)?

2 (2.57)
¢i(r10) = ¢(r),
where the time-dependent Kohn-Sham Hamiltonian is defined by
1o
HKS[n](r,t) = —EV (r)+vs(r,t). (2.58)

The time-dependent effective potential for this equation, also known as Kohn-Sham potential,
is unknown. In analogy to the ground-state case, it is typically split into some known pieces,

and a remaining exchange and correlation potential:
vs[a](r,t) = v(r1) +vu[n](r,1) + vxeln](r1), (2.59)

where vg[n](r,) is the time-dependent Hartree potential:

n(r',t)

[r =7

vitln) (1) = / ar (2.60)
Eq. 2.59 serves as the definition of the time-dependent Kohn-Sham exchange and correlation
potential.

Once again, from a formal point of view the TDKS equation produces the exact density
n(r,t) for a N-electron system evolving under the influence of an external potential v(r,¢)
starting from the ground state. However, one requires multiple approximations to turn this
formalism into a practical method: the ground-state vxc|no](r) for the calculation of the
initial state, the time-dependent vxc|[n](r,t) for the time evolution of the system, and probably
a further approximation to relate the evolving density to the required observable.

A typical TDDFT review would include now a reformulation of the TDDFT equations
shown above in the linear response case, i.e. in the case in which the perturbation applied to
the system is weak. The linear response formalism of TDDFT [33, 224, 77, 95] has been the
most successful, and it allows to compute linear response properties of atoms, molecules,
and materials (polarizabilities, susceptibilities, ...). However, in this thesis work we have

not used it, requiring only the real-time equations shown above.
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2.2.3 Adiabatic Local Density Approximation

Just like in DFT, we need suitable approximations for the time-dependent Kohn-Sham
functional vxc[n](r,7). Note, however, that this is in principle a much more difficult task,
because vxc depends in fact on the full history of the density: the value of vxc depends on
the value of the density at all times ¢ < ¢. The memory-dependence problem of TDDFT is
one of the most pressing and difficult ones [138].

Most applications of TDDFT have however ignored this issue, assuming the adiabatic
approximation. In this way, the most straightforward way to create TDDFT XC functionals
is to take those from DFT and apply them to the TDKS equation, evaluating them with the
time-dependent density n(r,) instead of with the ground ny.

The most basic one would be the adiabatic local density approximation (ALDA), one
of the most widely spread XC functionals and the one that we have used for the TDDFT
calculations presented in this thesis. This functional uses the LDA from DFT as its basis.
The XC potential is therefore given by:

dely (i
VALDA (). 1) — exc ()

XC dii |r'1=n(r,t)7 (2.61)

where e})l(c (i) is the XC energy of a homogeneous electron electron gas with particle density
fi. In other words, ALDA is constructed taking the XC potential at the point r and time ¢
corresponding to the homogeneous electron gas of density n(r,t).

Let us briefly discuss the applicability of ALDA. First, of all, it should only work for
systems and situations for which the LDA is already valid. After all, the errors present in the
underlying ground state functional (in this case the ALDA) are carried on to the adiabatic
extension (the exponential decay of the XC potential instead of the —1/r behavior of the
exact potential, for example). In addition, any adiabatic extension of a static DFT functional
should only work for systems that fulfill the adiabatic theorem of quantum mechanics, that
is, those where the perturbations affecting them are slow enough. Another way to put it is
saying that using adiabatic functionals means that we are ignoring any possible memory
effect. It turns out that in many circumstances, in particular when high intensity fields are
used as perturbations, this requirement is not met. Nonetheless ALDA has proved to be a
good solution, even for problems that are apparently far removed from its theoretical range
of applicability [82, 23, 214, 210].



38 Theory

2.3 Ehrenfest Dynamics

Now that we know how to approach the electronic part of a system (both its ground state with
DFT and its time evolution with TDDFT), we turn to the problem of a full system formed by
both electrons and nuclei.

Molecular Dynamics (MD) is the discipline that considers the atoms as classical particles
moving in force fields that take into account the effect of the electrons. Therefore the main
computational task required for MD is the integration of the classical Hamiltonian equations
of motion. If these force fields are pre-established, we are talking about “classical” MD, but
when the forces that act on the nuclei are computed at the time of the propagation, we have
an “ab initio” or first principle MD. In both cases, one is only concerned with the dynamics
of the classical nuclei: the electrons, considered in the adiabatic approximation, are always
in the ground state corresponding to the nuclear configuration at each time. However, if one
needs to consider excited states of the electrons, a non-adiabatic version of MD is needed.
This implies the use of truly hybrid classical-quantum models, where the mixed degrees of
freedom of the classical part and the quantum part of the system evolve simultaneously, and
coupled to each other. This section is dedicated to one of this models: the so-called Ehrenfest
Molecular Dynamics, sometimes also called “mean-field Ehrenfest dynamics”, or simply
“quantum-classical MD” [18].

We have used this variant of non-adiabatic MD — in combination with TDDFT to describe
the electronic part of the system — to tackle the problems presented in this thesis (chapter 4)
for several reasons:

1. It is a non-adiabatic form of molecular dynamics: this means that the treatment of
phenomena like electron emission or excited states arise naturally within this formalism,
unlike in the adiabatic Born-Oppenheimer approximation. It should be stressed that
the term adiabatic here does not relate to the adiabatic approximation of the XC
functions, described previously. In this case, a system behaves adiabatically if the
electrons are constantly in the ground state corresponding to each instantaneous nuclear

configuration.

2. Itis amixed classical-quantum approximation: the nuclei are treated as classical objects
while the electrons receive a full quantum approach, which allows the description of
(some) quantum effects while keeping our simulations at a relatively low computational
cost. The first application of Ehrenfest dynamics that we could find in the literature
was presented by Mittleman in 1961 [148].
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3. The mix of Ehrenfest dynamics and TDDFT has proven to be a popular and useful tool

for the electronic structure and quantum chemistry communities [206, 2].

The derivation of EMD is based on two approximations: 1) first, one separates the
electronic and nuclear parts of the system, obtaining the “time-dependent self-consistent
model” [68]; and 2) then, one takes the classical limit for the nuclear equations using the
short wave asymptotics idea [216, 110, 21]. Check Ref. [18] for a rigorous discussion of
this procedure. In its basic implementation the state of the system is determined by a set
of classical position and momentum variables {R, P} = {Rq, Py }*1_, for the nuclei, and the

many-electron wave function W for the electrons. This results in the following equations of

motion:
d N
—i [¥(0) = H(R(),1)[¥(1)), (2.62a)
Ry = LPOC, (2.62b)
My
Py = Fu[R(1),¥(1),1], (2.62¢)

where the latin indexes run over the N electrons, the greek ones run over the M nuclei, m, is
the mass of the a-th nucleus, H is the Hamiltonian of the electronic system, and Fy, is the

force that it experiments, given by:

oH

FulR(t),¥(t),t] = —<‘P(t)‘ﬁ

(R(),1)|¥(2)) . (2.63)
Usually, the derivative of the Hamiltonian with respect to the nuclear positions is given by a

one-body multiplicative potential in real space:

oH N ;
E(R(f),t) = Z T OR, (2.64)

where v is the external potential that the electrons see, i.e. it includes the nuclear interaction
and possibly an external field. The expectation value that provides the force can then be

written explicitly in terms of the density:

ov(r;R(t),t
FolR(1),%(1),1] = — /drn(nt)M (2.65)
dRy

As we can see from Eqgs. 2.62, the classical description of the nuclei is carried out by
Newton’s equations while the Schrodinger equation deals with the electrons. Here, the

interplay between classical and quantum components of the system is codified in the forces
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Fy experimented by the nuclei — as they take into account the effect of the electrons through
its dependence on ¥ —, and in the electronic Hamiltonian A, that depends on the nuclear
position coordinates.

EMD is non-adiabatic: if one casts the equations written above into the adiabatic
basis (the R-dependent eigenstates of the electronic Hamiltonian), it is easy to see that the
coefficients change in time due to the presence of non-adiabatic couplings between the
different excited states).

The previous equations use the wave function as the fundamental object to describe the
electrons; in the previous subsection we have seen how one can do away with it and substitute
it with the electronic density. Here, one may also combine TDDFT with EMD, in order to
arrive to a model that is computationally easier. These are the equations that we have used

when dealing with time evolving systems:

d

—ia\¢i> = His(R(t),1)|@i) , (2.662)
Ry= P, (2.66b)
My

(2.66¢)

where, as usual, {¢;} are the Kohn-Sham orbitals, and FIKS is the Kohn-Sham Hamiltonian.
Note that it is the fact the the force is an explicit functional of the density what permits to
use, without further approximation, the Kohn-Sham system as a substitute for the real one,
and do EMD with it.
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2.4 Numerical propagators for Systems of Ordinary Dif-

ferential Equations

Up to this point we have studied formalisms to find the ground state of a many electron system,
and describe its evolution in time. Then, we have seen how to couple this quantum system to a
classical one representing the nuclei, thus creating a hybrid classical-quantum, non-adiabatic
molecular dynamics model. Now we turn our attention to the practical implementation of
this theory. In particular, how to actually propagate the TDKS and Ehrenfest equations (2.57
and 2.66, respectively).

In order to do this we will have to use a numerical propagator suitable for these equations
of motion. There is a great variety of families of propagators to choose from, and ample
room for improvement. That is the reason that has motivated our work in the subject. In this
section, we will first present the generalities about the methods to solve ordinary differential
equations (ODEs). Then, we will present the four families of numerical propagators that we
have studied, implemented and used in this thesis work (see chapter 5) . For a more detailed

discussion about ODEs and their numerical propagation, check Refs. [80, 81].

2.4.1 General Properties of Numerical Propagators

Hamilton’s equations of motion for a set of classical variables make up a system of ODEs;
Schrodinger’s and the TDKS equations are partial differential equations (PDEs) that, however,
upon discretization, are converted into a set of ODEs, too. The combination of both, therefore,

is also a set of ODEs. In general, a set of ODEs has the form:

y<t> = f(y(t)=t>= (2.67)
y(to) = Yo. (2.68)

Notice that in this definition, the so-called dynamical function f depends on the system state
at time ¢ only, and not on previous states. In consequence, the TDKS equations actually
belong to the more general group of time delayed differential equations if the XC functional
takes into account memory effects, but as we will only use ALDA (an adiabatic functional)
in this thesis, the study of ODEs will suffice. A great amount of literature about how
to propagate this kind of equations has been written since the times of Newton, Euler or
Lagrange, and we can apply all that knowledge to our problem.

There are many ways to categorize the approaches to the propagation of ODEs, but we

will split the numerical integrators following these two criteria:
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1. Number of previous steps required: If a propagation method only needs the knowledge
of the previous solution at time ¢t — Af to approximate the function y at time ¢, we say
that it is a one-step method. Conversely, if it needs the solutions at times ¢t — At —
2At,....t — sAt it falls in the category of multistep methods, with s being the number of

previous steps required.

2. Solution of a nonlinear algebraic system of equations: If an integration method implies
the solution of a possibly nonlinear algebraic system of equations to approximate y(z),
it is an implicit method. On the other hand, if no such system is present, we have an

explicit method.

This last division is important when we deal with “stiff equations”. The definition of what is a
stiff equation is up to debate even nowadays, and so we just settle with the pragmatic “a stiff
equation is one for which implicit methods of propagation notably outrank the explicit ones”.
This is important because the kinetic operator 7' of the Kohn-Sham Hamiltonian is often
considered a source of stiffness in the TDKS equations, and we often find problems where
the explicit methods break down for this reason. Another advantage of the implicit methods
is that they are generally better than their explicit counterparts at preserving the structural
properties of a system, a very desirable quality as it improves the accuracy of the conserved
magnitudes for long propagations. On the other hand, the use of implicit propagators implies
the need to solve a nonlinear algebraic system of equations, an overhead that the explicit
methods do not have, and that considerably hurts their performance.

The solution to an ODE system such as the one given by Egs. 2.67, can be written in

terms of a nonlinear evolution operator, denominated “flow”, defined as

D (y(r —Ar)) = (1) (2.69)

This is the operator that one has to approximate, i.e. the propagating algorithm effectively

defines a numerical flow:

D, (y(t —Ar)) = (1) (2.70)

For the multistep methods, one actually must use a more general numerical flow definition,
one that depends on several previous time steps.

To clarify some ideas, let us restrict the problem for the moment to linear equations with
the form

¢(1) = —iH(1)o(1), (2.71)



2.4 Numerical propagators for Systems of Ordinary Differential Equations 43

where H (t) is a Hamiltonian and ¢ is its associated wave function. As it is linear, we can
write its solution as:
@i(1) = U1, — Ar) @it — At), (2.72)

for a discrete time step Ar (which we will consider constant through this thesis), and where

the (time ordered) evolution linear operator U is given by:
t
Ul(t,t—At) = 9exp{—i drﬂ(r)}. (2.73)
t—At

The symbol .7 exp represents the time-ordered exponential. [Note that, as the TDKS equa-
tions are nonlinear, a linear evolution operator that drives the orbitals from @;(t — Ar) to ¢;(t)
does not exist.]

The election of a specific method for the propagation of ODEs in general, and the
TDKS equations in particular, is usually conditioned by the performance and stability of the
algorithm. By performance we mean the time required by our computers to propagate the
equations to a certain point in time. The stability of a propagator is related to whether or not
the error in the propagation grows exponentially after a given number of time steps. One can
give a simple definition of stability for linear ODEs: a propagator is stable below Az if, for
any At < Atmax and n > 0, U™ (¢ + At,t) is uniformly bounded. We can ensure the stability of
the integrator by making it contractive, i.e., ||U (¢ + At)|| < 1. If the propagator is unitary, it
follows that it is contractive, but for the schemes that are only approximately unitary it is
better if, at least, they are contractive. Unconditional stability is also defined for the cases
where the stability of the algorithm is ensured, regardless of both Ar and the spectrum of H.
Although decreasing the time step generally improves the stability of the method (at the cost
of decreasing its performance), in some cases certain integrators will never be able to achieve
long term stability, specially if the systems are stiff.

Another issue to consider when choosing or developing a propagator is whether or not it
preserves some of the properties of the equation that is to be solved. For example, for linear

systems with Hermitian Hamiltonians, we know that the propagation should be unitary:
U (t,t —At) =0t — Arr). (2.74)

This conditions ensures the orthonormality of the orbitals { ¢} during the propagation. This
is important because it ensures that stability mentioned above; a method that does not fulfill
this condition would have to orthogonalize regularly the wave functions, and the cost of this

operation scales as N°.
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Another useful property that a propagator may or not respect, is time reversibility:
Ult,t —At) =01 (1,1 — Ar). (2.75)

This is true for systems that do not contain magnetic fields or spin-orbit couplings.

Finally, another important property that we will pay special attention to is symplecticity.
This may be a property of the ODE system, and may or not be respected by the numerical
integrators [79]. Part of the work developed in section 5.1.1 is directly related to this concept.
The concept is very general, and can be predicated of any differentiable map in an even-

dimensional real space: We say that a differentiable map g : R** — R?" is symplectic if and

dg’ Jg 0 I
3 a—y_J, J—[ ] (2.76)

only if

where I, is the identity matrix in n dimensions. For any system of ODEs, the flow [Eq. 2.69]
is a differentiable map. For a flow to be symplectic, first we need that the system is formed
by an even number of real equations. Classical Hamiltonian systems have by definition an
even number of variables; quantum systems are actually defined in complex spaces and thus
the definition would not seem to apply; however, for complex systems we can always divide
them into their real and imaginary parts, and the resulting equivalent real ODE system will
always fulfill the even number of dimensions condition.

It may then be proved [172, 79] that a differentiable map is Hamiltonian if and only if it
is Hamiltonian, i.e. one can find a system of coordinates that makes the equations take the
form

y=J"'VH(y), (2.77)

where y € R?" and the Hamiltonian H is a scalar function of y. Dividing y = (g,p)" we get
the famous Hamilton equations of motion

JdH(p,q)

Qi = a— N (2783)
Di

e oH a(p,q) ’ (2.78b)
qi

with g; and p; being the elements of the vectors g and p respectively. The relevance of
the symplecticity resides in its theoretical implications: for example, a symplectic system
conserves the volume in phase space.
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Regarding the Schrodinger equation
.d N
15]‘P(t)> =H|¥(1)), (2.79a)
'¥(0)) = [%o), (2.79b)

one can prove that it also forms a Hamiltonian system and thus it is symplectic. In order to
do so, one expands the wave function into the orthonormal basis set |¥;)

[P(0)) = Y i) %), (2.80)
i
where ¢;(1) = (¥;|¥(¢)). We can then rewrite Eq. 2.79a as

¢ = —iHc, (2.81a)
ci(0) = (Wi|Wo), (2.81b)

where the Hamiltonian matrix H is defined by H;; = (¥;|H|¥;), and c is the vector formed
by the time-dependent coefficients {c;(¢)}. Now we divide the coefficients into their real and
imaginary part

ci=5(@i+ipi), (2.82)

i.e., qi = \/59%[, pPi — \/QSSC,‘. T'his allows us to define the Hamiltonian function

Notice that, if H is Hermitian, then H(g, p) has to be real. Also, if we denote RH and SH
to the real and imaginary parts of the matrix representation of A in the chosen orthonormal
basis, the hermiticity implies RHT = RH and SHT = —3H. One may then arrive at:

H(q,p) =1¢"RHq+ p"RHp+ p"SHq. (2.84)

Its partial derivatives are

8Ha(;1-’ p) _ Y (RHijq;— SHip)) , (2.85a)
i 7
9H(q,p) _ Y (RH;;p, +SHijq;) - (2.85b)

api J
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We can now rewrite Eqgs. 2.81a as

Gi+ipi = —i) (RH; +i3H;j)(q; +ip;), (2.86)
J
Comparing these equations to Egs. 2.85, we see that the Schrodinger equation indeed forms
a Hamiltonian system, and is therefore symplectic.

When we use a propagator to approximate the flow of a system of ODEs, the numerical
flow that is effectively defined by the propagator may or may not be also symplectic. These
should be preferred for theoretical reasons, but also for practical considerations: for example,
the conservation of constant of motions such as the energy is much better with symplectic
schemes than with non-symplectic ones [12].

2.4.2 Runge-Kutta Methods

In 1768, Euler proposed a method [57] to solve the initial value problem given by Eqgs. 2.67.
It consisted in dividing the interval of integration in n+ 1 steps {fo,?1,...,t,}, and then
replacing the exact solution of the equation with the first term of the Taylor expansion of
f(y,t), obtaining

yi—yo = (t1 —19) f(yo,0),

ya—y1 = (2 —1)f(y1,11), (2.87)

Yn—Yn—-1= (tn_tn—l)f(yn—latn—l)-

where y; approximates y(#;). Introducing the notation for the steps h; =t —t;, we can write
the Euler method as

Vit1 =Yi+hif (i, ti). (2.88)

In the following, we will only consider constant subdivisions of the integration interval:
h; = h.

Euler’s method is a first order integrator, which means that its error is directly proportional
to the step size h, and thus it is highly inefficient if we need high accuracies. Let us consider
the case where y(t) = f(¢), i.e., when f is independent of y. The solution is then simply

given by the quadrature problem

n
y(tn) =yo+ ) dt £(z). (2.89)
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In order to integrate this problem numerically, we can for example use the first Gauss formula
(or midpoint rule), defined by

h
yi~yo+hf (lo+§>,

h
y2~y1+hf (ll +—) ,
2 (2.90)

h
Yn ™~ Yn—1 +hf (tnl + 5) .

This is an order 2 integrator, i.e. the global error is of order & (hz). In 1895, C. Runge [178]
wondered if this method could be extended to deal with the more general problem 2.67. For
our first step one would have

h h
Vi ~y0+hf(y(to+§),t0+§)), (2.91)

but we don’t know the value of y(fo+//2). The idea is to use Euler’s method with step size

h/2 to compute it. In this way, one obtains the following method:

ky = f(yn;tn)a
h h
b= FOn+ k1t +3), (2.92)

Ynt+1 = Yn+hks.

Although we are using Euler’s method to find k5, the error is not linear for the the computation
of y,+1, but quadratic thanks to the extra & factor that multiplies it. By comparing the Taylor
expansion of 2.92 with the corresponding expansion of the exact solution, one can find that
the error at each step grows proportionally to 43, and therefore the general error of this
method grows as h?, i.e., it is an order 2 method.

The generalization of the previous process was presented by W. Kutta in 1901 [115],
giving birth to what is now called the family of Runge-Kutta (RK) methods:

Runge-Kutta Methods. Let s be an integer (the number of stages), and let {a;;}} =1
{bi}i_, and {c;}i_, be sets of real coefficients. The s-stages Runge-Kutta method is defined
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S
ki=fn+hY aijkj,tn+cih),
j=1

N
ky=f(yn+h Y, arjkj,tn+cah,),
j=1

ceey

s
ki = f(yn +nh Z a,-jkj,tn -I-Cih),
j=1

(2.93)

seey

N
Yni1 =Yn+ Y bik.
i=1
The choice of the number of stages s, and the coefficients a;;, ¢; and b; determine the
precise method among all the (infinite) possibilities of this family. Since Butcher’s paper
from 1964 [26], it is customary to present these methods using what has come to be called
Butcher’s tableau:

(4] aii an cee als
(&) azl ¥) cee azs
Cs 3 aso Ass

by by by

(2.94)
As we commented at the beginning of the section, numerical propagators can be divided into
explicit and implicit methods. In the case of RK, from a look at its Butcher’s tableau we can
immediately know whether the method is implicit or explicit: For explicit RK propagators,
the coefficients {a;;}j>; = 0, which results in a Butcher’s tableau where the diagonal terms
and all those above it disappear.



2.4 Numerical propagators for Systems of Ordinary Differential Equations 49

For example, the most famous explicit RK method, usually known as RK4, or simply

“the” RK method, is an explicit fourth order formula, and is defined by:

0

1 1

2 ’ ;

2 0 2

1 0 0 1
1 T T 1
6 3 3 6

(2.95)

By increasing the number of stages, one may obtain higher order methods (at the cost
of larger computational cost). However, the number of stages is not equal to the order; in
fact the order four marks an important threshold for explicit RK methods: one only needs
four stages to obtain an order four method, but one needs a number of stages strictly greater
than five in order to construct an order five formula [26]. Likewise, for higher orders. This
makes these explicit propagators become inefficient, as we have to compute extra auxiliary
functions k;. Beyond this issue, a more important shortcoming of the explicit RK methods is
their failure when dealing with stiff equations (a problem for all explicit methods), and the
fact that it can be proven [182] that that no explicit RK method can be symplectic.

In order to find a way to solve those problems, the implicit RK methods were developed.
From the system 2.93 we can see that if {a;;}j>; # 0, we will have to solve an algebraic sys-
tem of equations to find the auxiliary functions k;. This makes the implicit methods generally
slower when we compare them with the explicit ones, but what is lost in computational time
is won in stability and conservation of magnitudes through the propagation.

In particular, one can build implicit symplectic methods: Sanz-Serna [182] showed that

if the matrix M with coefficients
m;j = bjajj+bja;i—bibj, (2.96)

is equal to zero, the RK method is symplectic. Looking at this expression, we can see that no
explicit method can fulfill it.

There is another family of integrators related to the RK methods that came to our attention
during the development of this thesis, the exponential RK propagators (ERK) [104]. Let us

assume that our function f(y,7) can be divided into a lineal part A and a nonlinear one B:

(1) = Ay(t) +B(y(1),1) . (2.97)
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In the systems that we study, the linear part would correspond to the kinetic operator, and is
considered the main responsible for the possible stiffness, whereas the nonlinear part would

be the rest of the Hamiltonians. The ERK propagators are defined as

S
ki = ey, +h Y @ij(hA)Blkj,ta + hejlk;
SFI (2.98)
Vptl = ehAyn +h Z Ei(hA)B[ki, t,+ /’lCi]ki ,
=1

where the new coefficients a;; and b; are now functions of the operators, whose value
coincides with the corresponding RK coefficients a;; and b; when A = 0. This means that
if we get rid of the stiff part of the equation we retrieve the RK methods. Of course, we
can have both implicit and explicit ERK methods. These propagators are better suited than
the regular RK methods when they face stiff equations as the stiff part of the equation A is
treated “exactly” (i.e. approximated by a very precise formula), and the rest of the equation
B is approximated by a quadrature formula.

The general expression for the coefficients @;;(A) and b;(A) can be written as a linear
combination of some auxiliary functions ¢ (z) defined as:

P (2)

y —~—. (2.99)
As an example, let us write the exponential version of the Euler method:

Ynt1 = Yn +h@1(hRA) By, tn]yn - (2.100)

Just like with the regular RK integrators, the ERK schemes cannot be symplectic if they
are explicit. Furthermore, if we want a symplectic ERK method, the coefficients @;; and b;
must fulfill [147]:

aij(hA) =aje" ), 5 101
Ei(hA) :bieh(lic")A. @. )

2.4.3 Multistep Methods

We have also considered multistep methods, i.e. numerical methods that require the knowl-
edge of a number s of previous steps to propagate the equations. They were first presented in
1883 within the context of fluid dynamics by Adams and Bashforth [10] to solve a problem
related with the capillary action (although this is the first documented paper where the
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multistep methods are used, in an application for a Royal Society grant from 1855 Bashforth
thanked John Couch Adams for showing him these propagators, and therefore we must
consider Adams as the original creator of these schemes).

As they need s previous values of the solution to compute a new one, the multistep
algorithms consist of two parts: first, we need a starting procedure to generate the yq,...,y,,
and then we apply the multistep formula to find y, ;. There are many choices for the starting
procedure: Adams initially proposed using a Taylor series expansion, but one can also simply
use any one-step RK method.

Explicit Adams Methods

Let t; =ty + ih, and let us assume that we know the values y,_s1,...,y, of the s previous
approximations to the exact solution of the differential equation 2.67. Adams considered this

equation in its integral form

Int1

Yt =yat [ dUFO(0).). (2.102)
On the right part of this equation we have the unknown solution y(z). We can find f; = f(yi, ;)
from the previous known values y,_s11,...,y,, and then approximate the exact function
i=n—s+1°* We

can compute this interpolation polynomial p(z) as a function of backward differences using

f(y(t),r) with an interpolation polynomial calculated from the points {#;, f;}"

Newton’s interpolation formula

s—1 . ]
p(t) = p(ty +kh) = Z(—l)"( l.k) Vi,

i=0 (2.103)
Vofa=far V=V
With this result, we can write the numerical approximation to Eq. 2.102 as
s—1 )
Ynil =Yn+h Y %WV fa, (2.104)

i=0

where the coefficients ¥; fulfill:

/dk ( ), (2.105a)

%=1. (2.105b)

'}/m‘i' '}/m 1+...+ +1
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i1 2 3 4 5
‘ | 5 3 251
Vi 2 12 8 70

Table 2.1 Coefficients for the explicit Adams methods.

In Table 2.1 we show the coefficients that we have required for the methods used in this
thesis. Formula 2.104 is attributed to both Adams and Bashforth, and therefore this explicit
variant of the multistep methods is also known as the Adams-Bashforth (AB) method.

In practice, one normally writes the AB formulas directly in terms of the f; values, as in:

s—1
Y1 =Yn+hY Bifu-sti (2.106)
i=0
The coefficients ; can be written in terms of the ¥ ones given above.

Implicit Adams Methods

In the construction of the explicit Adams methods we have integrated the interpolation
polynomial outside of its interpolation range (¢,—s+1,%,) to find an approximation to y(,1).
It is well known that interpolation polynomials present problems outside of this interval.
Because of this, Adams also considered formulas for the interpolation polynomial that
included the point (y,+1,;+1):

p(t) = p*(ta+kh) = Z(—l)”(_kﬂ)vffnﬂ. (2.107)

i=0 !

When we insert this expression in Eq. 2.102 we get the implicit Adams methods

S
Y1 =Yn+h Y ViV fur1, (2.108)
=0

where the new set of coefficients ¥} is given by

1 _
¥ = (—1)"/0dk( k_“), (2.109a)
1

(2.109b)

* 1 * *
Ym+§’)/m71+"'+ % =0 (m>1), Y

m—+1

The coefficients that corresponds to the propagators that we will use in this thesis appear in
Table 2.2.
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i1 2 3 4 5
T S Es B ')
2 12 24 720

Table 2.2 Coefficients for the implicit Adams methods.

Formula 2.108 is attributed to Adams and F. R. Moulton, so these methods are also known
as the Adams-Moulton (AM) methods. We can rewrite this formula just like we did with the
Adams-Bashforth method:

)
Ynt1 =Yn+h Y B fa—sriti- (2.110)
i=0

Predictor-Corrector Methods

As we know, when we have an implicit propagator, generally we have to solve a nonlinear
system of equations due to the presence of y,. | in both sides of the equation that defines
the propagator. This may significantly slow down the procedure. This can be avoided by

approximating the solution, using the following algorithm:

* P: using an explicit method (Adams-Bashforth, for example) compute a “predictor”
approximate solution ;1.

« E: evaluate with §,,, | the function 7,1 = f($ns1,tnr1)
* C: apply the following “corrector” formula to find y,,4|
Vst = Yn+h(Bofust oo A Bofumsr1). (2.111)
* E: evaluate with y,| the function f(y,11,%,+1) and store it for the next iteration of
the propagator.

This kind of schemes are known as predictor-corrector (PC) methods, and the one outlined
(“PECE”) is the most common one. Another possibility is just doing the PEC steps, and
using f,+1 for the next step of the propagator.

Backwards Differentiation Formula

To finish this brief survey of the multistep propagators, let us present the Backwards Dif-
ferentiation Formulas (BDF), presented in 1952 by Curtiss and Hirschfelder [50] and pop-
ularized by Gear in 1971 [66]. Both the AB and AM methods are based on approaches
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by quadrature to the integral in Eq. 2.102. The BDF are based on the numerical differ-
entiation of a given function. We will use a polynomial ¢(7) which interpolates in the
range {(tnt1,Yn+1)s (tnsYn)s-eer (tn—s+1,Yn—s+1)} and that we can express as a function of
backwards differences:

q(t) = q(ty + kh) = 2: ( k+1>Vym4 (2.112)

We determine the value of y, | forcing the polynomial ¢(¢) to reproduce the differential
equation at a point:

q/(tn+1—r) = f())n+1—r>tn+l—r)- (2.113)

The case r = 1 gives us explicit formulas, and for £ > 3 these methods are unstable. We are
interested in the case where r = 0, where we find the BDF:

s
Z SiVlyn+1 = hfn+1- (2~1 14)

i=0

The coefficients {0;} are given by

d (—k+1
=0 (7 e, Q1150
(i>1), 0 =0. (2.115b)

As a final remark about these methods, they have been shown to be unconditionally unstable
for s > 6 (check section II1.3 from Ref. [81]).

2.4.4 Magnus Expansion

In 1954 Wilhem Magnus presented a family of integration methods that would come to be
known as the Magnus expansion (ME) [134]. We find the motivation for the development
of the ME in physics, more concretely on the theory of linear operators from quantum
mechanics. For this reason, we will work with an ODE with the form of the Schrédinger
equation:

Y () =A@0y(),  y(to) =)o (2.116)

Continuing with the quantum mechanics analogy, we can write y(z) as a function of the

evolution operator U (t, 1))
y(t) =U(t,1)y(t0)- (2.117)
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We can make #y = 0 without loss of generality and simplify U (z,7y) = U(¢). The evolution

operator obeys the differential equation
U'(t) =AU (1), U) =1, (2.118)
where / is the identity matrix.

The ME is based on the substitution of this evolution operator U () with the exponential
of a new operator () that is given as a series expansion:

Uit)=¢2, Q@)= i Q7). (2.119)
k=1

These € operators can be found using the following recursive relation:

. k_lBj r
Oule) = Y, = [ ae i),
j=0J: 70

L) =A(r), S(r)=0, (k>1), (2.120)
$i(r) = ICZJ[%(r),S,{_;(r)J, (1<j<k-1),
m=1

where B; are the Bernoulli numbers. As we can see from these equations, the computation
of the Q. operators involve commutators of the operator A(f), a computationally expensive
operation in the usual situations. In order to obtain a practical propagator, we have to cut
the expansion in Eq. 2.119 at some point. When we cut at the 2k term we get a 2k — 2-th
order propagator, except for the case where we cut at the first term which produces an order
2 method. For a review of the ME and its application to numerical propagation, check
Ref. [14].

As an example of the Magnus expansion, let us write the simplest possible one, obtained
when we cut the sum in Eq. 2.119 at its first term. The resulting method is denominated the

exponential midpoint rule (EMR), a second order, one-step method:
y(t) =exp (hA(t —h/2))y(t —h). (2.121)

The Magnus expansions are, in principle, only valid for linear systems. However, we will
apply them to the solution of the TDKS equations, that are nonlinear: the operation A(z)y(?)
has the form —iH [y(z)]y(¢), where H[y(¢)] is a Hermitian operator that depends on the state
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of the system. This turns the EMR into an implicit method:
y(t) =exp(—ihH[y(t —h/2),t —h/2])y(t — h). (2.122)

As we can see from expression 2.122, the Hamiltonian depends on y(t — h/2), which is
unknown. One can approximate it, for example, with %(y(t) +y(t —h)), and then the EMR
turns into a nonlinear algebraic system to find y(z).

In our implementation, however, we turn this implicit method into an explicit one

V(1) = exp <—iAtHfftArt /2) Yt —Ar), (2.123)

where H, teftArt /2 is the Hamiltonian at time # — Az /2, that we compute using extrapolation from
previous time steps.

One can modify the EMR to design other propagators with the objective of improving
its properties. The enforced time reversal symmetry [38] (ETRS) propagator, for example,
defined by

y(t) = exp (—igH (y(t),t)) exp (—igH(y(t —h),t— h)) y(t—h), (2.124)

was built with the idea of improving the conservation of the time-reversal symmetry. The
idea departs from the the following fact: propagating a system from y(z) backwards by Az /2
has to lead to the same result than propagating forwards from z(f — At) by At /2. This can be

enforced by the following equation

exp (—i—igH(y(t),t)) y(t) =exp (—igH(y(t —h),t— h)) y(t—h), (2.125)

which, rearranged, gives us the ETRS method 2.124. Although this is once again an implicit
method, following the example of the EMR propagator we can use the extrapolated Hamil-
tonian A to turn it into an explicit method. This results in the so called approximated

enforced time reversal symmetry (AETRS) propagator.
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2.5 Quantum Optimal Control Theory

The application of TDDFT and EMD that we present in this thesis work [Chapter 4] is not
limited to the calculation of the response of a piece of matter to an external laser field, but
attempts to answer the inverse question: what is the optimal perturbation, subject to some
constraints, in order to induce a given system reaction? As mentioned in the introduction,
this type of question is addressed, from a general mathematical point of view, by optimal
control theory (OCT) [5].

When applied to a quantum problem, the theory is called quantum optimal control
theory [217, 20] (QOCT). To fix ideas, consider for example the time evolution of a quantum
system described in its ground state by a Hamiltonian Ay = T + V. Then, it is subjected to a
perturbation &(¢)1:

H(t) = Hy— fie(1) (2.126)

We may think of [l as the dipole operator of the system, perturbed by a laser field in the
dipole approximation.

In a typical experimental setup, the control field will be H; = —fi£(¢): the experimentalist
has some liberty in the election of the temporal shape £(¢) and can therefore tamper with it
using different laser pulses. The goal would be to search for the one that produces a desired
outcome. Theoretically, this can be codified as the optimization of some functional of the
system trajectory. For example, one may attempt the transfer of the system from the ground
to an excited target state, and the functional would in this case be the population of the target
state at the final time of the propagation.

The first thing that one may wonder is about the feasibility of the idea. Mathematically
speaking, this is the so-called problem of controllability, which is a complex mathematical
issue. As we are only interested in the practical application of QOCT, we just refer the reader

to Refs. [91, 217], for example, for more in-depth information about this issue.

2.5.1 Optimal Control for the Schrodinger Equation

Let us think of a simple, standard formulation of QOCT: our objective is to find the laser pulse
€(t) which conducts our system from its initial state ¥(#y) to a state ¥(7') that maximizes
the expectation value of some hermitian operator O. We can write this statement in terms of

an objective functional that is to be maximized:

Ji[¥] = (¥(T)[O¥(T)). (2.127)
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Since € fully determines the behavior of the system, € — W¢, one may define a functional
Gle] = Ji[¥e], (2.128)

and the basic problem of QOCT reduces to its maximization.

Note that this statement of the QOCT problem restricts it to the case in which the target
only depends on the state at the end of the propagation, and not on the full trajectory: We
wish to drive the system to a final state, no matter how — in OCT jargon, it is a “terminal”
target. The theory can be generalized, but for the sake of simplicity we describe this restricted
formulation here, since this it is the only one that we have needed for our applications.

In practice, one often must somehow restrict the search space to find a solution for
(t). For example, we are not interested in too large amplitudes, as they would not be
experimentally feasible. One may enforce these restrictions to the problem by adding penalty

functions, such as:

hle] = -« /0 at (1), (2.129)

so that G = J; +J,. The positive constant ¢ is a penalty factor. This penalty function has
been defined as (—a) times the fluence of the laser pulse: If the amplitude of the laser pulse
is large, so is the fluence, that averages it over time. The total value of G, therefore, would be
reduced in the regions of pulse space with large amplitudes, and the optimal solution would
not be found there.

The maximization of J; + J; defined as above, without further considerations, would not
lead to a valid solution, as one must ensure an obvious extra constraint: the wave function
must satisfy the time-dependent Schrodinger equation. This can be ensured through the

addition of an extra functional term that acts as a Lagrange multiplier:
T A
Bl 2] = =28 [ dt (2(0)|(i9, — Hle) 2(0). 2.130)

where the auxiliary field x (¢) has been introduced as a Lagrange multiplier. Putting together

the three contributions defined above, we have:
Je, ¥, x] = N |¥Y]+le] +Iz]e, P, x]. (2.131)

Now, we want to find the laser pulse (the “control”) that optimizes this functional. In
order to do that, we have to compute the variation J of the full functional and make it zero.

In the definition of J, the variable €, W and ) are treated as independent, and therefore this
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variation takes the form

8J = OpJ + 8y + 6¢J,

—/dr/dr[élp 5W(r,7) + 8%‘? } /dr

Here, the variation with respect to the conjugated W* and x* are omitted as they result in the

68 (1). (2.132)

complex conjugate equations of their counterparts.
Let us look at each individual term. For the functional derivative with respect to ¥ we
find

Spli = OW* (¥, 7)8(T — 1),
opJr =0, (2.133)
SyJs = —i(ide + H (1)) " (', 7) — [x* (', 7)8(T — 7)][5 -

where partial integration has been used to find the last expression. This results in the following

expression for the variation of J with respect to the wave function ¥

T
Sy = <‘P(T)\0\5‘P(T)>+i/0 d7 ((id: +H (1)) x(7)|8¥(1)) — (X (T)|8¥(T)) + (1 (0)|¥(0)).-

(2.134)
The last term of this expression vanishes because we have fixed the initial condition ¥(z),
and thus 6¥(#p) = 0). We repeat the same process for the auxiliary field y, and find

8yJ> =0, (2.135)
8y 3 = i(idr + H(7))¥* (¥, 7).

Here we do not have boundary terms, so the variation of J with respect to ¥ is

T
S0 =i / dt (i + H()¥(1)|5x (1)) (2.136)
0
Finally, the variations with respect to € are given by:

58‘]1 - 0,
O0glr = —20&(7), (2.137)
8eJ3 = =23 (x(7)|a[¥(7)),



60 Theory

so we have

OgJ = /OTd‘c [—23(x(7)||¥(1)) —20e(T)]O€(T). (2.138)

In order to find the extrema of J, we set all these variations to zero. This leads to the

following set of “control equations’:

(i0+H(1)x (1) = i(x(t) = 0)8(t —T), (2.139a)
0= (id; +H())¥(t), (2.139b)
o (r) = =3 {x (1) |a[¥(1)) - (2.139¢)

If we impose continuity at = T to ), we can replace Eq. 2.139a by

(i0 —H(1)x(t) =0,

. (2.140)
x(rt)=0¥(nt).

This means that the Lagrange multiplier ¥ (z) (sometimes called costate in the optimal control
literature) behaves like the original wave function but, instead of having an initial condition
for the propagation of its Schrodinger equation, we have a final conditions: one therefore
needs to do a backward propagation for its calculation.

The wave function W, costate y and control field € that simultaneously solve Eqgs. 2.139a,
are a solution to the control problem. The equations are nonlinearly coupled, and therefore it
is not a trivial task to solve them: in fact, various algorithms have been designed ad hoc to
carry out the computation of these objects. [232, 233, 96].

Note however that one could also approach the problem in a slightly different way: from

the previous derivations, one can also find the gradient of G with respect to € is:

oG
oe(t)

= 23 (x(1)|a1¥ () — e (r). (2.141)

In fact, Eq. 2.139¢ merely states that, at the solution point, the gradient should be zero. Armed
with the gradient, one can use any standard algorithm for the optimization of functions, such
as conjugate gradients, etc.

2.5.2 QOCT + TDDFT

The previous section presented the basic equations of QOCT, assuming that one directly
deals with the quantum problem though its full wave function and corresponding Schrodinger

equation. As we know, this is not normally the case when dealing with many electron
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problems. For example, we have used TDDFT for the project described in Chapter 4.
Therefore, one must modify the previous approach, and substitute the use of Schrodinger’s
equation by the ones of Kohn-Sham.

The combination of QOCT and TDDFT was presented in Ref. [40]; we summarize here
the key equations. Compared with a quantum system described by the Schrédinger equation,
in TDDFT we have the TDKS equations 2.57, which we will rewrite for simplicity in a
spin-restricted situation with N electrons (N /2 spatial orbitals):

(P(I‘,l‘) = _iI:IKS(nvu?t)(pi(rat)? (2142)
N/2

n(rt) =Y 20/ (rnt)@i(r1). (2.143)
=1

The Kohn-Sham Hamiltonian is the one described in Eq. 2.58. We will assume the adiabatic
approximation, i.e., the XC potential vxc[n] will only depend on the density at that time n(z).
Furthermore, note the presence of an extra argument u; it is a set of parameters uy,...,uyy.
that determine the temporal shape of the control pulse, i.e. € = €(u,¢). While in the previous
section we have directly used the full continuous function £(z), now we will use a set of
control parameters, and the task will be to find the optimal set u°.

Once a particular set u has been chosen, and given the initial conditions, the Kohn-Sham
equations fully determine the evolution of the Kohn-Sham orbitals, so we can write ¢ = ¢ (u).
One must then codify the objective of the optimization into a functional definition, just as
we did before, for example J;[¥] = (¥(T)|O|¥(T)). However, ¥ is the real many-electron
wave function, and within a TDDFT formalism, we do not have that object. Therefore, in an
ideal system we should try to define the target functional in terms of the density, J; = J;[n]. In
this way, we can manipulate the Kohn-Sham system, and use its density — that approximates
the one of the real one. One may then add a penalty functional J; if necessary, and then

define the functional to optimize, G, as
Glu] = J1[ny] +J2(u) . (2.144)

as the density is also determined by the choice of u: u — n,.
One may then use a similar derivation to the one outlined in the previous section, but
considering the Kohn-Sham equations, instead of the Schrédinger one. The nonlinearity

makes it a little more involved — the details can be consulted in Ref. [40]. The final expression
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for the gradient is given by:

N/2
a_G — %4_23 Z
i=1

ou,, duy,

[ iV ad Ol | 2145

This expression depends on a set of costate orbitals ), that can be obtained through the

solution of the following equations of motion:

ii(t) = [Hgs[n[u] (), u,t] + K[@[u] (1) 2:(¢), (2.146a)
2i(T) = i%- (2.146b)

The main difference between these equations and its analogous in 2.139a is the presence
of the nonlinear operator matrix K[¢[u](¢)], caused by the dependence of Hxs with the
Kohn-Sham orbitals. The definition of K is:

(r|Kij[@]|@) = —4igi(r)S { / dr @*(r') fuxcln](r,”)@;(r') | | (2.147)

where fuxc[n|(r,r’) is the kernel of the Kohn-Sham Hamiltonian

1 n 6VXc[I’L](7‘).

= on() (2.148)

fuxc[n)(r.r') =
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2.6 Density Matrix Renormalization Group

In section 2.1 we have discussed the reason behind the popularity of DFT: its great accu-
racy/cost ratio that allows the simulation of systems that otherwise would be out of reach for
the current hardware level. However, we have also seen how there are other first principles
alternatives, each of them with its own niche of applicability. In this section we briefly
introduce one of them, density matrix renormalization group (DMRG), a theory that is spe-
cially suitable for one-dimensional quantum systems. The motivation for our use of DMRG
will be apparent in Chapter 3, as we will need to calculate exact electronic densities for the
one-dimensional Hubbard chain [121, 31, 32]. DFT cannot be used to obtain exact densities,
since it cannot be systematically improved increasing the basis set, etc. in contrast to other
electronic structure methods. For small chains, we used the straightforward diagonalization
of the Hamiltonian, but this method is dragged by its cubic scaling with the size of the system.
Therefore, we turned to DMRG, which has a linear scaling, and may yield quasi-exact
densities.

Steven R. White presented the DMRG theory in 1992 [218]. The concept of renormal-
ization first appeared in physics in the area of quantum electrodynamics [55], where it was
applied to solve the divergences that stem from the fine structure of the electron at small
distances/large energy scales. Inspired by this, Wilson [219] used the numerical renormaliza-
tion group concept to solve the Kondo problem. His method (which is very successful for
systems with impurities) fails however for real-space lattice systems. White realized that the
problem originates from the selection of the degrees of freedom: instead of simply keeping
the ones with the lowest energy, one must select the most relevant degrees of freedom in a
different way.

In 1995, the matrix product state (MPS) variational ansatz was found by Ostlund and
Rommer [158, 176], which led to the reformulation of DMRG theory in terms of MPSs. Also,
the new developments led to the understanding of DMRG in terms of quantum information
theory. The reason behind the interest in MPSs applied to DMRG lies in the practical
implementation: carrying out the DMRG algorithm using the language of MPS is more
efficient than the previous algorithms. As we mentioned above, DMRG is a very efficient
tool for the treatment of one-dimensional quantum systems, a fact that was proved by
Hastings [83] in 2007. These two factors led us to choose an MPS based implementation of
DMRG for some of the calculations that will be presented in Chapter 3. For an introduction
to the MPS ansatz applied to ab initio theories check Ref. [42].

To expand on this topic, check the reviews [221, 187, 188].
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L=2l
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Fig. 2.2 One iteration of the DMRG algorithm for infinite systems: Starting with a superblock
of length L = 21, it is split into the blocks A and B, both of length /. Then, one adds between
them the sites a and b, which are then absorbed into the nearest block. The two enlarged
blocks Aa and bB are then merged into a “superblock™ of length L = 2/ + 2.

2.6.1 Infinite-System DMRG

DMRG is naturally derived for Hamiltonians in second quantization in a discrete basis, i.e.

lattice Hamiltonians, such as:

H=Y twd),odns +% Y Viimndyd didin . (2.149)
mno ijmn;oT

DMRG is essentially an algorithm to find the best possible truncation of the number of

states needed to describe a system, in order to keep the Hilbert space tractable. The key

assumption of this process is the existence of a reduced Hilbert space the captures the relevant

physics of the system. We will consider that our system consists of a one-dimensional chain

described by the Hamiltonian 2.149, with a variable length L, that in the infinite-length

version of the algorithm, is iteratively grown to infinity. Each site in the chain is associated

to a d-dimensional Hilbert space (for example, we may have a chain of spin 1/2 particles,
and d=2).

In essence, the DMRG algorithm for an infinite chain, sketched in Fig. 2.2, is as follows:

1. One starts with two blocks of sites, A (left) and B (right), containing / sites each. The
normal choice is to start with [ = 1. Each block can be described by a Hamiltonian,
I:IA and Hjp, containing all the internal interactions of each block. The dimension of
the blocks, when /=1, is d: m| = d. In the next iterations, this dimension may grow,
but the algorithm establishes a pre-defined limit D.
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2. We add an extra site to each block, forming the “extended blocks” Aa and bB (second
row of Fig. 2.2). An extended block has dimension dm;.

3. We now consider the “superblock” AabB, and build its Hamiltonian FIAabB (that must
contain the interactions between all its elements). The dimension of the superblock

space is mlzdz. An arbitrary state of this superblock may be written as:

W)=} Vaciosas104)|04)|0B)las) . (2.150)

ap040gpap
where a4 runs over a basis of block A, 64 runs over a basis the extra added site a, and
likewise for ap and op for the block B and site . The variational principle allows us to
compute the ground wave function by minimizing the energy defined by Hamiltonian

of the superblock Hiunp:

E:M‘ (2.151)

(vlw)
4. We now consider the reduced density operator for Aa, by taking the partial trace over
the bB component:

Paa = Trap| W) (v]. (2.152)

5. We diagonalize p4,, and keep the D eigenstates with the largest associated eigenvalues
wq. We set my1 = D. If m;d, the dimension of P4, is smaller than D, we just keep
all the eigenstates, and m; | = m;d.

6. We define the new block for the next iteration, formed by / + 1 sites, to be Aa, but
on the truncated subspace spanned by the previously defined m; | eigenstates. All
operators are projected on this subspace. Likewise for block Bb. We may now return

to point 1 and proceed to the next iteration.

7. The cycle is repeated until convergence is reached, i.e. the properties determined by

the ground state of the superblock no longer change significantly at each iteration.

The gist of the algorithm lies in the selection of the states to truncate the Hilbert space
of the superblock. The reason for the choice of this specific set of eigenstates stems from
the demand that the distance |||y) — |¥)uunc|| between the exact ground state |y) and
its projection onto the truncated state |¥)yunc be minimal. This distance happens to be
proportional to the total weight of the discarded eigenvalues of the reduced density matrix,
€ = 1—) ,<pwa, which justifies the choice made by the DMRG algorithm.
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Fig. 2.3 TIllustration of the DMRG algorithm for finite systems.

The maximum superblock dimension D serves as a parameter which controls the error.
If D is increased, the error can be reduced to any required threshold, making the results

quasi-exact.

2.6.2 Finite-System DMRG

The previous algorithm is designed for infinite chains. If the objective is to describe a finite
chain, one could think of repeating the same procedure that increases the length iteratively,
and stopping when the target length is reached. However, the results can be improved by
performing further steps, that define the finite-system version of the DMRG algorithm. This
is the version that we have needed to use for our work.

Therefore, the finite-system algorithm uses the infinite-system DMRG as a starting point,
growing the chain up to the required size of the system. This provides a first approximation
to the wave function of the lattice. Then, the process is illustrated in Fig. 2.3: One takes one
of the blocks (for example, the right block B), and performs once again a DMRG step: add a
site to form an enlarged block bB; form a superblock with the corresponding A block, find
the ground state of this superblock, compute the reduced density operator, diagonalize, and
use the most relevant D eigenstates to truncate the bB block. The difference now is that the
growth of B comes at the expense of block A, which shrinks the number of sites that B grows.
This is repeated until A has a Hilbert space of dimension smaller than D (or until A is of size
[ = 1). Then, the direction of this so-called “sweep” is inverted, once again until B is small
enough to have a full Hilbert space smaller than D. These sweeping cycles continue until

convergence.
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2.6.3 DMRG and Entanglement

Up to this point, we have seen how DMRG avoids the exponential growth of the basis
dimension using a truncation of the Hilbert space. However, in principle we do not know if
this truncation will be of practical use, i.e., if we can get good accuracy for the magnitudes
computed for a truncation dimension D small enough. Or, in other words, if the convergence
towards exact results with the size of D is fast, or not. The answer is conditional (roughly
speaking, it is fast if it is used for one-dimensional systems, and it is not fast otherwise), and
is linked to the concept of entanglement.

As we have seen from the description of the DMRG algorithm, it rests on the idea of
considering the blocks Aa and bB the components of a bipartite system. As mentioned above,
the quality of approximating the ground state |y) of the superblock by making use of a
truncated Hilbert space with only D states, is determined by the magnitude of the eigenvalues
of the reduced density matrix P4, associated to the eigenstates that are discarded. If these
eigenvalues decrease fast with D, the algorithm is effective.

This question has been studied for one dimensional systems in Refs. [170, 156]. The
answer can be summarized as follows: The value of the eigenvalues of the reduced density

matrix is linked to the von Neumann entanglement entropy:
SaB= —Trpalog, pa = —Zwalogzwa. (2.153)
a

We may now apply general scaling laws about the entanglement entropy [171, 56, 211].
Considering the bipartite system A|B, where AB is in the thermodynamic limit and A is
of size L7 (where q is the spatial dimension), the area laws for ground-state short-ranged
Hamiltonians with a gap state that the entanglement entropy is not extensive but proportional
to the surface:

Sap ~ L1 (2.154)

From this expression, we can see that for one-dimensional systems S ~ cst, and therefore
it does not grow with L, which places a limit on the magnitude of the eigenvalues that is
independent on the size of the system.

With this result we can make a connection between DMRG and the area laws of quantum
entanglement. If A and B are two D-dimensional spaces, their maximal entanglement entropy
is S5 p = log, D in the case where every eigenvalue w, is equal to D~!. This means that we
need at least a state of dimension D = 25 to encode all the information of the full system. This
implies that for gaped one-dimensional systems increasing the size would not lead to a strong

increase in D. In order to have maximal entanglement, we need that the eigenvalue spectra is
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close to flat, but for the typical one-dimensional many-body systems the exponential decay of
the eigenvalues assumption is valid even if only qualitatively [191]. In practice, for gapped
one-dimensional systems the decay of the discarded eigenvalues is exponential, which makes
DMRG very successful when dealing with this kind of systems.



Chapter 3

A new route for the Exact Functional

Nowadays, DFT is the most popular theory in the electronic structure community, thanks
to its good accuracy/computational cost relation. Chemistry, Condensed Matter Physics,
Material Sciences. .. 1in all of these areas it has been successfully applied, and many tools
and codes have been developed based on DFT. Despite its many merits, however, DFT is
still an intrinsically approximated theory: independently of the computational resources
available, it never returns exact results, and there are many systems for which DFT even fails
qualitatively [47, 24].

The quality of the calculation is determined by the exchange and correlation functional
(XCF), by how well it reproduces the density of the real, interacting electron system. Hun-
dreds of functionals [142] have been proposed, but the form of the exact XCF is still elusive.
These approximations are not universally successful, and the development of quality XCFs is
a complicated problem [190]. Therefore, the research about this object is of great relevance
in the field of electronic structure.

In Ref [75], we presented a numerical scheme that associates electron-electron interaction
potential functions (IFs) and XCFs, and studied their relationship. While the real IF in the
non-relativistic case is just the Coulomb potential 1/r, DFT can be formulated for any generic
IF. To each given IF corresponds a different XCF. We can then ask the inverse question, that
is, for a given XCF X, can we find its corresponding IF? And if it does not exists, can we
find the optimal IF that better reproduces the results found with this X functional? This
association between IFs and XC functionals naturally leads to an ab initio method to optimize
families of parameterized XCFs: let some algorithm search for the parameters of the XCF
that produce the closest IF to the real one.

To test this scheme we have used site-occupation DFT, also known as lattice DFT [78,
186, 189]. We choose the version of lattice DFT based only on the densities and not the
full one-particle density matrix [127, 208, 128] (other DFTs based on different variables
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are also possible in lattice DFT [189]). The reason behind this election is that lattice DFT
provides us with a numerically tractable framework, and there is an abundance of lattice
models (Hubbard, Anderson, Pariser-Parr-Pople, Heisenberg) that have been studied and used
thoroughly through the years. These models are useful because the limited size of the lattice
allows us to control the number of degrees of freedom of the objects we are researching.
Moreover, they can be seen as numerical discretizations of the real, continuous 3D systems
which we can retrieve in the limit of infinitely fine discretization.

In particular, we have used the one-dimensional Hubbard model (1IDHM) [121, 31, 32],
and worked on a local density approximation parameterized by Lima et. al [124], which uses
the exact results from the Bethe ansatz [13] solution [122], called BALDA. In the 1DHM, the
BALDA is completely determined by a single parameter, given by the IF, and therefore the
BALDA is a family of one-parameter XCFs. We will show that the best parameter to choose
for the BALDA, i.e. the one that better reproduces the exact densities of system defined by a
certain IF is actually not same that the one that defines the IF itself.

In subsection 3.1, we will present in detail the optimization method and the theoretical
background for this work; subsection 3.2 shows the results obtained, and the conclusions are
presented in subsection 3.4.

3.1 Method

We depart from the generic electronic Hamiltonian, in the second quantization (Eq. 2.4),
given by:

As always, the first term corresponds with the kinetic operator 7', the second one is the
external potential V determined by the local function v, and the last term is the electron-
electron interaction W, characterized by a local function w, usually the Coulomb interaction:
w(r)=1.

However, DFT does not require that specific definition for w in its theoretical formulation,
and so in principle we could develop a DFT based on any IF — at least at long as some basic
conditions are met, like the need for the Hamiltonian to have a lower bound. Let us group all
these admissible IFs in a manifold I', where each y € I" represents an IF w. For each 7y the

DFT theorems assure the existence of an XCF of the density n, E%C = E;ZC [n], which can



3.1 Method 71

be used to predict any ground-state observable through the resolution of the non-interacting
Kohn-Sham auxiliary system [106].

The previous reasoning has effectively defined a map from I to a manifold A, where each
of its elements A represents an XCF:

I:T — A (3.1)
Y = =4

This map assigns an XCF A to the IF y. Could the inverse be possible, i.e., for a given XCF
is there any IF for which the XCF is exact? As we know from the inaccuracies of DFT, the
XC functionals in use do not correspond to the Coulomb interaction, but are they exact for
some other IF? This kind of questions are denominated “representability questions” in the
DFT literature (although usually in the context of the relationship of densities and external
potentials).

Instead of finding the theoretical conditions for the correspondence between the IF and
its exact XCF, here we present a practical route in the form of a numerical approach to the
problem. Let us consider that the objects I" and A are parameter sets that characterize IFs and
XCFs respectively. For a given functional E)’}C and IF v, let ny[v] be the exact density of the
ground state corresponding to the external potential v and the IF 7, and nEFT [v] the ground
state density obtained solving the Kohn-Sham equations with the XCF A. We will have that
A is the exact XCF corresponding to ¥ (y € [~'(A)) if and only if ny[v] = n¥T[v] for any
choice of v. Otherwise, there will be some distance between the two densities. We define,
for a given set of external potentials {v}, a function G of y that accounts for the distance
between the two sets of densities:

G () =1 Ja Gny ) 1) = 2T ) 1)), (3.2)

G will be minimized at zero if 3 € I~!(1). The opposite is not true, however: even if ¥
is a minimum that makes G = 0, it cannot be guaranteed that A is the corresponding exact
XCF, because the set of external potential does not include them all. Even then, it will be the
optimal IF found for the XCF A, where by optimal we mean that the two sets of densities are
as close as possible.

By carrying out this procedure, we have defined a function Y™ (1) that assigns an IF
y = y™in(1) to each XCF:

(Y™ (2): 2, {wi}) = minG(v:4, {ne}). (33)
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If we use a sufficiently good sample of external potentials and if G(y™"(1); A, {v}) ~0,
we know that the XC functional A is a very good approximation for its corresponding IF.
This scheme actually measures the “quality” of a given approximated XCEF. First, it tells us
whether or not it is close to the the exact XCF for some IF. Furthermore, one can then look at
how close this associated IF is to the real one (the Coulomb one, in a typical situation).

These questions beget the following procedure for the search of the optimal XC functional

from a given family A: given two IFs ¥ and 95, we define a distance between them as

1/2
atno) = ([[aron ) —wre)?) 34

If we denote the true IF by y*°f, then the minimization of the function

H(A) =d* (¥, Y™™ (1)), (3.5)

leads to an XCF Ay whose associated IF is as close as possible to y*f.

We have carried out this program, for the moment, only for one-dimensional model
systems, with the goal of assessing its feasibility. In particular, we have implemented this
scheme for the N-electron IDHM [121, 31, 32]. The Hamiltonian in this case is given by:

H=—tY dlodic+Y vafin+Uce Y Aptiing , (3.6)
(m,n)o n n

where cfmo, d,s are the discrete creation and annihilation operators (that substitute the con-
tinuous ones from Eq. 2.4), and (m,n) denotes summation over nearest neighbors only.
Depending on whether the kinetic term couples or not the the limits of the chain, we can
have periodic boundary conditions (PBC) or open boundary conditions (OBC) respectively.
We have used the latter.

In our case, both the kinetic term and the interaction operator are determined by a
single constant (¢t and U, respectively). This means that the couplings along the chain are
homogeneous. For the rest of this section we will fix the energy unit making ¢ = 1, which
leaves U, as the only constant determining the model.

One may then build a DFT for this system. The corresponding Kohn-Sham equations

take the form

Y [t Sun P n))| 0 = %0l 3.7)

n

Ny = Z](p,ffa|2. (3.8)
oo
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where 6 =1,/ is the spin index, & runs from 1 to the number of occupied orbitals, and n,, is
the electronic density of the site m of the chain.

As usual, the key ingredient in the equation is the Hartree, exchange, and correlation
(HXC) potential vﬁxcm (n). The form of the HXC potential is given by the derivative of the
HXC energy functional with respect to the density:

A
ch(l)(n) _ aEch (I’l) ) (3.9)

%
" on,,

We label these objects with A, to stress the fact that one must make a particular approximate
choice for them.

Instead of the usual approach where the Hartree part is separated from the approxi-
mation used for the XCF, we preferred to work with the full HXC energy. One possible
choice is based on the local density approximation for the IDHM. This functional is called
BALDA (Bethe ansatz local density approximation) because it uses the solution of the Bethe
ansatz [13] for the homogeneous infinite Hubbard chain, and it was proposed by Lieb and
Wu [122]. For its parameterization we used the one from Lima et al. [124], which establishes

that for an infinite homogeneous 1DHM the total energy per site is

hom __2[3(U) in el
el (i, U) = === (ﬁ(U)), (3.10)

where 7 is the constant density of the chain, U is the interaction parameter of the 1IDHM and

the function B(U) is given by

- ZB;:U) Si“( ) 4/ +exp 15?/2)] .11

with Jp and J; are the zero-th and first order Bessel functions. The < subindex in Eq. 3.10

refers to the fact that this expression is only valid for the densities 77 < 1. For 7 > 1 one may
apply the particle-hole symmetry [122], and get:

eloM (7, U) = (i— 1)U + ™2 —74,U). (3.12)

Therefore, we can write an expression for the energy per site of the infinite homogeneous

Hubbard chain, regardless of 7i, using the Heaviside function 0:

oM (7, U) = 0(1 — A)e"°™ (7, U) + (i — 1)el*™ (7, U). (3.13)
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At n = 1 this formula presents a cusp whose height is a function of the interaction constant U.
This means that the derivative is discontinuous at this point, and thus it presents a problem
for the calculation of the HXC potential: the Kohn-Sham calculation will be hard to converge
for values of the density close to 1. Moreover, the exact functional does not have a cusp at
this point (its effect is actually very important to understand why this functional fails in the
case of the Hubbard dimer, as we will see in the following section). To avoid the convergence
problem, we have used a smoothing function around the cusp, as suggested in Ref. [114].
Although this discontinuity is in fact unphysical, it is worth noticing that it also have its
upsides, for example it has been used to compute the Mott gap [123].

We can now write the total energy (or energy per unit cell for PBC) as:

E"™(n,U) Zshom (n,, U (3.14)

Now we define the HXC functional as the total energy for a certain interaction parameter U
minus the non-interacting energy:

ESAIPAU) (1) = EMOM(n, U) — EM™(n,0). (3.15)
This is a uniparametric family of XCFs, with A = U.
We will now detail the procedure for the optimization of the XC functionals. First of all,
we will re-denote Eq. 3.2 as G(Uee; U, {v}), Eq. 3.3 as U™ (U) and Eq. 3.5 as H(U). For
our lattice system, the function G then takes the form

G(Uee; U, {wi}) = ;Z(HUee Vil =g [vlm)? (3.16)

The computation of function G requires, therefore, the calculation of the DFT densities (that
requires the solution of the corresponding Kohn-Sham equations), and the calculation of the
exact densities (that requires to solve the exact many-electron problem).

Then, the goal is to find the minimum of G as a function of Ug.. We chose gradient-based
algorithms [109, 100] for the search of the minima. For that, we need a procedure to compute
the gradient of G with respect to Uge, given by:

d
- 222 Ny, Vk]m BFT[ ] )aU NUe [Vk]m, (317)
J ot

——ny,, [Vi]m = 2Re(WF || = ) (3.18)

OUee AU,
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with W% = WK(U,,) being the ground state of a system with an external potential v; and elec-
tronic interaction constant Ue.. In order to compute these derivatives we used Sternheimer’s
equation [200]:

oWk
aUee

[A = E] |5 0—) = == ¥ Aty |97 (3.19)
m
where E} is the ground state energy of the system subjected to the external potential VX,
Armed with these numerical procedures to compute the function G and its gradient, we
may use any gradient-based optimization algorithm to find the minimum, and therefore
we can establish the function U™ (U), i.e. the function that provides the optimal electron-
electron interaction constant Ug, for a given BALDA parameter U.
In order to complete this theory section, we explain now the method that we have used to
compute the exact exchange and correlation functional — since we use it as a reference to
analyze the results. The definition of the exact HXC functional is:

Epxc(n) = F(n) —Ts(n), (3.20)

with
Fin) = min (PI(T +)/%). (3.21)
Ts(n) = Tren;;(ln)CPITI‘P% (3.22)

where M (n) is the set that contains all the wave functions that produce a determined density
n. We could compute these objects following a direct minimization over ¥ € M(n), but it is
more efficient to do what is called a “density to potential inversion” [97]. The functional F is
universal in the sense that it does not depend on the external potential of the system. We can

define the potential-dependent functional
E(n)=F(n)+ Y viitm,
m

for some external potential v = {v,, }. If this potential gives raise to the ground state density
n, E(n) is the ground state energy and we can use the previous formula to find F. This
implies the computation of the potential whose ground state density is n, which we can do

minimizing the following function:

Kw) =Y (n(v)m—nm)*, (3.23)
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where n(v),, is the ground state density that corresponds to v, which can be computed by
exact diagonalization of Schrodinger’s equation. When K (v) = 0 both densities are the same
and we have established the map n — v. Now we can use Eq. 3.23 to compute F(n), and the
same scheme can be applied to find 75(n). About the numerical aspects of this minimization,
having access to the gradient of K would allow us to use gradient-dependent minimization

methods, and simplify the search. Indeed, this gradient can be computed:

§f (v) = L20n(V)m — w)%@l’(v)\ﬁml‘l'(v» : (3.24)

n

where W(v) is the ground-state wave function corresponding to the external potential v, that
can be found through the diagonalization of Schrédinger’s equation. We can then once again

use Sternheimer’s equation with 7i,, as a perturbation to compute %‘P(v):

A ¥
[A—E]| >

)= —[[ =20 (PO)||n[P (). (3.25)

In this way, all the ingredients necessary to compute the gradient of K can be obtained.

3.2 Results

Fig. 3.1 shows the plot of the function G(Uee; U, {vi}) for 2 (top), 8 (middle) and 14 (bottom)
sites lattices populated with two electrons. The range of values of U studied is U € [0, 1]
(recall that the energy scale is set by the kinetic constant = 1). This is the regime of weak
interaction (e.g., for the 8 sites lattice with U = 0.5, the correlation energy contributes ~ 0.2%
of the total energy). Regarding the external potentials, we used a set {v;} of 10 randomly
generated potentials, as we found that those were enough to find converged solutions to the
optimization process. These potentials {v;} were generated using a flat random distribution
in the interval [0,0.01z], so they constituted small perturbations on the system which do not
deviate much from the ground state with v = 0. In Fig. 3.1, we show the minimum found for
each value of U; all of them form the red curves UM (U). As we can see, these curves are
not diagonal lines crossing the XY plane: this means that the electron-electron interaction
parameter Up, that better reproduces the densities created by a BALDA with a parameter
U is actually different, i.e., U™ (U) # U. We have tested systems up to 22 sites, and the
difference between both parameters seems to grow with the number of sites and the value of
U.

Now that we have a correspondence between every optimal electron-electron interaction

parameter UM™ and every value of U, we want to find which one of the BALDA functionals
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Fig. 3.1 Function G(Uee,U; {vi}) (surfaces) for a lattice with 2 (top), 8 (middle), and 14
(bottom) sites. Plotted in red over the surface is the curve determined by the minima of this
function with respect to Uee, i.e. UM, Plotted in blue over the XY plane is the function
H(U). Both the reference Uyt, and the optimized BALDA parameter, Uopt [at the minimum

of function H(U)], are also marked.
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Fig. 3.2 Functional Epy. (the sum of the Hartree and xc correlation energies), as a function of
ny, the density of one of the sites of a Hubbard dimer. The plot shows the exact and BALDA
functional computed with the Uégf interaction (EXACT), and the mBALDA functional (see
text its definition) computed with the same reference U'S! and with the optimized Uogpt-

that U defines is closer to a determined reference value of the electron-electron interaction

(in our case we set it to UST = 1/2). For that purpose, we minimize the function
H(U) = (Ugg' = Ue"(U))* (3.26)

This function is also plotted in Fig. 3.1. The argument Uy, that minimizes this function
is the optimal parameter defining a BALDA XCEF for the given reference electron-electron
interaction parameter UL, The resulting U values found for each system are indicated
in Fig. 3.1. There is a noticeable difference between U and Uqpt, which grows with the
number of sites N for Ny > 2. From this fact, we conclude that we can find an optimal
BALDA parameter Uy for a given electron-electron interaction Uee that minimizes the
difference in the densities calculated, but it is different from Uke.

Although we have not plotted all the cases, we observed that Uy, grows with the number
of sites. However, the case of the two-sites system is exceptional: its optimized Ugp is
actually larger than the one for eight sites. The reason behind this discrepancy lies in the
different approach that we had to take for this case. We did not use the full BALDA (i.e.,
the one that treats the n > 1 and n < 1 cases separately), but we have modified the BALDA
functional by applying Eq. 3.10 also for n > 1. We labeled this approach “mBALDA”. When
we use the full BALDA for the Hubbard dimer, the optimization process finds Uge (U) =0
(and, obviously Uqypy = 0). This means that for a given electron-electron interaction parameter
the best approximation is the zero functional. Conversely, it means that for some BALDA
XCF the best approximated electron-electron interaction is given by non-interacting electrons.
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One can understand this behavior from Fig. 3.2, which shows the Eyxc functionals
for the two-sites model as a function of the density n; (for a two sites model with two
electrons, it follows that n, = 2 —ny). These functionals are the exact functional, the BALDA
functional with U = U™, the mBALDA functional with U = U¢f and the mBALDA with
U = Uypr. We are exploring values of the density (both 7 and ny) close to 1, and in this
region it can be seen how the BALDA functional is in fact a very bad approximation to the
Hubbard dimer, because of its discontinuity. This figure also illustrates how the optimization
process generates a functional that, for the region explored by the densities that we used,
improves over the BALDA with U = U™S'. The cusp in the BALDA functional for n = 1 is
the responsible of the failure of the BALDA: the cusp is a local maximum of the functional,
instead of a minimum as it should be, as we can see from the plot of the exact functional.
Ref. [64] also discusses how in the regime of weak interaction, and specially near half filling,
the BALDA functional fails. For these reasons it is better to make the cusp disappear if we
want a good approximation for this region. The height of the cusp depends on the value of U,
only disappearing for U = 0. But U = 0 means that the full functional vanishes.

It becomes clear that the BALDA functional is a bad approximation for the Hubbard
dimmer. On the other hand, for the rest of the cases, we have used the unmodified BALDA
functional, and it served the purpose of providing a very satisfactory tool to optimize and

approximate the exact functional.

3.3 Towards Larger Lattices: Density Matrix Renormal-

ization Group

We have studied Hubbard chains with varying number of sites, and up to 20 sites, we
have used a straightforward diagonalization of the Hamiltonian to solve the two-electron
Schrodinger equation to get the exact densities needed as a reference for the optimization.
This approach has a cubic scaling with the size of the lattice, and thus it quickly becomes the
most limiting factor in the optimization process. Furthermore, the available memory of the
computer may also become a limiting factor as the size of the system grows: the number of
basis required for N electrons in a lattice with P sites grows as (%5) Very soon, the size of
the vectors carrying the orbitals, and the matrix for the Hamiltonian become intractable. One
needs a more sophisticated scheme.

In our case, these limits restricted us to calculations with lattices of sizes up to 22 sites.
To overcome these technical restraints, we used density matrix renormalization group [218]

(DMRG), a theory based on the concept of truncation of the full Hilbert space of the system
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Fig. 3.3 Comparison between the times required to solve Schrodinger’s equation using
straightforward matrix diagonalization (DIAG) and DMRG, as a function of the number of
sites. As we can see, the diagonalization method is faster than DMRG up to 20 sites. Then,
the linear scaling of DMRG overtakes the cubic scaling of diagonalization.

that is remarkably efficient for one-dimensional lattice systems (check section 2.6 for a brief
review of the theory). Using DMRG allowed us to go well past the initial limit of 22 sites, as
the truncation of the Hilbert space not only alleviates significantly the memory problem, but
it has a better scaling with the size of the lattice. In this way, we could tackle bigger systems
in a reasonable amount of simulation time.

We can see the speed-up of the calculations in Fig. 3.3. While the solution of Schrodinger’s
equation using diagonalization shows a cubic scaling with the size of the lattice, the DMRG
approach presents a linear scaling, which overtakes the other method around the 20 sites
mark. For the implementation of DMRG, we used the ITensor Library [145].

The results obtained for the 40 sites lattice appear in Fig. 3.4. As we can see, the value
obtained for the optimized Uy, parameter follows the previously seen trend (it grows with

the size of the lattice).

3.4 Conclusions

We proposed a procedure to associate, numerically, an electron-electron interaction function
(IF) to any XCF of DFT. We defined it as the IF for which the XCF performs best: i.e. the

Kohn-Sham calculations based on it are the ones that most closely reproduce the ground state
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Fig. 3.4 Same as Fig. 3.1, but for a 40 sites lattice. The required exact calculations were done
in this case with DMRG.

densities for a set of representative external potentials. Generally, it is not the real IF, i.e., the
Coulomb interaction for electrons in 3D. In this work, however, we have not worked in 3D,
but we have tested this approach using lattice DFT, concretely for IDHM chains, as it allows
us to work with a manageable number of degrees of freedom.

We have worked using the BALDA XCF as a test bed. It allows us to define a parame-
terized family of XCFs: the BALDA XCF depends on one parameter, in fact given by the
constant defining the electron-electron interaction. We have observed how the parameter that
defines the BALDA does not produce the best approximation for a Hubbard chain with the
same interaction constant.

From this association process, we can devise a scheme to optimize parameterizated
families of XCFs: looking for the XCF whose associated IF most closely resembles the
real IF. In fact, optimizing the parameters of families of XC functionals to improve their
performance has been used in the past as a method for the creation of new and better
functionals. Although the usual approach is to try and improve the ground state energies for
a set of external potentials, there could be better options [146]. In Ref. [129], for example,
they looked at the densities, also using one-dimensional lattice models, to tune ansatze for
the XC functional. Here we build upon this idea, but instead we focus on the associated IF,
a smaller object than the full set of densities when considering the same family of external
potentials.

The goal now is to take this idea to the 3D world. Ideally, this would allow us to answer
many interesting questions, like what kind of screening the IF corresponding to the local
density approximation presents, or how far away from the Coulomb interaction is a given
XCF. However, by using the 1IDHM, we reduced the degrees of freedom that define the IF to
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just one, and it is not known how well this concept scales. The optimizations will grow in
complexity and computational cost with the number of degrees of freedom, as one needs a
way to generate high quality densities. We could overcome the difficulties posed by growing
lattice sites in 1D by making use of DMRG, but unfortunately this method is only truly
effective in 1D.



Chapter 4

Optimal Control in combination with
Non-Adiabatic Molecular Dynamics

TDDFT is one of the most popular methods for the study of the excited electronic structure
of atoms, molecules, solids or even complex biological compounds like proteins. The
reason behind this success is the great cost/accuracy relation that sports, which translates
into the ability to deal with bigger, more complex systems. TDDFT permits to study how
the electrons react to perturbations such as the nuclear movements, laser pulses, magnetic
fields, etc. It may be combined with some form of Molecular Dynamics to follow the
full electron-nuclear movement. In particular, the Ehrenfest equations are well suited for
a density-functional treatment, as the expression for the force is only dependent on the
electronic density. In addition to studying the reaction of a system to an external perturbation,
one may be interested in controlling the system by tailoring the perturbation. Thus, TDDFT
may be coupled to optimal control theory [40], also in combination with Ehrenfest Molecular
Dynamics (EMD) [37].

In this chapter we have combined TDDFT and the Ehrenfest model, with quantum optimal
control theory to study and optimize the shape of femtosecond laser pulses that induce a
Coulomb explosion on small sodium clusters. The results of this work were published in
Ref. [74]. We start with an introduction to the problem and the methodology in section 4.1,
present the theory in section 4.2, discuss the numerical implementation of the control method
and the dynamics model in section 4.3, show the results obtained in section 4.4, and finish

with the conclusions in section 4.5.
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4.1 Introduction

Prompted by the rapid development of the laser technology [103], we assisted first to the
creation of femtosecond science [230] in the last decades of the past century, and of attosecond
science [111] at the beginning of this one. The access to high-intensity, short-duration laser
sources allows us to analyze the effect of these pulses on ions and electrons in real time.

The study through simulations of the processes, both in and out of equilibrium, that
appear in molecular and condensed matter physics is called Molecular Dynamics (MD) [173].
Usually, the “Molecular Dynamics” term, however, is reserved for the techniques in which the
nuclei are approximated as classical point particles, while the electrons keep their quantum
nature — the full quantum treatment is usually too computationally expensive for more than
a few particles. Even with this approximation, the first principles treatment of quantum
electrons in a non-equilibrium situation is still a complex and expensive problem [199]. One
then differentiates the “classical” MD schemes in which the electronic problem is integrated
out, and a set of force-fields determine the ionic movement, from the “first principles” or “ab
initio” MD procedures, that deal explicitly with the electronic structure.

One must also consider whether or not the electronic system is fixed to the ground state
determined by the configuration of the classical nuclei. If so, one may use an adiabatic
MD. This assumption, unfortunately, does not provide a good framework for the kind of
highly excited situations caused by high-intensity short-duration pulses: in general, the
electron-nuclear coupling is non-adiabatic. This means that, if we want to model these
processes, we need a first principles theory for the many-electron quantum dynamics that is
non-adiabatically coupled to the classic nuclear system.

One way to achieve this is by combining TDDFT with EMD (check section 2.3 for a brief
description of the model and how it mixes with TDDFT). This combination was first used by
Theilhaber [206] and its applicability to laser-matter interaction has been successfully tested
in numerous occasions [181, 29, 113, 39, 149, 180].

Besides TDDFT and EMD, the other ingredient of this chapter is control theory. Thanks
to the developments of laser sources, controlling quantum dynamics became a reality, and
thus the field of coherent quantum control [229, 22, 41, 43, 205, 65, 101, 4, 175, 195, 20]
was born. The most complete theory to match these experimental advancements is called
quantum optimal control theory (QOCT, check section 2.5 for an introduction, and for a brief
description of its combination with TDDFT). This theory studies the diverse methods that
can be applied to the following type of problem: given a quantum system, and given a set of
parameters that determine its equation of motion, find those that optimize the system behavior

with respect to some predefined target, encoded as a functional of the system trajectory. The
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first applications of QOCT go back to the 1980s [196, 161, 108, 94], and the following years
saw a rapid development of the field [217, 20].

It has also been combined with TDDFT [40] to extend the control to electronic systems.
A next logical step is to add to the combination an ab initio non-adiabatic MD model,
thus creating a control framework for hybrid classical-quantum systems. The mixture of
OCT with classical MD has already been explored [193, 19], whereas for ab initio MD,
the EMD+TDDFT scheme has proven to be useful when combined with QOCT. The basic
equations for this method were outlined in Ref. [37], and a proof of concept was reported in
Ref. [35], in which the the scheme was applied to H, and H;r systems.

In this work we expanded the size of the systems treated with the combination of QOCT
with EMD+TDDFT: We optimized the laser pulses that induce the Coulomb explosion of
small sodium clusters, for a fixed pulse fluence, total duration and cutoff frequency. There
are three reasons behind the choice of the Coulomb explosion for sodium clusters as a
case study for our scheme: (1) As a violent, far from equilibrium process [60], the regular
perturbative approaches fail, requiring a nonperturbative scheme like the one we use; (2)
TDDFT has demonstrated its capacity for the treatment of high intensity irradiation of simple
metal clusters [30, 220]; (3) The study of the Coulomb explosion of these systems with
EMD+TDDFT has been studied [29, 201, 130], showing an interesting interplay between the
pulse, the ionic motion and the electrons.

Furthermore, the problem really requires a control theory, as the solution cannot be
guessed from physical intuition. One may initially think that the ionization, and subsequent
Coulomb explosion, is optimized by setting the laser pulse frequency to the main resonance
of the cluster. However, the system undergoes changes during the action of the pulse. First,
the ionization produced by the pulse causes a blueshift in the frequency of the plasmon
resonance of the cluster. Then, when the nuclei start to separate from each other, this cluster
broadening implies a redshift of the resonances [201, 34, 35]. One may therefore wonder
then what is the frequency that one should use in order to maximally ionize, and therefore
induce the Coulomb explosion: the original resonance, a redshifted, a blueshifted pulse?
Predicting the shape of the laser a priori is a complicated, nonintuitive problem. This is
precisely the kind of problem for which QOCT was invented.

4.2 Theory

In section 2.5 we presented the basics of QOCT, and of its combination with TDDFT. We will
now add to the mixture EMD, the non-adiabatic hybrid classical-quantum scheme described
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in section 2.3. We will outline here the key results; for a more detailed discussion, check
Ref. [37].

We first recall the basic equations of EMD: In EMD the nuclei are described as classical
point particles, characterized by a set of conjugated position and momenta variables {R, P} =
{Ra,Pa}g:l, where o runs over the K nuclei of the system with mass My, and charge zq.
The state of the N electrons is determined by its many-body wave function . The forces
that drive the nuclear dynamics, when the system is subject, for example, to a laser pulse in
the dipole approximation, are given by

FulR(£),®(1),1,1] = —VaW™(R(t)) + 2o € (u, 1) — (B(1) VoA [R(), u,1][¥(1)).  (4.1)

The real-valued function €(u,t) is the amplitude of the laser pulse and 7 is its polarization
vector. The set u = {uy,u,...,up } is formed by the “control parameters” that determine the

shape of the pulse. W™ is the nucleus-nucleus interaction that take the usual Coulomb form

ZaZﬁ

W R) = |Ro — Rg|’

a<f

4.2)

and H is the electronic Hamiltonian (Eq. 2.2). When using the dipole approximation, it takes

the form:
N ﬁ N N K
H[R,u,t] = 27 Z +s u,t) Z m+Y Y ViR —Ra(1)]), (4.3)
i=1 i<j i=1 =1 o

where 7; and p; are the position and momentum operators for the ith electron, and the electron-
nucleus interaction takes the Coulomb form v*(r) = —% (although in our implementation
we will use pseudopotentials [192]).

We do not use, however, the many-electron wave function W¥: instead, we employ
TDDFT, that substitutes the interacting electronic system with a fictitious non-interacting
one which can be described using a single Slater determinant formed by N orbitals. The
electronic density is given, in terms of the Kohn-Sham orbitals {¢;} that compose that Slater

determinant, by
N/2

n(rt) =n(r Z 2|@i(r1) (4.4)

where we assume a spin-restricted configuration with an even number of electrons filling

doubly occupied orbitals, no magnetic fields and no spin-orbit coupling. The evolution of the
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Kohn-Sham orbitals is given by the time-dependent Kohn-Sham (TDKS) equations (2.57):

d A .
i |9i(0) = Hs[R(t),nu,t]l@i(r)) - (i=1,....N/2). (4.5)
The Kohn-Sham Hamiltonian I—7Ks 1s:

()

|r—=r'|

Hxs[R(1),ns,u,t] +Z\9B ) +€&(u,t)?- 77:+/dr +vxe[me](r). (4.6)

The last term is the exchange-and-correlation potential; for this work we have simply chosen
the adiabatic local density approximation (ALDA), the most basic of all functionals, that is
however both well tested in similar situations [201] and a good enough approximation to
draw qualitative conclusions (check subsection 2.2.3 for a brief discussion on functionals).

The key now is to consider the last term of Eq. 4.1, that may be exactly rewritten in terms
of the density only:

(B(1) VB[R (), u,1][ P (1) /drn (1) Var® (|7 = Ra(1))). 4.7)

This fact permits to avoid the use of the true many-body wave function, and use the TDDFT
Kohn-Sham system instead. In practice, the equations of motion for the atomic nuclei that

are implemented are:

Ro(t) = Mipa,
Pa<t> :Fa[R(t),q)(t),u,t] (48)
N/2
= —VaW"(R(t)) + za€(u,t)7 — z_:l2<‘Pm(f)fvava(’f—Ra(f)|)!¢m(f)>-

In these equations, the density is expanded in terms of the Kohn-Sham orbitals ¢, because
normally one makes use of non-local pseudo-potentials, that do require the explicit use of
the orbitals.

We move now on to the control problem: the search for the particular set of parameters u
that optimize a requested behavior of the system — in the case discussed here, the Coulomb
explosion. Following section 2.5, one must start by proposing a target functional J; in terms
of the variables of the system {R, P,n,u}, whose maximization leads to the desired system
behavior:

J1 =21 [R(T),P(T),ny,ul. (4.9)
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Note that we restrict the definition by employing only R(T'),P(T) and ny (where T is the
time at the end of the propagation), and not the full propagation history: this functional only
depends on the state of the system at the end of the propagation (it is a “terminal target”). As
we know, the election of each set of parameters u determines the evolution of the system:
u — R[u], Plu],n[u], and thus we may define a real function G(u) as

G(u) = IW[R[u(T), Plul(T),nr [u], u] . (4.10)

In the following, we will drop this explicit [u]-dependence in the notation.

The purpose of QOCT is, in essence, to find the extrema of this function. One particularly
useful information for this task is the gradient of G with respect to its parameters u, since it
allows to use the family of gradient-based optimization algorithms. For our EMD+TDDFT

model, one may derive the expression [37]:

20G T Je
Er /O dt 5 -(u.0)g(0), (4.11)
5 N/2
—Y zpRp(t) - w+2Im Y (o (1) |- 7| (1)) - (4.12)
/3 m=1

Here, we have introduced a new auxiliary system called the costate. This is a hybrid system
characterized by the position and momentum variables {R, P}, and the orbitals { xm}N/ 2

The costate is defined though its equations of motion:

< 1

Ro(t) = M_aPa( )5 (4.132)
3 3 N/2
Py (1) :Va§Rﬁ(t)'Fﬁ[R<f)a¢(> u,t] +2Rei Zl X (1) |V o Hys[R(1),n0,1,7] | @)
(4.13b)
R N/2
| Xm (1)) = —iHks[R(t),u,t]|@m) —tZlen o (1)] xn(t) 2ZR[3 VP (17— Rp (1)) @m (1)) -
(4.13¢c)

The first term in the equation for the evolution of the costate orbitals J is just the Kohn-Sham
Hamiltonian that also moves the Kohn-Sham orbitals, but in addition there are some extra

terms. One of them is a non-Hermitian operator K,,,, defined by:

(Rl @(O)] | 1om (1)) = —4i@ ()T / At s (1) fraxe ] () @ (1), (4.14)



4.3 Implementation 89

where the kernel fyy is the functional derivative of the Hartree and exchange and correlation
potential functionals (Eq. 2.148). The presence of these extra terms in the equation of motion
for the costate orbitals leads to some numerical difficulties, as described below.

The boundary conditions for these equations are

Ry (T) = —aaTaJ(R(T),P(T)), (4.15a)
Py(T) = aiaJ(R(T)P(T)), (4.15b)
(r[2m(T)) = %, (4.15¢)

which actually are final value conditions, that require knowledge of the real system at the
final time 7'. This means that computing the gradient of G requires a forwards propagation
of the EMD+TDDFT model, and a backwards propagation of the costate with the final value

conditions found previously.

4.3 Implementation

To carry out the QOCT+EMD+TDDFT scheme described above, we used the Octopus code,
where we have implemented the equations for the real system and for the costate. In this
code, the system is contained in a simulation box where the Kohn-Sham orbitals, densities,
potentials, etc. are represented in a real space rectangular grid. For our simulations we chose
spherical simulation boxes for Na; and Nag and a cylindrical one for Nag4, with zero boundary
conditions. For general information about the numerical techniques used by Octopus, check
Refs. [139, 140, 36, 3]. In the following, we briefly comment on some specific issues that
affect the calculations described in this chapter in particular:

1. The solution of the equations of motion require the computation of the action of
operators in the form
Vi, f(F=Ra). (4.16)

In a real-space code like Octopus, it may be advantageous to substitute the numerical

derivatives of f with numerical derivatives of the wave function using the identity

VR f(F=Ra) = —i[p, f(F—Ra)] . (4.17)

Ref. [84] discusses the advantages and reasons for this procedure.
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2. We also have derivatives of the force, present in Eq. 4.13b:

Va ) Rg(t)-FglR(1),0(t),u,1]. (4.18)
B

As they are a double derivatives of the potential, we have used a finite-difference

approach: we compute the forces at neighboring values of the nuclear positions.

. For the parameterization of the pulse, we have chosen one based on the coefficients a,,,

b, of the Fourier expansion:

K
(u,t) = Z { )cos (%”m) + by (u) sin (?nt)} : (4.19)

In this form, we have a clear cutoff frequency Wpmax = 27”1( for the shape of the control

function. The parameters have to fulfill these conditions:

e(u,0) =&(u,T) =0, (4.20a)
/ dt e(u,r) = (4.20Db)
/O dt 2 (u,t) =Fy. (4.20c)

The first two equations are natural restraints for an electric field generated by a laser
pulse, and the last one fixes the fluence at Fy. This last condition is necessary for our
problem because, as we are looking for laser pulses that induce a Coulomb explosion in
our system, without it the optimization algorithms would simply raise the intensity of
the pulse to infinity. As described in [112], the parameters u and functions a,(u), b, (u)
are chosen so as to run over the set of Fourier coefficients compatible with the previous
constraints.

. In order to model the ionization of the nuclei caused by the laser pulse, we added an

imaginary absorbing potential in the border of the simulation box. In this way we
differentiate between two regions: an inner one where there is no absorbing potential
and an outer one where, given the imaginary nature of the potential applied, the electron
charge will decrease. This potential is defined by

Viabs (r) = i sin? (%) , (4.21)
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where L is the width of the absorbing region and d(r) is the distance from the point r to
the border between the inner and outer parts of the simulation box. This fact, together
with the presence of non-Hermitian operators in the equations of motion of the costate,
implies that the norms of the orbitals are not preserved during the propagation.

5. The backwards propagation of the costate, at each time #, requires of the knowledge of
the true state at that time ¢. This could be achieved by storing at every time step the
state obtained during the previous forward propagation, but the size of the disk storage
required would be enormous and the operations to write to and read from the disk are
too slow. For this reason it is more practical to recompute the state of the system at all
times, by performing a backwards propagation along with the costate.

This procedure, however, entails a numerical difficulty: The forward propagation
sees a diminishing norm as a consequence of the absorbing boundaries, and thus the
numerical error (that is proportional to the norm) decreases: the evolution is thus
numerically stable. The opposite effect occurs for the backwards propagation: the
increase in the value of the norm leads to a numerically unstable evolution. To ensure
that the backwards propagation does not break, we set some “milestone points” during
the forward propagation, at which the orbitals are stored. During the backwards propa-
gation, these orbitals are compared with the propagated orbitals and, if the difference
overcomes some predefined tolerance, we substitute the backward-propagated orbitals
with the stored ones.

6. Regarding the optimization algorithm we have many available options. Some of them
were specifically developed for QOCT [232, 233, 204, 198, 132], but many of these
approaches lack the generality required by our model (for example, some of them
assume a determined parameterization of the laser pulse, or can be applied only to
pure QOCT, making them unusable for our hybrid model). We have therefore chosen a
general-purpose gradient-dependent optimization algorithm, the low-storage BFGS
algorithm [155, 125].

We need to compute the gradient in a very precise manner, as both the speed and success
of the algorithm depend on this. The computation of the gradient, unfortunately, is a
complex procedure (propagate the equations of the system and the costate and then the
integration of Eq. 4.11), with the time-step Af being the key parameter of the numerical
propagation. We found that we need a precision in the operations of order A%, or else

the error scales too fast with the total propagation time 7. To assure the order four in
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the integration of Eq. 4.11, we use Simpson’s rule:

T A
[ao=5
0 3

where 1; = At j.

N/2—1 N/2

y(0)+2 Z y(tzj)+42y(t2j_1)—i—y(T) , (4.22)
j=1 j=1

. Finally, regarding the propagation scheme, we chose the standard order four explicit

Runge-Kutta (RK) method (check subsection 2.4.2, for a brief review of the RK
methods).

We have to propagate both the full EMD+TDDFT hybrid system and the costate. For
the propagation of the state the RK method requires the evaluation of the Kohn-Sham
Hamiltonian, its application on the Kohn-Sham orbitals and the computation of the
forces over the nuclei four times for each step. For the costate we have two extra non-
local terms for the costate orbitals J,,. The application of the non-Hermitian operators
K, to each Kohn-Sham orbital results in a bad scaling of the costate propagation with
the size of the system (roughly order four with the number of electrons) compared
with the order two for the TDKS equations. Also, the last term in Eq. 4.13c makes it
inhomogeneous. This complicated structure requires a robust and general propagation
method, and despite its computational cost, we found that the chosen RK method was

the best option available.

4.4 Results

Using the methodology described in the previous sections, we set out to find the shape

of the laser pulse that optimizes the Coulomb explosion of different sodium clusters for a

determined duration, fluence and cutoff frequency of the pulse. We have tested this approach
for Nay, Nas and Nag.

The first step is computing the initial state of the system, starting from the geometry of the

clusters found in the literature [92, 197, 160], and then using Octopus to find the configuration

where the forces among the nuclei vanishes. We found that the final configurations obtained

did not differ significantly from the reference ones — only the bond length being slightly
shorter, a well known failure of the LDA.

We then define a “reference” pulse with duration 7" as

£(t) = Ae™ 17021 gin(@qr) (4.23)
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where A is the amplitude, 7y = T /2 marks the peak of the pulse, @y = 800 nm is its frequency
and n = 0.87) gives us the width of the pulse as a function of its period 70 = 27/ @wy. We
explored pulses with a duration 7 of 6, 12 and 24 periods 7 of the reference pulse, which
results in 7 ~ 16, 32 and 64 fs. The search space also depends on the total fluence of the
pulse (Eq. 4.20c), which is controlled by the amplitude A.

The optimization runs are then started from random pulses having the general shape
given in Eq. 4.19, and equal fluence and duration as the reference one. We perform various
runs for every case, with several random initial guesses, as there may be many local maxima.
One must also specify a cutoff frequency for the Fourier expansion 4.19: we have chosen
WOcutoff = 0.5 Ha. Once the cutoff frequency is given, it determines the number of parameters
u that compose the search space.

It remains however to specify the most important object: the target functional for the
optimization. It must be chosen according to the physical objective that one wants to achieve.
In our case, the goal is to induce the Coulomb explosion of the clusters. Accordingly, we

have tried the two following target functionals:

1. A momentum based target, where we try to optimize the difference of momentum

among the nuclei at the end of the propagation

JIP(T) = Y |B(T) = P(T) . (4.24)
i<j
In a Coulomb-exploding cluster, the nuclei are moving fast apart from each other, and

therefore the momenta differences are large.

2. Using the lost charge as a measure of the ionization, we define

Jlnr] = — /V dr np(r), (4.25)

with n7 being the electronic density at the end of the propagation. As the ionization of
the system is what causes the Coulomb explosion, maximizing the charge escape is

also a logical way to define the target.

For the second target, we performed both optimizations with static nuclei (applying only the
QOCT on top of TDDFT as described in section 2.5), and with moving nuclei, using QOCT
on top of the hybrid model EMD+TDDEFT as described above in this chapter.

To check the quality of the obtained pulses, we repeated the propagations in a bigger
simulation box, and for longer times. In this way we allow the nuclei to travel far away from

their initial positions without reaching the simulation box boundaries, and we can check the
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Fig. 4.1 Left panels (a, c): Electrons escaped from the Na, molecule after applying the
pulses obtained using the three different optimization schemes: the momentum-based target

“vel”), the ionization target with fixed nuclei (“static”’), and with moving nuclei (“dynamic”).
We also plot the ionization obtained with the laser tuned to the resonance frequency pulse
(“resonant”). Right panels (b, d): Separation between the nuclei from their equilibrium
position. Top panels (a) and (b) correspond to 16 fs pulses; bottom panels (c) and (d)
correspond to 64 fs pulses.

convergence of the solutions with respect to the size of the box. We also used a laser pulse
with the shape defined in Eq. 4.23, but tuned to the most relevant excitation frequency of the
system to check how much the optimized solutions improve over this naive choice for the
pulse.

44.1 Na,

For the Na, molecule, Octopus with LDA found a bonding length of 5.48 a.u., shorter than
the experimental one of 5.82 a.u. [92], as expected. The laser was polarized along the dimer

axis.
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Fig. 4.2 Spectra of the optimized pulses and of the resonant pulse, and absorption spectrum
of the Na, molecule for light polarized along its axis. Top panel for the 16 fs pulses; bottom
panel for the 64 fs pulses.
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We present the results for the 1onization of the dimer as well as the separation between
the nuclei in Fig. 4.1. The three optimization schemes (the momentum based one labeled
“vel”, the density-based one with fixed nuclei labeled “static”, and the density-based one with
moving nuclei labeled “dynamic”) are compared with the effects of the quasi monochromatic
pulse tuned to the resonance frequency @ = 2.1 eV of Na; (labeled “resonant”). In the top
panels we have the results for the 679 ~ 16 fs pulses, with a peak intensity of the reference
pulse 102 W ¢cm~2, while in the bottom ones there are the 247y &~ 64 fs ones where we
reduced the intensity to 3 x 10!" W cm™2. The power spectra of the optimal found pulses
and of the reference pulse, and the absorption spectrum of the dimer (computed using the
linear response formalism of TDDFT) appear in Fig. 4.2.

The top panels of the Fig. 4.1 show that all the schemes managed to find a pulse that
induces the Coulomb explosion of the cluster for the 16 fs pulses. As shown in the top
panel of Fig. 4.2, the main frequencies of the optimized pulses are a bit higher than the
resonance frequency, a blueshift caused by the rapid ionization of the molecule during the
application of the pulse. On the other hand, given that both the schemes that consider the
nuclei movements and the static one have produced not only the desired Coulomb explosion,
but also pulses with very similar shapes, we can conclude that the nuclear movement is not
significant during the duration of the pulse. It is worth noting that, in contrast, the simple
resonant pulse does not produce a fast enough ionization of the system, and fails to produce
the photodissociation.

To investigate the effect of the nuclear movement we tried longer pulses (around 64
fs). The bottom panels of Fig. 4.1 show that, in this case, the “dynamic” target manages to
find a pulse that produces the Coulomb explosion of the cluster, while the “static” one fails.
In this case, therefore, the nuclear displacement produced during the duration of the pulse
is relevant, and ignoring it during the optimization runs prevents us from finding effective
pulses. It is clear that for these pulses durations the full QOQCT+EMD+TDDFT approach is
necessary. Furthermore, we can see in Fig. 4.2 how the the shape of both optimized pulses is

quite different — and also different from the simple resonant pulse.

4.4.2 Nay

The lowest energy configuration for the Nay cluster is obtained when its four atoms are
arranged as a rhombus. We labeled the short axis as X and the long axis as Y. We have
chosen to fix the polarization of the laser along the X axis, for which the Nas has a main
resonance energy of wy = 2.7 eV (for the Y axis the energy is wy = 1.9 eV).

The results for the ionization and total nuclei separation as a function of time, obtained
for this Nay cluster appear in Fig. 4.3. Fig. 4.4 shows the spectra of the pulses obtained,
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Fig. 4.3 Left panels (a, c): Electrons escaped from the Nay cluster after applying the pulses
obtained using the three different optimization schemes: the momentum-based target (“vel”),
the ionization target with fixed nuclei (“static”), and with moving nuclei (“dynamic’). We
also plot the ionization obtained with the laser tuned to the resonance frequency pulse
(“resonant”). Right panels (b, d): Overall nuclear separation [Eq. (4.26)]. Top panels (a) and
(b) correspond to 16 fs pulses; bottom panels (c) and (d) correspond to 32 fs pulses.
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Fig. 4.4 Spectra of the optimized pulses and of the resonant pulse, and absorption spectrum

of the Nas molecule for light polarized along the X axis. Top panel for the 16 fs pulses;
bottom panel for the 32 fs pulses.
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together with the reference pulse and the Nay absorption spectrum in the X direction. Here,

we define the separation as

R(t) =} IRi(t) = Rj(1)] — Req, (4.26)
i<j
where Req = Y ;|Ri(0) — R;(0)| (and therefore R(0) = 0).

In this case, we tried 16 and 32 fs pulses. We found optimal pulses for all the optimization
targets in both situations. While for the shorter pulses the shape of the lasers obtained barely
differ among them, when we look at the 32 fs results we see that the shape of the found pulses
differ significantly — although both the static and dynamic optimization schemes manage to
Coulomb explode the cluster. This means that the ionic movement starts playing an important
role in this range of times. Just like in the Naj case, the main frequency of the pulses is

slightly blueshifted from the main X axis resonance frequency.

4.4.3 Nag

For the geometry of the Nag cluster we used the Dy; symmetry. There is some contro-
versy [160] about which one of the D,,, Dyj or Dyy geometries is the most stable ground
state configuration for this cluster. We chose the Dy; geometry because it has a strong
absorption peak at 2.55 eV. The pulse was polarized along the Z axis.

As the calculations for this system required long computational times, we only tested the
optimization scheme for 16 fs pulses for the static and dynamic ionization based target. In
Fig. 4.5 are plotted the ionization and nuclear separation (as defined in Eq. 4.26) for both
optimization schemes and for a pulse at the plasmon resonance. Both optimization methods
lead to successful laser pulses that manage to Coulomb explode the cluster. In this case the
“static” target solution slightly improves over the “dynamic” one, with both of them leading to
an ionization that saturates around 2.75 electrons. On the other hand, the ionization induced
by “resonant” pulse lies below two electrons, which leads to oscillations of the nuclei around
their equilibrium positions.

Fig. 4.6 shows that the spectra of the optimized pulses are similar and, again, blueshifted
with respect to the plasmon resonance of the Nag cluster caused by the rapid ionization
during the pulse. As both the static and the dynamic approaches result in similar pulses, we

can conclude that the ionic movement is small in this time frame.
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Fig. 4.5 (a) The ionization of the Nag cluster after applying the pulses obtained using the
static and dynamic nuclei ionization optimization schemes, using light polarized along the Z
axis. (b) The overall separation between the nuclei [Eq. (4.26)] that conform the Nag cluster
calculated with respect to the equilibrium separation.
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Fig. 4.6 Spectra of the optimized pulses and of the resonant pulses, and absorption spectrum
of the Nag cluster for light polarized along the Z axis.
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4.5 Conclusions

We have applied QOCT techniques to the optimization of the Coulomb explosion of small
sodium clusters, where the control mechanisms were laser pulses with a given duration,
fluence and cutoff frequency. To describe the dynamics of the sodium clusters we used the
EMD+TDDFT model, a non-adiabatic approach which describes our physical system as an
hybrid of classical nuclei and quantum electrons. We chose sodium clusters to show that this
technique can go beyond simple systems like the hydrogen molecule, already presented in
Ref. [35]. The Coulomb explosion for these clusters presents an interesting interplay between
the laser pulse, the electronic ionization and ionic movement, a strongly non-adiabatic process
not suitable for ordinary adiabatic molecular dynamics. It is also a fitting problem for QOCT
because while naively one could think that simply using a laser pulse tuned to the frequency
of the plasma resonance of the cluster would trigger the Coulomb explosion, actually some
factors affect this frequency during the application of the pulse: the separation of the nuclei
induces a redshift in the resonance frequency, while the ionization of the cluster causes a
blueshift. Therefore, the choice of the optimal laser pulse for the task is a non-trivial matter.

For the optimization of the laser pulses we used a nonlinear gradient-based function
maximization algorithm for a target function dependent on the parameters of the pulse. To
compute the gradient of this function we have to propagate both forwards and backwards
the EMD+TDDEFT equations of motion and its associated costate, an auxiliary system.
In the propagation of the costate is where we find the main numerical difficulties of the
QOCT scheme: (1) the equations for the costate contain a term that escalates badly with
the number of electrons, (2) as we have to propagate them backwards and we are using
absorbing boundary conditions to simulate the loss of electrons from the cluster, this implies
that the norm of the Kohn-Sham orbitals will grow and the propagation becomes unstable,
and (3) for these reasons we have to use an accurate and stable propagator like the fourth
order Runge-Kutta, which also means that the integration scheme will be computationally
expensive.

For the optimization targets, we proposed two possibilities: the sum of the opposing
momenta between pairs of nuclei and the number of escaped electrons. We tested the latter
for both static and moving nuclei. We found that for the 16 fs pulses the ionic movement is
not relevant, and both static and dynamic optimization schemes arrive at optimal solutions. In
the case of 32 fs pulses the pulses start to differ in both cases, most notably in the Nay cluster.
For the 64 fs pulses the static optimization scheme could not find a solution that induces
the Coulomb explosion of the clusters, making the use of QOCT on top of non-adiabatic

MD necessary. Even in the case of 16 fs laser pulses the electronic escape is large enough to
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induce a shift in the resonance frequencies, so the optimal solutions do not share their main
peak at the ground state resonances, but it is slightly blueshifted.

Another important conclusion from this work is that, while TDDFT is one of the most
computationally cheap methods for electronic structure calculations, its combination with
EMD to tackle realistic molecular systems and the application of QOCT to both results in
a fairly expensive scheme in terms of computational cost. This is mostly caused by the
numerical problems in the backpropagation needed for the costate, which stem from the
non-Hermitian nature of the operators that appear in its equations of motion, and from the
presence of absorbing boundaries. In order to alleviate this issue, we set out to study and
implement new propagators that improved the performance of the RK method — a project
discussed in Chapter 5.






Chapter 5
Numerical Propagators

In Chapter 4 we managed to optimize laser pulses to induce the Coulomb explosion of small
sodium clusters, and we found that, even for short pulses with a duration of a few tens of
femtoseconds, the effect of the nuclei dynamics cannot be neglected. In order to compute the
gradient of the target functional with respect to the optimization parameters, we need both
an accurate forward propagation of the equations of motion and the backpropagation of an
auxiliary system (the costate). Even though EMD+TDDFT is a relatively computationally
cheap method, these propagations were very time consuming. The numerical difficulties are
mostly due to the backwards propagation, and forced us to use the fourth order Runge-Kutta
method (RK4), because of its robustness. The size of the systems that we could tackle with
our combination of QOCT with EMD+TDDEFT was rather limited. This was the motivation
that drove us to do research on new methods of propagation for the time-dependent Kohn-
Sham (TDKS) equations and for the EMD+TDDEFT equations. This is the theme of this
chapter.

In Section 5.1 of this chapter we start with a proof of the symplecticity of the TDKS
equations. Then, we study the application to the TDKS equations of propagators from four
different families that have been scarcely tested in the context of TDDFT: the multistep
methods, the Runge-Kutta propagators, the exponential Runge-Kutta integrators and the
commutator free Magnus expansion. We will analyze both the accuracy and the cost of each
propagator, and compare them with the exponential midpoint rule (EMR), a well established
numerical method in the field of electronic structure. In Section 5.1 we will only be concerned
with systems where the nuclei are fixed. We will find that the best integrator of all the ones
that were tried is the order four commutator free Magnus expansion. The research presented
in this section was published in Ref. [75].

In Section 5.2 we will adapt the commutator free Magnus schemes to a model that takes

the dynamics of the nuclei into account, such as the EMD that we used in Chapter 4. In
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order to do so, we will rewrite the EMD+TDDFT equations of movement (Egs. 2.66) in a
way that allows us to treat the hybrid quantum-classical system as a nonlinear Schrodinger
equation, and then we will implement and test the integrators just like in the first section.
The methodology and results presented in this section were published in Ref. [69].

5.1 Propagators for the Kohn-Sham Time-Dependent Equa-

tions

As we have already discussed, TDDFT is a widely spread approach for the simulation of
many electron systems. It changes the real, interacting problem with an equivalent one
where the electrons do not interact with each other, but are subjected to the one-electron
Kohn-Sham potential. The equations of motion for these non interacting electrons are the
TDKS equations (Eq. 2.57), which gives us the evolution of the Kohn-Sham orbitals {¢;}
in terms of the Kohn-Sham Hamiltonian Hys[n](¢). This Hamiltonian is a linear Hermitian
operator with a possible explicit dependence on time (e.g., due to the presence of a laser
pulse) and an implicit one through the dependence on the electronic density n. Theoretically,
it depends on the full history of the density, and not only on the density at the present time .
Unfortunately, there are currently no accurate exchange and correlation (XC) functionals that
include those memory effects. In practice, almost every TDDFT implementation uses the
adiabatic approximation: one assumes that the Hamiltonian at time 7 only depends on the
density at that moment, n(t).

After discretization of the Hilbert space, TDKS equations take the form of first order
ordinary differential equations (ODE?s) in this adiabatic approximation — after discretization
of the Hilbert space (otherwise, they would belong to the larger class of the so-called delay
differential equations). A general introduction to the methodology to solve ODEs was
presented in section 2.4 of chapter 2. The field of numerical ODE integration is a well
established one, with its origins going all the way back to the time of the creation of calculus
in the XVII century. These many years of research have produced a plethora of methods
for the propagation of ODEs [80, 81, 79], all of them theoretically applicable to the TDKS
equations. We set out to implement and analyze schemes from four families that have
been scarcely — if at all — tested in the area of electronic structure: multistep methods, the
Runge-Kutta propagators, the exponential Runge-Kutta integrators and the commutator free
Magnus expansion.

As we already pointed in section 2.4, we can divide the propagators depending on how

many previous steps they require (one-step, or multistep). Also, we can divide them on
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whether an algebraic system of equations has to be solved on each iteration of the propagation
(implicit versus explicit). We also discussed how some integrators preserve the possible
geometrical structure of the equations that are to be solved. For example, the symplecticity
that is present in classical Hamiltonian systems and, as we saw, also holds for Schrodinger’s
equation. The question arises now: are the TDKS equations also symplectic? As we will
prove below, this is indeed the case in the adiabatic approximation. Note that the implicit
schemes are generally better than the explicit ones for the conservation of the geometrical
structure of the system when we deal with long propagations.

We can also divide the Kohn-Sham Hamiltonian into a linear (the kinetic term) and non
linear (the Hartree, XC and external potentials) parts. This is specially relevant when we
deal with “stiff problems”, as the kinetic term is responsible for the possible stiffness of the
TDKS equations. There is no clear consensus about the definition of stiffness, but a practical,
generally accepted one is: a stiff problem is one where the implicit methods of propagation
perform significantly better than the explicit ones. The exponential Runge-Kutta propagators
were developed to deal with this specific problem, and were tested for TDDFT recently [104].

In the rest of the section we will first discuss the symplecticity of the TDKS equa-
tions (subsection 5.1.1). Then, we will show the results of the analysis of the propagators

implemented (subsection 5.1.2). This section is based on Ref. [70].

5.1.1 Symplecticity of the Kohn-Sham equations

The symplecticity of a dynamical system is proven if one is able to rewrite it as a “classical”
Hamiltonian system. This is what we show here for the case of the TDKS equations.
Let us write the Kohn-Sham Hamiltonian as

An(1)] =T +V + Vaxcn(?)], (5.1)

where T is the kinetic operator, V is the external potential operator and Vixc[n(t)] is the
Hartree, exchange and correlation term. Using the coordinate representation, and using ¢,
to denote the Kohn-Sham orbitals:

(ra|H[n(0)]|@n (1)) = =3V Pu(r0,1) + V(1) @ (r0, 1) +vixe (1) (X) P (x0T, 1), (5.2)
Expanding the Kohn-Sham orbitals in a one-electron basis {|¢;)}

’(pm> = Zcmi|¢i> ) (5.3)
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the TDKS equations can be written as

¢m = —iH|[clep, (5.4a)
eni(0) = (91l ¢n) (5.4b)

where the matrix H|c] is given by
Hclij = (¢ilA[c]|9;)- (5.5)

We have rewritten the dependence of the Hamiltonian on the (instantaneous) density as a

dependence on the set of coefficients ¢, which we will split into its real and imaginary part:

Cmi = %(sz + lpml) . (56)
Now Eq. 5.4a takes the form
gm +ipm = —i(RH|q, p| +SHIq, p])(gm +ipm) (5.7)

or separating into real and imaginary parts

gm=SH{q,plgm+RH[q,p|pm, (5.8a)
Pm=—RH|q, plgm+3H|q, plpm . (5.8b)

Now we have to find the Hamiltonian function H(g, p) that would allow us to write the
TDKS system as a classical Hamiltonian system, i.e. as in Egs. 2.78.
While the straightforward choice of the Kohn-Sham noninteracting energy does not work

for this purpose, we can use the ground state functional:
E[n] =Ts [I’l] + V[l’l] + Exxc [n] . (5.9)

Here n represents the instantaneous time-dependent density, so we are evaluating this energy
functional adiabatically. As the density is a function of the Kohn-Sham orbitals, the energy
is a functional of {¢}. If we use the new variables (g, p) to represent them we can define the
Hamiltonian function

H(q,p) =Ts(q,p) +V(q,p) +Enxe(q,p) - (5.10)
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The non interacting kinetic energy 7g takes the form
Ts(q,p) ZquiRTqﬁZmemprmeSTqm, (5.11)
and the external potential is

V(q P =3 ZQmSRVQm +3 memme + meSVQm (5.12)

We can see that both 75 and V fulfill the conditions for a Hamiltonian system (Egs. 2.78)

calculating their partial derivatives

dTs(q,p)

dar — L (RTyan; = STipnj) (5.13a)
mi J
—aT(;;q ) Z (RTijpmj +STiigmi) (5.13b)
mi ]
8‘;((;] p) Z (EKVl]qm] - SVljpm]) (5.13C)
mi ,]
aV(q,p
8;”” : =) (RVijpmj +SVijqmi) . (5.13d)

J

and comparing them with Egs. 5.8.
The Hartree, exchange and correlation term requires a bit more work. Using the chain

rule, we compute its partial derivatives:

JEnxc(p,q) OEpxe  9n(q,p;r)

9LHxe(P:d) _ 4. , (5.14a)
OGmi on(q,p;r)  9Iqmi

dEuxc(p,q) O FEHxc 9”(%!’;1’)
 Opmi /d on(g,p;v)  Opmi 140

where n(q, p) is the density obtained from the orbitals ¢;(q, p). We know that the functional

derivative of Eyx. with respect to the density is the Hartree, exchange and correlation potential

VHxc
8Etixe (¢, p)

5n(q.pir) = Vixe(q, P3T). (5.15)
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Now we have to write the density as a function of the (g, p) variables to compute its partial

derivatives, so we rewrite it as

n(q,p;r) = % Z Gmi — iPmi) Clmj+lpmj>¢z (I‘G)(PJ(I‘G) (5.16)

o,m
ij

which gives us

8n(86]qap‘§ )_Z mij(Pl ro ¢J r0' mejgz(pl ro (pj I’G) (5173)
mi J

8n(ac;p, ) Z mJSZ(Pl ro (])J ro +me1922¢l ro q)J I‘G) (5.17b)
mi j

Finally, substituting these results into Egs. 5.14 we find

JE X ) XC XC
% :Z(%VH [q,p],-quj—sVH [(],p]ijpmj) )
mi j
JE xc\Ps X X
};p@ 1) _ ¥ (S, pl sy + RV (g, i) (5.182)

J
where VHX¢[g, p] is a matrix whose elements are

V(g plij = (9i|Viaxclq, P)|9) - (5.19)

Once again, by comparing with Egs. 5.8, one can see that the partial derivatives of Eyxc
present the right structure, and thus it completes the proof that the TDKS equations form a

Hamiltonian system.

5.1.2 Results

In the following, we will use this notation: ¢; are the time-dependent Kohn-Sham orbitals,
that we will collectively group as ¢. The TDKS equations, as an ODE system, can then be
written as:

o(1) = f(o(1),1), (5.20)

where the dynamical function is defined as f(¢@(¢),7) = —iHgs[@(t),#]¢(¢). Furthermore,
we will also simplify Hgs[@(t),t] as H).
For the study of the accuracy and computational cost of the propagation methods, we

used a system consisting of a benzene molecule subject to an instantaneous perturbation at
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the beginning of the simulation in the form of an electric field along the z axis
0t =0") ="}, (5:21)

where {(plp } are the ground-state Kohn-Sham orbitals, and k = 0.1 a.u. Then we let it evolve
freely for a time T = 2. We put the molecule in a spherical box of radius r = 12 a.u., with a
grid spacing of a = 0.4 a.u.

We compared the results obtained for the wave function and the energy at the end of the
propagation with an “exact” reference calculation, obtained with the RK4 formula using a

very small time step. We define the error in the wave function as:

Ewi(T, A1) = ﬁ_nqu — (T 2. (5.22)

For the error in the energy, we have used:
Eenergy(T,At) = |E(T) — E*Y(T) . (5.23)

Here ¢f**“! and E“**“! are the Kohn-Sham orbitals and energy obtained from the “exact”
calculation.

Commutator Free Magnus Expansion

In section 2.4.4 we presented the general Magnus expansion family of propagators for linear
systems. We presented as an example the simplest of them all, the exponential midpoint rule
(EMR). As we discussed, it can be extended to deal with a nonlinear set of equations such as
the TDKS ones, by predicting future Hamiltonians via extrapolation of previous time steps.

We also showed in section 2.4.4 some variations of it that had been used in the past to

somehow improve its behavior:

1. The enforced time reversal symmetry (ETRS)
o(t) = e TH0 e T Hem (1 — Ar), (5.24)

that is an implicit scheme, as H(;) on the right hand side depends on the unknown o(1).

2. The approximated enforced time reversal symmetry (AETRS), which is the ETRS, but
one uses an extrapolated Hamiltonian H(et’itr instead of H(; to turn the method into an

explicit formula.
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Another way to attempt to improve over the EMR is to use higher-order Magnus expan-
sions. This route finds the difficulty, however, that the formulas that define them present com-
mutators of the Hamiltonian at different times that are difficult to compute (see Eqgs. 2.120).
The commutator free Magnus (CFM) expansions were proposed by Blanes et al. [15] as an
alternative to the classical Magnus expansions that gets rid of those commutators. Their
validity can also be extended to the nonlinear case by making use of the extrapolation method.

We have implemented several of these methods. They are essentially products of expo-
nentials of operators; a general formula for them all is:

m
U™ (t,t — Ar) =™ (5.25)
i=1

with m being the number of exponentials, ¢ is the order of the resulting propagator, and D,
are linear operators carefully chosen to ensure the order of the method.

For example, we have tested an order four method presented in Eq. 43 from Ref. [15],
which we will call CFM4. It is defined as:

(P(t) — e—iAtOtll'AI(tl)—iAIOQI:I(tZ)e—iAZOQ]:I(,l)—l'Al(XII:IOZ) QD(Z’ . At) ) (526)

> 2712
computation of the Hamiltonians at the intermediate times #; and #, imply the solution of a

where o = 3423 o = 3_122‘5,t1 =t—At+ <1—£> Atandt, =t — At + <%+‘1/—2§> The

non linear algebraic system, i.e., we would have an implicit propagation method. To turn
CFM4 into an explicit propagator, in our implementation we use extrapolation to compute
the Hamiltonians at these times. If the extrapolation is done at order four the order of the
method is conserved — a fact that we have also checked numerically.

The top and the bottom panels of Fig. 5.1 show, respectively, the error in the energy
and the in the wave function, as a function of the time step for the EMR, ETRS, AETRS
and CFM4 propagators. The data has been plotted using logarithmic scales in both axes.
In this way, the curves become straight lines in the small Az limit, its slope measuring the
order of the integrator (in the case of the wave function). The EMR, ETRS and AETRS are
propagators of order two, although notice that for larger values of Ar they behave as if their
order was four, as one can see in the figure. For values of the time step up to 1072 a.u., all
the methods present similar accuracy except for the EMR, which becomes unstable (as we
can see from the fact that there is no point for the larger value of the time step in Fig. 5.1).
For smaller values of Az, only the CFM4 really behaves as a true fourth order method. It is

the most precise among these methods in this range of the time step.
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Fig. 5.1 Error in the total energy (top panel) and in the wave function (bottom panel), as a
function of the time-step, for the various reference propagators (ETRS, AETRS and EMR)
and for the CFM4 propagator.

Fig. 5.2 shows the cost in seconds of the propagators as a function of the error in the
wave function, again using logarithmic scales for the axes. This kind of plot is useful because
it makes easy to identify the best method for a given precision. The required precision is to
be chosen by the user and is problem dependent. As we can see from the figure, for values of
the error up to 1076 all the methods have a similar computational cost, but for smaller values

of the error the CFM4 is notably faster, which makes it the most efficient method overall.

Multistep Methods

As discussed in section 2.4.3, the multistep methods are the ones that use a number s > 1 of
previous steps in the formula to compute the following one. To calculate the first s steps in a
propagation, one obviously needs a different method, and in our case we used a single-step

method, the explicit fourth order Runge-Kutta propagator (its Butcher’s tableau is Eq. 2.95).
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Fig. 5.2 Cost of the method, as a function of the error obtained (in the wave function), for
the various reference propagators (ETRS, AETRS and EMR) and for the CFM4 propagator.
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We analyzed and implemented various linear multistep integrators, which in general we
can write as

0+ Y ag jo(t—jAr) =AY by jf(t— jAr,@(r— jAr)), (5.27)
j=1 j=0

where the {a j}“;;g) and {b;}_ coefficients characterize the method. For b; = 0 we have
explicit multistep integration methods like the Adams-Bashforth (AB) method, while for
bs # 0 we will have implicit ones like the Adams-Moulton (AM) formulas and the Backward
Differentiation formula (BDF). For a detailed explanation about these propagators check

section 2.4.3. In short, we have implemented and tested the following:

1. The AB formulas, given by:
o(t) = ot — At) — Z biBiarel) (5.28)

where @) = H,_ a0 (t — jAt).
2. The AM formulas, given by:
(I+B6MMiAtH ) () = @(t — Ar) — Z biMintl). (5.29)
j=1

These are implicit methods, whose solution we obtained using a simple iterative

procedure.

3. The predictor-corrector scheme to approximate the AM formulas with an explicit
scheme. We use AB to find an approximate solution @(¢) (predictor), and then we use
it to find the Hamiltonian of Eq. 5.29. We labeled this method ABM.

4. We also linearized the AM methods using extrapolation to approach the Hamiltonian,
turning Eq. 5.29 into a linear equation. We called this scheme 1AM.

5. The backwards differentiation formula (BDF):

(I+ b2 TiAtH ) Z ac> o(t — jAr). (5.30)

This particular family of propagators is proficient in the integration of stiff equations.

The reason behind its success lies in the extent of its stability region, as it includes the
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negative real axis, which is where the real part of the eigenvalues of stiff problems lie

(check section V.1 from Ref. [81] for a more careful discussion).

We tested these methods for s =1, ...,5 and compared them with the EMR. The results
of the best performer from each family are plotted in Figs. 5.3 and 5.4, except for the BDF
due to its poor performance. The number next to the label of the propagators indicates the
number of previous steps required (s). We found out that the EMR is more stable than all
the multistep methods for large time steps, but the multistep propagators beat it in accuracy.
This is what we would expect, as the EMR is an order two propagator and AB4 and ABM4
are order four propagators, AM4 has fifth order and IAMS is of order six. As we can see,
the most precise one is IAM4 which reaches the numerical precision of our machines for the
smaller values of At.

Fig. 5.4 shows the cost of the integrators as a function of the error in the wave function.
The best choice for error values above 1077 is the EMR, being overtaken by ABM4 and
1AMS when we desire a higher precision. From the figure we can see that the linearization
improves notably the performance of the AM methods, making the linearized version the
optimal choice for an error smaller than 107",

To finish this section, we show the results of the BDF propagators for all the values
of s considered in Fig. 5.5. In the left panel we can see that increasing the number of
previous steps does not increase the computational cost of the multistep method. At the same
time, the right panel shows how each time that we add an additional step the order of the
propagator also increases by one. Sadly, adding previous steps to the propagators makes
them increasingly unstable, as we can see from the fact that both BDF1 and BDF2 have
better stability properties than EMR, but as soon as s > 3 this is no longer true. Actually,
there is solid mathematical proof [79] stating that the BDF methods are unstable for s < 7.

Runge-Kutta Methods

We will now focus on the Runge-Kutta (RK) schemes presented in section 2.4.2. We recall

that the “standard” RK propagators can be written as

o(1) :(p(t—At)—i-AtibiYi, (5.31)
i=1

Yl-:f((p(l‘—Al‘)—f—Al‘Zainj,ti), (5.32)
j=1

where f is the dynamical function of the ODE system, and the time-steps are t; = t — At + ¢;At.
Each method is characterized by the choice of s, and by the constants a;;, b;, and c;. If the
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Fig. 5.3 Error in the total energy (top panel) and in the wave function (bottom panel), as a
function of the time-step, for the various multistep methods (AB, AM, ABM and linearized
AM) and for the EMR propagator.
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Fig. 5.4 Cost of the method, as a function of the error obtained (in the wave function), for the
various multistep methods (AB, AM, ABM and linearized AM) and for the EMR propagator.

coefficients a;; = 0 for i < j, the methods are explicit; otherwise they involve implicit
formulas. The explicit RK methods perform poorly when dealing with stiff problems, which
was the motivation for the development of the implicit versions. The implicit propagators
imply the solution of an algebraic system whose dimension grows as m X s, where m is the
dimension of the original system and s is the number of stages of the method. This algebraic
system is significantly larger than the one that appears for the implicit multistep methods,
whose algebraic systems only grows with m.

A way to ensure that the implicit RK (imRK) propagators have good stability and
conservation properties is to demand that they are symplectic. One can do this [182] if the
s x s matrix M defined as

mi;j :biaij—f—bjaﬂ—bibj, (5.33)

satisfies M = 0. From this equation we can further deduce that no explicit RK propagator
can be symplectic.

We have implemented explicit RK integrators up to order four. The reason behind this
choice resides in the fact that for higher orders, the number of stages s required to guarantee
a given order p is strictly larger than p [27, 25, 79]. Since the cost of the method grows with
s, it is not convenient going beyond that number. For this reason, the only explicit method
whose results we present in this work is the popular fourth order RK scheme, labeled RK4,
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Fig. 5.5 Left: Cost as a function of the error for the BDF methods (going from s = 1 to 5)
and for the EMR propagator. Right: Error in the propagated wave function, as a function
of the time-step, for the BDF methods (going from 1 to 5 previous steps) and for the EMR
propagator.



120 Numerical Propagators

and characterized by the following Butcher’s tableau:

0

1 1

2 2

1 1

2 0 2

] 0 0 1
1 1 1 1
6 3 3 6

(5.34)

Among the implicit RK methods, the Gauss-Legendre collocation schemes are the most

popular, and relevant for this work as they are both symplectic and symmetric. A Gauss-

Legendre formula with s stages is of order 2s. We tested the implicit midpoint rule, which is
the order two method (s = 1; imRK2)

1 1
2 2 (5.35)
1
It may be written down in terms of a single nonlinear equation for ¢(z):
(I+ %AtH [, — %At}) o(r) = (I — %AIH [, — %At}) ot — A1), (5.36)

where @ = 1[@(t) + @(t — At)]. This method is the “conjugate” of the trapezoidal or Crank-
Nicolson rule [80]. For this reason, there is some confusion in the literature, and both of
them are sometimes referred simply as Crank-Nicolson.

We also studied the following order four implicit RK method (s = 2;imRK4):

1.3 1 1.v3

! ?/5 41‘ V3 41‘ °

1

2% ite i (5.37)
‘ 1 1
2 2

To solve the non linear equations that appear for these methods, we use a simple self consistent
iterative method just as for the AM propagators: each iteration implies the solution of a linear
system, whose solution is used to create the problem linear system for the following iteration.
This idea allows us to define linearized versions of the Gauss-Legendre collocation methods —
just like we did with AM —, where we stop the self consistent cycle in the first step, that is
solved using an extrapolated Hamiltonian as input.

In Fig. 5.6 we show the errors obtained with this method for the propagation of our

benchmark system, as a function of the time step. The energy obtained from both imRK4 and
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IRK4 is so accurate that for values of the time step smaller than 108 we already reach the
numerical precision of our machines, which is the reason behind the disappearance of those
points. From the wave function error we can see that, in terms of accuracy, the EMR beats the
order two RK methods by a large margin, and it is competitive with the order four methods
up to Ar =~ 1072, On the other hand, the EMR cannot deal with the larger values of the time
step, unlike the rest of the implicit RK propagators, and is beaten by every other method
when we look at the conservation of the energy. The explicit RK4 method is worse than the
implicit ones if we only look at the accuracy in the wave function or the energy. From this
figure, we can also see that the linearized methods present almost the same behavior as the
“complete” ones when we look at the error in the wave function. However, regarding the
conservation of the energy, we find sensible differences between the order two propagators.

Fig. 5.7 shows the cost of the integrators as a function of the error in the wave function,
i.e. their error-dependent efficiency. The explicit methods have a better performance than
the implicit ones: both EMR and RK4 outclass the other propagators. The EMR is the
most efficient one up to errors of 1078, where RK4 overtakes it. Comparing the linearized
methods with their regular counterparts, IRK2 is faster than imRK2, but in the case of
the order four propagators both of them have the same cost. The meaning of this fact is
that the self consistent cycle actually converges in one iteration, and thus there is no real
difference between them. To finish the study of the standard RK methods, let us remark
that the performance of the implicit methods is highly dependent of the quality of the solver
for the linear systems: for example, the use of a good preconditioner is known to strongly
accelerate the solution.

Exponential Runge-Kutta Methods

The last family of propagators that we tested is the one of the recently proposed exponential
Runge-Kutta (ERK) methods [88, 144, 147]. These schemes were developed to deal with
those stiff problems for which one can identify the piece of the Hamiltonian that is responsible
for the stiffness. The idea is then solving the stiff part of the system exactly, and then
approximating the rest of the problem using a quadrature formula.

This could be the case for the TDKS equations, that can be divided as:

¢(t) = —iTo(t) —iV[p(1),1]o(1), (5.38)

where the kinetic operator 7T is supposed to be the stiff part of the equation, and V is the

Kohn-Sham potential (that contains the nonlinearity).
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Fig. 5.6 Error in the total energy (top panel) and in the wave function (bottom panel), as a
function of the time-step, for the various RK methods (implicit and linearized RK2 and RK4
and explicit RK4) and for the EMR propagator.
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Fig. 5.7 Cost of the method, as a function of the error obtained (in the wave function), for
the various RK methods (implicit and linearized RK2 and RK4 and explicit RK4) and for the
EMR propagator.

Using this notation, the general form of the ERK propagators is:

S
Q1) =e Tt — Ar)—iAt Y bi(—iMT)V[Y;,1]Y;, (5.39)
i=1
where: )
Y;=e ot —Ar)—iAt Y a;j(—iMT)V[Y;, 1Y, (5.40)
j=1

The “Runge-Kutta” in the name of the ERK methods stems from the fact that the
quadrature formulas used to integrate the potential part of the Hamiltonian are the same than
the ones used to define the standard RK methods. As a consequence, the operator functions
a;j and b;, for T = 0, actually become the constants a; ; and b; that define the RK propagators.
Together with the c; coefficients they define the ERK methods, which can be either explicit
or implicit like the regular RK integrators.

The explicit ERK methods require the computation of some auxiliary functions Y;(Y},t;)

for j <iandi=1,...,s, where s is the number of stages. The coefficients a;; and b; are linear
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combinations of the ¢; functions, defined as:

zJ

i(z) zjg G (5.41)

Notice that this Taylor expansion definition of the functions is very similar to the definition
of the exponential; this fact simplifies the implementation of the ERK methods: one can
use a single subroutine to compute both the linear combinations of the ¢; functions and the
regular exponentials.

As an example, the first propagator of the ERK family is the exponential version of the

Euler method, which we call ERK1, and is given by
O(t) =@t —At)+ At (AtT)V[(t — At),t — At]p(t — Ar) . (5.42)

We implemented a general algorithm for a wide array of ERK schemes, described in Ref. [89].
We found that the best performing schemes from that work are: method 5.4 for order 2
(ERK?2), method 5.8 for order 3 (ERK3), and method 5.17 for order 4 (ERK4).One can
write the Butcher tableau for the ERK methods just like for the standard RK methods, where
the coefficients a;; and b; are substituted by linear combinations of the ¢; functions. As an
example, let us present here the Butcher tableau corresponding to the ERK2 method:

)

(0l (5.43)
01

N[ —
8| —

(]

The tableaux corresponding to the methods we have tested can be found in Ref. [89].

As it happens for the regular RK methods, none of the explicit variants as the ones we just
mentioned can be symplectic. However, the the implicit ones can be: For one ERK formula
to be symplectic, it requires that the RK method upon which it is based be symplectic, and
additionally, the functions &;; and b; must fulfill [147]:

a;j(—iMT) =a;je~ M=)l (5.44a)
bi(—iAiT) =bje~ 1A (5.44b)

We have tried one of these: the exponential version (imERK2) of the imRK2 propagator. It is
defined as:

. . A
o(t) = e T ot — Ar) — iAte 2MTY {Y,t - ﬂ Y, (5.45)
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with

At At At
Y =e 3T o —Ar) - iV {Y,t — ﬂ Y. (5.46)

The error in the wave function and the energy as a function of the time step, for all these
ERK propagators, is displayed in Fig. 5.8. All of them show their expected order for the
whole range of time steps that was explored. The implicit propagator imnERK2 has a wider
range of stability than the explicit ERK integrators, as expected. imnERK?2 predicts the energy
more accurately than its explicit counterpart up to Ar = 10>/, ERK4 is the best propagator
as far as energy conservation is concerned, and all the ERK methods are better than the EMR
in this regard. Conversely, when we look at the error in the wave function, the EMR has a
similar behavior as the ERK4 up to Az ~ 10723, ERK4 is more precise for smaller values.
ImERK? is slightly more accurate than ERK?2 for the wave function, while ERK2 is better
for the energy when the time step is smaller than 1072,

About the performance of these methods, Fig. 5.9 shows the cost vs. accuracy plot that
really tells which is the most efficient method. And we see that in fact none of them come
close to the EMR, as they are computationally expensive. Nevertheless, among them, the
most efficient one is the ERK4, as it outclasses all the other methods for values of the error
in the wave function below 10722,

5.2 Propagators for Hybrid Quantum-Classical Systems

In the previous section we proved the symplecticity of the TDKS equations in the adiabatic
approximation and studied the performance of different numerical integrators for systems
for which the electrons are treated using TDDFT, and the nuclei are kept fixed. From that
analysis we found out that the CFM methods beat all the other propagators in terms of
cost/accuracy. The next logical step is to adapt this family of propagators to a model that
takes the dynamics of the nuclei into account. In particular, we focus on the EMD+TDDFT
model, since it is the one that we used in Chapter 4.

Usually, the way to approach the propagation of hybrid systems consists on using two
different methods for the classical and quantum equations. The experience shows that
the error associated to this combination of methods is typically not large. Normally, a
more accurate and expensive propagator is used for the electronic equations, and a faster
and cheaper method for the classical system. As the movement of the nuclei is, in the
most common situations, orders of magnitude slower than the electronic one, the chosen
algorithms for the nuclear propagation are usually robust and cheap. For example, the Verlet
propagator [215] is a popular election. On the other hand, the quantum equations of motion
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Fig. 5.8 Error in the total energy (top panel) and in the wave function (bottom panel), as a
function of the time-step, for the various exponential RK methods (exponential Euler method,
implicit RK2 and explicit RK2, RK3 and RK4) and for the EMR propagator.
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Fig. 5.9 Cost of the method, as a function of the error obtained (in the wave function), for
the various exponential RK methods (exponential Euler method, implicit RK2 and explicit
RK2, RK3 and RK4) and for the EMR propagator.

are typically much more computationally expensive. As we have mentioned before, after
the discretization of the spatial variables, the quantum equations transform into a system of
ODEs, for which hundreds or even thousands of integration techniques exist [80, 81, 79].

Unfortunately, approaching the problem in this way — by using different propagators for
the classical and quantum subsystems — can spoil some of the properties of the propagators,
such as the symplecticity or the accuracy order of the method. If one designs from the start
a single propagator for the whole system, it is possible to do it correctly in order to ensure
the conservation of those properties. Nonetheless, the development of schemes adapted to
hybrid models seems to be a small part of the numerical integration field, and few authors
have worked on them [152, 86, 87, 153, 154, 174, 98, 76]. In this section, we describe an
alternative to these schemes, based on extending the previous work on CFM expansions for
the TDKS equations.

The EMD+TDDFT model used in Chapter 4 is a non-adiabatic, classical-quantum hybrid
scheme where the electronic part is computed with TDDFT. We rewrite Newton’s equations
of movement for the nuclei in a nonlinear Schrodinger-like form, allowing us to implement a
single propagator that takes care of both the classical and quantum parts of the system. As we
have detailed in the previous section (and published in Ref. [70]), the CFM expansions [15, 9]

showed a remarkable success in the propagation of the TDKS equations when compared with
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other families of integrators, like the well known EMR or the classical RK4. For this reason
we chose to implement different CFM schemes for the propagation of the EMD+TDDFT
model, and also extended the previous study by analyzing higher order CFM expansions.

Initially, these methods were developed for linear systems. However, both the TDKS
equations for the electrons and the Newton’s equations for the nuclei are generally nonlinear.
Therefore, the equations of motion of the EMD+TDDFT model take the form of a nonlinear
Schrodinger equation. The CFM propagators require the application of the Hamiltonian at
intermediate points of the propagation interval. However, when the problem is nonlinear
we do not know the Hamiltonian at these points, since it depends on the state of the system.
Although there are proposals for the generalization of the CFM schemes to the nonlinear
case [15], we have opted for a simpler linearization method: using extrapolation, we ap-
proximate the Hamiltonian from previous propagating steps to the intermediate points of the
propagation interval that the integrator needs. In this way we are turning the CFM expansions
into some kind of multistep explicit propagators, which implies the need to save a certain
number of previous positions, velocities and Hamiltonians of the system.

We start with a brief description of the EMD+TDDFT model and the method to rewrite
Newton’s equation as a Schrodinger one for hybrid systems in subsection 5.2.1, then we
will talk about the CFM propagators and its implementation in subsection 5.2.2. Finally, we

present the results in subsection 5.2.3. This section is based on Ref. [69].

5.2.1 Classical-Quantum Systems as a Schrodinger-like Equation

The combination of the EMD with TDDFT has proven to be a good way to deal with
Molecular Dynamics problems where the classical adiabatic approach fails, such as situations
that involve high intensity, short duration laser pulses like those discussed in Chapter 4. The

equations of movement for this model are:

d N
ZEI@O = Hxs(q, 9)|¢i) (5.47a)
o = LPou (5.47b)
Mg
pa:Fa[Q(I)7(p(t>7t]' (547C)

where the latin index i runs over the N electrons of the system, the greek index & runs over
the classical coordinates go and pg, mg, are the nuclear masses, Fy, is the force associated
to each classical degree of freedom and HKs(q, @) is the Kohn-Sham Hamiltonian (that
typically depends on the position, but not the momenta, of the nuclei, and which depends

also on the Kohn-Sham orbitals ¢ through their density). For a more detailed explanation of



5.2 Propagators for Hybrid Quantum-Classical Systems 129

the model, check Chapter 2, section 2.3. Here we use the following expression for the force
exerted over the nucleus o:
Fala(0).0(0).1] = ~ (0.0 S |gy0) - 2 W(g(0) + FM(0). (5.48)
i qo qo
where W is the nucleus-nucleus interaction and F3*' takes account of the external forces on
the nucleus.

The inclusion of TDDFT in the EMD model brings the nonlinearity of the TDKS
equations with it, because as we know the Kohn-Sham Hamiltonian depends on the density,
which in turn depends on the Kohn-Sham orbitals. Anyway, even if our description of the
electrons were carried out by a set of linear equations, Eqs. 5.47 ends up as a nonlinear set of
equations due to the coupling to the classical subsystem. As we mentioned above, the usual
approach to the propagation of hybrid systems is to use an integrator for the classical part
(e.g. the Verlet integrator) and another one for the quantum one. While this approach might
work, we risk ruining some properties of the propagators, like the order of accuracy with
respect to the time step or its symplecticity.

The first step for developing a hybrid propagator that treats consistently both subsystems
on the same footing should consist on looking for a way to consider both sets of equations
as members of the same family, in order to be able to apply the same method to them. One
possible way to do this is to consider the hybrid model as one symplectic (Hamiltonian)
system. We know that both the classical equations as well as the quantum ones are symplectic,
so combining them also results in a Hamiltonian system [18, 1]. This means that we can
build a Hamiltonian function (using the position and momentum variables and following
the same approach from the previous section for the quantum wave function), and a hybrid
bracket, from which to derive the dynamics. Then we could apply any propagator suitable for
this kind of systems. The problem with this scheme is that a series of nested Poisson brackets
appear when we attempt to develop formulas that are accurate to high order, and those
nested brackets imply the need for higher order derivatives which is a very computationally
expensive procedure.

Because of this reason, we have not followed that approach based on using hybrid Poisson
brackets. In our approach, we simply regard the full system as a nonlinear Schrodinger

equation:

y(l‘) :_iH(y(t)vl)y(t)7 (5.49a)
y(0) =yo. (5.49b)
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The state vector y includes both the classical and quantum degrees of freedom:

y=1v |, (5.50)

where g represents all the nuclear positions, v all the velocities and ¢ all the Kohn-Sham

orbitals in some basis. Now the nonlinear Schrodinger equation takes the form:

q(r) q(t)
i) | = —i (HC(W )(;‘P(’ ) o > YON BECE
(p(t) KS(C[(I),(P(t),f) (p(l)

where Hkg is the matrix representation of the Kohn-Sham Hamiltonian and the “classical”
Hamiltonian H is defined as:

0 1
Hc(q(t),@(t),1) =i (F(q(t),(p(t),t) 0) : (5.52)
mq(t)

As we can see from Eq. 5.52, in order to turn Newton’s equations into a Schrodinger-like
form we had to divide by the positions ¢(¢) in the definition of the matrix — a division that
is canceled later by the matrix vector multiplication. Also, it is remarkable that Eq. 5.51 is
block diagonal, which implies that the classical and quantum particles only interact through
the definition of their Hamiltonians.

It remains to see how we have dealt with the nonlinearity. We can rewrite the system of

equations in the extended variables

u(t) = —iH(v(t),t)u(t), u(0) =yo (5.53a)
v(t) = —iH (u(t),t)v(t), v(0) = o, (5.53b)

which has the unique solution u(t) = v(¢) = y(t). Now we take v(¢) as the approximation to
y(t) and u(t) as a time-dependent function in the equation of v(¢). If we want to preserve
the properties of the propagator, we have to find approximations to u(¢) such that the
approximations to H (u(z),t) at the instants required by the method correspond to Hermitian
operators. As the Hamiltonian is multiplied by a factor A¢, if we compute v(¢) with a method
of order s we only need for u(z) to have an accuracy up to order s — 1. We can obtain those

approximations with extrapolations of the results obtained in the s — 1 previous steps of
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the propagation. However, as we will see in the following section, using a higher order

extrapolation can result in higher accuracies for the method.

5.2.2 Implementation

Now that we have a way to write the equations of motion of a hybrid system as a nonlinear
Schrodinger-like equation, we will now describe the implementation of the CFM methods
that we have used and tested.

First of all, let us change the notation for the CFM integrators from the previous section,

as we will now use different propagators with the same order:

(S

y(t+Ar) =T (H)y(), (5.54a)
M K

r}j] (H)=]]exp [—iAtZakuH(tu)] , (5.54b)
k=1 U

where M is the number of exponentials of the method and S is the accuracy order of the
resulting method. As we commented in the previous section, one needs a number K of
Hamiltonians at intermediate times 7, within the propagation interval [t,# 4 At], and this
leads to the need of either solving a nonlinear algebraic system to find these values or to
approximate the Hamiltonian at these times with extrapolation. Once again we chose to use
extrapolation to find those Hamiltonians; we will use the notation H |t ] for the approximated
extrapolated Hamiltonians. To perform the extrapolation we have to store a number of
previous states y(t — At),...,y(t — sAr) (or the corresponding Hamiltonians, whatever it
is more convenient). If the order of the propagation is s, we also need to perform our
extrapolation with order s to preserve the accuracy of the integrator.

We can rewrite Eq. 5.51 as two subsystems, thanks to its block-diagonal structure:

q(t+Ar)\ _ s q(t)
(V(t n AI)) =Ty (He) (wo) : (5.55)
ot +At) = T3 (Hgs)o(t). (5.56)

Now for the implementations of the CFM schemes we used the following algorithm:
1. Compute {q[ty]} extrapolating from ¢(z),q(t — At),...,q(t — sAt).
2. Compute {F[t,]} extrapolating from F(t),F(t — At),...,F(t — sAt).

3. Compute {Hxs|ty]}, extrapolating from Hgs(t), Hks(t — At), ..., Hgs(t — sAt).
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7. Compute F(r + Ar) and Hgs(f + At), necessary inputs for the next iteration.

We implemented four CFM schemes, two with order four and two with order six. The
first fourth order method is the one that we already tested in the previous section [15, 6],

composed by two exponentials:

1—‘[24} (H) = e—iAz(alH[tlHagH[tzDe*iAf(OﬂzH[llHalH[le), (5.57)

where the constants @; and ¢; are given by:

’a . 3-2V3 o — 3+2V3
1= 12 ’ 2 — 12 )
1 3 1 3 .
1 = __£7 = _+£a (558)
2 6 2 6
[ 1= t+ciAr, h= t+c)Ar.

The other order four method that we have tested, Fé[fq [9], is designed for Hamiltonian

functions that can be decomposed in two parts
H(y(t),t) =T +V(y(),1), (5.59)

where T is the kinetic term (linear and time-independent) and V (y(z),¢) is the (nonlinear and
time-dependent) potential, whose exponential is easy to calculate (because is either diagonal
or can be brought to diagonal form without significant cost, for example). The propagator is

defined as
FL‘” — oAV i (T+V3) ,—i5 (T+Va) ,—iV, 7
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where:
{ ~
Vi= anVi+apnVr+ai3Vs,
Vo= ayVi+anVs+axiVs,
B (5.60)
V3= axpVi+anVy+axVs,
Vo= aisVi+anVatanls,
and
Vi =V[t+c1At], Vo = V[t + At V3 =Vt + c3A1], (5.61)

are extrapolated potentials. Theoretically, as we can do a fast evaluation of e~iMV1 and
e~ "AVa_the cost of this method is similar to one with only two exponentials. The {a; j}and

{c¢;}constants that appear in these equations are

( 10++/15 1 10—+/15
a = _— a = _—— a = _—
11 180 9 12 97 13 180 9
10+ 8+/15 2 10+ 8+/15 562
a1 = ——an > an = 3, ap = ——on > (5.62)
180 3 180
B 1 V15 B 1 B 1 V15
S T R L R S TR
For this method to work, the generators o; defined as
o = —iAl‘(T —l—Vz), (5.63a)
V15
O = —iAtT(Vg, — Vl) , (5.63b)
10
o3 = —iAt?(V3 -2V, + V1), (5.63¢)

must fulfill the condition [0, 03] = 0.
In our case, we have two separate subsystems, and therefore we have to separate both the
classical and the quantum Hamiltonians in a suitable way that respects that condition.

_ (Hela), o)1) 0
HOW) = ( 0 HKs<q<r>,<p<r>,r>>
. TC"'VC(Q(I)?(I)(I)?I) 0
- ( 0 TQ+VQ<q<r>,<p<r>,r>)' o

This division for both subsystems entails the definition of both classical and quantum
generators Oc; and otp;. The two sets have to verify the commutation rule written above. The
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division of the quantum part is trivial, as we already have kinetic and potential terms and
the commutator [aQQ, OCQg] = 0 is fulfilled (the potential terms are diagonal in real space).
For the classical Hamiltonian we have found out that making 7c = 0 and Ve (q(t), @(2),1) =
Hc(q(t),@(t),t) is a valid choice and [0(cs, 03] = 0.

This division of the Hamiltonian into a kinetic and a potential term is also used in the

]

first order six method that we implemented, F[56 . This method consists of five exponentials,

but only three are computationally expensive:

Fg@ _ il y—ibt (b1 T+V4) , =it (b2 T+V3) ,—iAt (b1 T+V5) iV

The linear combinations of V;, V» and V; that conform the V; are the same as in Eq. 5.61, and
the quadrature points c; are those from Eq. 5.62.
Finally, we implemented another order six propagator, F£6]. It consists of four exponen-

tials, but only two of them involve the costly kinetic term:

Iﬂé[tﬁ] _ e—iAz(V4+At2\7)e—i%(T+\73)e—i%(T+\72)e—iAt(\71+At2V) .
This method shares the same potential terms V; as the previous propagator F[56], but a new V
appears, defined by
V=i (o, o, ], (5.65)

where y = 1/43200, and o; are the generators defined in Egs. 5.63.

Although the inclusion of this last commutator apparently contradicts the “commutator
free” concept that characterize these methods, in some circumstances it might be advanta-
geous to include some easy to compute commutators. For the quantum part, if we assume

that the potential term is a local function in real space, Eq. 5.65 can be reduced to

VQ = i% [OCQz, [OCQl,OCQz]] . (5.66)

This term has to be easy to compute, or small enough to neglect, or otherwise the performance
of the method will be affected significantly.
For the nuclear case, we have

q(t + At) — e*iAl‘(HarFAlzl:Ic)e*i%I:lcge*i%ﬁczefiAl(I:ICl+At2I:IC) q<t)
v(t+ Ar) v(t) )’
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where we have defined the H¢; matrices as

HCj:HC[tj]:i<0 6f2+5f3>, (5.67)
A0

with A; = (1) F[t;]/¢[t;]. Now Eq. 5.65 takes the form

5oy o 0 0
HC = lAl3 [aC27 [aCh(xCZH - 51840 ((13 —11)2 0) . (568)

5.2.3 Results

We have studied the CFM propagators for the EMD+TDDFT model using the same method-
ology as in subsection 5.1.2, but in this case we have used an Hydrogen molecule in the
presence of a laser field €(¢) with the shape

e(r) = Asin(o1), (5.69)

where the amplitude is A = 0.1 a.u. and the frequency is @ = 10. The molecule was placed
in a spherical simulation box with radius R = 10 a.u., with a grid spacing 7 = 0.4 a.u. and
the total simulation time was set up to 7' = 207.

For the analysis of the accuracy and cost of the propagators, in this case we only look at
the error in the wave function (defined in Eq. 5.22), as the energy is not conserved due to the
effect of the laser pulse. In order to get the exact reference values of the Kohn-Sham orbitals,
we have used once again the RK4 method with a very small time step. About the cost of the
propagator, we have considered both the time in seconds and the number of applications of
the Hamiltonian that each method required, and we plotted them as a function of the wave
function error. The results obtained from the CFM schemes have been compared with the
EMR integrator.

Fig. 5.10 shows the error of the wave function as a function of the time step, using
logarithmic scales in both axes. As we can see, the CFM methods are notably more precise
than the EMR. We cannot distinguish the CFM methods of the same order in this figure, as
they produce results with almost the same accuracy. This is caused because the dominant
error is the one from the extrapolation, which is the same for methods with the same order.

In Fig. 5.11 the cost (in seconds) of the propagation is plotted as a function of the attained
error in the wave function. The axes are also in logarithmic scale. From the figure, we can
see that the order 6 CFMs are more efficient than their order 4 counterparts if one needs

errors below ~ 10™42. Fé[f] is the best propagator for this range of errors. On the other hand,
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for errors above &~ 1074, F[24] beats the order 6 formulas by a small margin. In any case, the

EMR is completely outclassed by the CFM schemes.

The previous figures were obtained with calculations in which the extrapolation that
deals with the nonlinearity were perfomed with accuracy order equal to the order of the
underlying method (4 or 6). In contrast, the following two figures, Figs. 5.12 and 5.13 show
the same calculations but with extrapolations done at order 12. There is a sensible increase
in the accuracy of the CFM methods, which are now at least four orders of magnitude more
accurate than the EMR. This increase in the precision confirms the fact that the extrapolation
error dominates the propagation in the case of the CFM methods. However, this increase
in accuracy also entails a reduction of the stability region for the CFM propagators. This
is reflected by the first point (on the right) of the figures: while the EMR method remains
functional, the error of the CFM integrators is very large (it starts diverging). While I" [24}
presents an order four behavior, matching the theoretical prediction, FE” is slightly more
precise, and shows an order higher than 4. Both order 6 methods show a similar behavior,
reaching numerical accuracy (=~ 10~'2) for time steps as large as Af ~ 10~2*. From the
cost/accuracy plot of Fig. 5.13, once again it is shown that the best choice of propagator
depends on the accuracy desired for the problem at hand. The order 6 CFM methods are
suitable if the precision required is very high; however, if lower accuracies suffice, the EMR
would be a better option. For the intermediate range of accuracy the order 4 methods are the

best choices.

5.3 Conclusions

Motivated by the need of fast and accurate methods of numerical integration of the TDKS
equations, we set out to test and implement in Octopus propagators from four different
families that had not been previously analyzed in the context of TDDFT: Runge-Kutta,
exponential Runge-Kutta, multistep methods, and commutator-free Magnus expansions. We
implemented these methods in the Octopus code, and ran benchmarking tests using a simple
molecular system subject to a laser field. For each method, we measured the error in the wave
function and energy as a function of the time-step, and the computational cost in seconds as
a function of the error. We compared them with the well-known exponential midpoint rule,
that we used as a reference method. The main overall conclusion of this comparison: we
found out that the fourth order commutator-free Magnus expansion beats every other method
both in terms of accuracy and computational cost.

Regarding the multistep schemes, their main feature is that they maintain a constant cost
independently of the number of previous steps considered. Since the accuracy improves with
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Fig. 5.10 Error in the propagation, measured as the difference of the propagated Kohn-Sham
orbitals with respect to the quasi-exact ones (computed with a tiny time step), as a function
of the time step. Both the error and the time step are shown in logarithmic scale. The
extrapolation order matches that of the underlying method.
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Fig. 5.11 Cost in seconds as a function of the error, both in logarithmic scale. The extrapola-
tion order matches that of the underlying method.

this number, it would seem that by adding a sufficiently large number of steps one would get
a very efficient scheme. Unfortunately, the stability region of all multistep methods grows
smaller with the number of steps, making them unsuitable. Moreover, the need to store the
previous states of the system implies that the available memory is also a limiting factor for
this family of integrators.

Among the Runge-Kutta methods, both the regular ones and the exponential ones, the
explicit order four Runge-Kutta method is still the best one from this family, in terms of
efficiency. The exponential Runge-Kutta and implicit Runge-Kutta methods are at advantage
when dealing with stiff problems, however, or if one needs a high degree of conservation of
some quantity, i.e., when the symplecticity of the equations of motion is relevant.

Regarding this point, we have also demonstrated the symplecticity of the TDKS equations
in the adiabatic approximation. This fact encourages the use symplectic integrators, as they
will be generally more successful when dealing with long time propagations.

After this work on the electronic-only problem, we moved on to studying suitable methods
for hybrid classical-quantum systems. In particular, we studied and implemented order 4
and order 6 methods from the CFM family, and applied them to the propagation of systems
modeled with the EMD+TDDFT combination. We have rewritten the full dynamics of the
model as a nonlinear Schrodinger equation. This allows us to apply the same propagator to
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Fig. 5.12 Error in the propagation, measured as the difference of the propagated Kohn-Sham
orbitals with respect to the quasi-exact ones (computed with a tiny time step), as a function
of the time step, computed using extrapolation of order 12. Both the error and the time step
are shown in logarithmic scale.
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Fig. 5.13 Cost in seconds as a function of the error, both in logarithmic scale, computed
using order 12 extrapolation.

the equations of movement of the full system, avoiding the problems derived from using two
separate integration methods for the classical and quantum parts. The CFM methods that we
implemented were originally devised for linear systems, as the formulas of the propagators
require the evaluation of the Hamiltonian at intermediate times of the propagation interval,
which is unknown in the case of nonlinear Schrodinger equations. To avoid this problem we
have extrapolated the Hamiltonian from previous steps, effectively turning this propagation
scheme into a multistep one. The order of the extrapolation must match at least the order
of accuracy of the the underlying method for this order to be preserved. We have observed,
however, that one can notably increase the accuracy of the methods using higher order
extrapolation, at the cost of compromising the stability of the method.

Using an algorithm designed from the start for the combined system ensure its properties
(symplecticity, accuracy order with respect to the time step...), while using a different
algorithm for each system does not. From the simulations we have found that the proposed
schemes are computationally efficient: for the whole range of time steps studied, all the tested
variants of the CFM methods improve over the EMR. From the cost vs. accuracy curves,
we can then conclude that, if we require highly accurate calculations, the order 6 CFM
methods perform better than the order 4 ones. For lower accuracies, the order 4 integrators
are however more efficient than their order 6 counterparts.



Chapter 6
Conclusions

In this thesis we have studied different topics in the area of ab initio electronic structure
modeling, ranging from the study of the theoretical foundations of DFT to the practical
implementation and application, to realistic systems, of the non-adiabatic combination of
TDDFT with Ehrenfest dynamics.

More concretely, we have tackled three different problems: (1) We presented a new
route to the study of the exchange and correlation functionals (XFCs) in DFT. It may
help to improve, systematically, the current approximations. We have tested it on the
one-dimensional Hubbard model (1IDHM), used as an example: we have optimized the
Bethe ansatz local density approximation (BALDA) functional with respect to the in-site
interaction parameter of the Hubbard chain; (2) Using the combination of Quantum Optimal
Control Theory (QOCT) with TDDFT, together with the non-adiabatic Ehrenfest model of
molecular dynamics (EMD), we searched for the shape of (short) laser pulses that better
induce the ionization of small sodium clusters leading to their Coulomb explosion; (3) We
investigated different families of numerical propagators for the time-dependent Kohn-Sham
(TDKS) equations. We measured their accuracy and performance, and compared them
with well established methods of propagation within the electronic structure field, like the
exponential midpoint rule (EMR) or the explicit order four Runge-Kutta integrator (RK4).
Then, we extended the commutator-free Magnus (CFM) methods to the EMD+TDDFT
model, developing a methodology to apply the numerical integrator to both parts of a
classical-quantum hybrid system by rewriting the equations of motion like a single nonlinear

Schroddinger equation.
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Regarding the first topic, we researched a new path to the study of XCFs in DFT,
that could potentially lead to finding new and better ones. This approach is based on the
independence of DFT on the electron-electron interaction function (IF): the theory can be
formulated for almost arbitrary shapes of this function, and not only for the real Coulomb
one. Based on this idea, we established a numerical procedure to assign to each XCF the IF
that better suits it: the exact densities obtained by using this IF are the ones that more closely
resemble the ones obtained solving the Kohn-Sham equations with that XCF. Of course,
generally, this IF will not be the Coulomb interaction, but we can use this correspondence to
improve any parameterized family of XCFs: we optimize the parameters of the XCF with
the objective of finding the one whose associated IF is closer to the real one. As a proof of
concept, we optimized the BALDA functional, used for the description of the IDHM, in the
context of lattice DFT. First, we explored optimizations with lattice sizes of up to 20 sites.
The procedure requires the computation of exact densities, and at this point, the standard
diagonalization methods that we were using became too costly in terms of both time and
memory. In order to go further, we had to use density matrix renormalization group (DMRG),
a theory that is specially well suited for one-dimensional systems. Using DMRG we could
expand the BALDA optimization procedure to chains with 40 sites.

We have used the formalism described to find the optimal functional within an existing
XCF family — since BALDA is in fact a one-parameter family of functionals —, for one-
dimensional model systems. The procedure has proved to be feasible, and returns very
precise optimized functionals. The goal now would be to go beyond this simple model, using
a similar procedure. The first step is to define the exact, reference IF, which in the normal 3D
situation is simply the Coulomb interaction 1/r — it is different for the model systems (as for
the IDHM) that we have used up to now. Next, one must choose a parameterized family of
XCFs. Then, using the method described above, one finds one corresponding IF for each
XCF, and compares it with the reference IF using some appropriate formula for the distance
between IFs. Using a minimization algorithm for this distance, one would eventually find
the best XCF that, for a given family of external potentials, better reproduce the electronic
densities found using the reference IF. Once this procedure has been demonstrated for one
dimensional systems, the main obstacle for its extension to two and three dimensional systems

18 the need to obtain exact reference densities.

Besides the previous work on the theoretical foundations of density-functional based
theories, we have also worked on some practical applications of these methods to concrete
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problems. In particular, we have applied QOCT to the Ehrenfest model (a classical-quantum
hybrid, non-adiabatic form of molecular dynamics) combined with TDDFT for the description
of the electrons. The objective was to optimize the shape of short duration laser pulses (a few
femtoseconds) to induce the Coulomb explosion of sodium clusters. The pulses were under
duration, frequency and fluence constraints, in order to force the final solution to be within
the reach of current experimental setups. Also, because a fully unrestricted search would
lead to trivial, unphysical solution: obviously, simply raising to infinity the intensity of the
pulses one obtains Coulomb explosion. The systems studied were sodium clusters, going
one step beyond the previous work done with this methodology, that only treated simple
Hydrogen molecules.

We used two optimization targets: the number of escaped electrons at the end of the pulse,
and the sum of opposite momenta between pairs of nuclei. Furthermore, the optimizations
were carried out in two different manners: either allowing the nuclei to move during the
application of the laser (dynamic optimizations), or not (static optimizations). The goal of
making this distinction was to study whether the nuclear movement during the irradiation
of these very short pulses was relevant for the ionization. If it is not relevant, the full
combination QOCT+EMD+TDDFT is not necessary, and one could perform calculations
with QOCT+TDDFT only. We found that the influence of the movement of the nuclei in the
case of 16 fs pulses was not relevant, as both the static and dynamic optimizations reached
successful solutions. For the 32 fs case, the shape of the pulses obtained with both the static
and dynamic optimization schemes started to diverge, although both solutions induced the
Coulomb explosion of the cluster. Finally, for the 64 fs pulses the static optimization was
unable to produce a satisfactory pulse, making the use of the EMD+TDDFT model necessary.

Another important conclusion of this work is that the frivial solutions are not the optimal
ones, and therefore one needs the QOCT formalism. By trivial solution, we mean for example
pulses tuned to the ground state resonance frequency of the cluster. In principle, one would
expect that by depositing a lot energy in that excitation, the ionization and Coulomb explosion
would follow. However, even for pulses as short as 16 fs, the main peak of the spectra of
the optimal laser differs from that resonance frequency of the cluster. The reason must be
found in two factors: as electronic charge escape, there is a blueshift in the resonance; and in
contrast, as the clusters start to expand, the resonance redshifts. These opposing factors make
the optimal solution unpredictable by simple intuitive reasoning, and therefore one must use
a method such as QOCT.

As a final conclusion of this work, we found that even when using TDDFT (one of the
most computationally cheap first principles approaches to the many electron problem) with

Ehrenfest dynamics, the cost of the QOCT calculations was quite high. These calculations



144 Conclusions

require the propagation of the TDKS equations, and of an auxiliary system called costate
in the OCT terminology. Those propagations, whose goal is to compute the gradient of the
objective functional with respect to the control parameters, must be done with high accuracy.
The evolution of this auxiliary system is specially challenging, as it includes non-Hermitian
operators. Since we used absorbing boundaries to account for the loss of electrons, the norm
of the orbitals vary during the propagation becoming a source of numerical instability. These

difficulties were our motivation for the search of faster, more reliable numerical propagators.

Therefore, we started a quest for more efficient propagation methods for the TDKS
equations. We studied integrators from four families that have been scarcely (if at all) used
by the TDDFT community: commutator-free Magnus expansion, multistep, Runge-Kutta
and exponential Runge-Kutta methods. Special attention was put on those propagators that
conserve some properties of the equations. We focused on the conservation of the norm and
the symplecticity, as we proved that the TDKS equations in the adiabatic approximation form
a symplectic system. From the four analyzed families, we found that the best methods, in
terms of performance, were the CFM expansions. The multistep methods can be remarkably
accurate at a relatively low computational cost if one uses a large number of previous steps.
However, when doing that, the memory requirements grow and, more importantly, stability
issues appear. These facts make them unsuitable for large or more numerically challenging
systems, such as those presenting stiff equations. Among the Runge-Kutta methods, the
best one overall is still the standard RK4. The implicit methods only perform better when
one has to deal with stiff equations. Finally, the exponential Runge-Kutta integrators, while
certainly performing better than the other explicit methods for stiff equations, are expensive
to compute, and do not show any improvement in terms of efficiency over the original RK
methods.

Given the success of the CFM methods, the next natural step was to implement them for
the EMD+TDDFT model that we had used for our previous project. This is a true hybrid
classical-quantum model, and probably the propagating method can be extended to other
similar classical-quantum approaches. We struggled to use the same propagator for the whole
system, in contrast to more usual algorithms, that mix a faster method for the nuclei with
a slower, more precise one for the electrons. This mixture can lead to the deterioration of
some properties of the propagators. In order to apply the same propagator to the two subsets

of equations of motion of the model (Newton’s equations for the nuclei and the TDKS



145

equations for the electrons), we had to rewrite the classical part to present it in a nonlinear
Schrodinger-like fashion.

The formulas for the CFM integrators were developed initially for linear systems and
require the computation of the Hamiltonian at intermediate times. As the Kohn-Sham
Hamiltonian is nonlinear, we dealt with this problem extrapolating the Hamiltonian from
the previous steps to these intermediate times, ending with an explicit, multistep method of
propagation. While the order of the extrapolation only needs to be the same as the order of
the method, we found that going beyond could greatly improve the accuracy of the integrator.
We tested two order 4 and two order 6 implementations of the CFM propagators. The four
schemes showed better performance than the EMR for all the time steps explored. For low
accuracy, the order four methods are a better choice than the order six ones, and also present
better stability at larger time-steps. On the other hand, for very high accuracy the order
six methods outclass their order four counterparts. This is general conclusion: the more
sophisticated formulas become more efficient if high accuracies are required.

With the CFM propagators showing an outstanding performance compared with well
established methods like the EMR and RK4, and with an implementation of them that assures
us that the properties of the integrator are preserved, the next step would be trying them on
bigger, more complex systems. Using the QOCT+EMD+TDDFT formalism, in combination
with this family of propagators, one could tackle, for example, the problem of the optimal
photo-isomerization of larger molecules, or the problem of inducing a given photo-chemical
reaction. Also, one could think of changing the optimization parameters, from those that
define an external laser pulse, to internal parameters of the molecule or material. For example,
the target could be finding the initial state that has some desired response properties (such as

the maximum absorption of light in the visible spectrum, conductivity, etc.)






Chapter 6
Conclusiones

En esta tesis hemos estudiado varios temas en el drea del modelado ab initio en estructura
electronica, desde el estudio de los fundamentos tedricos de la DFT, hasta la implementacion
y aplicacion préctica, a sistemas realistas, de la combinacién de la TDDFT con la dindmica
no adiabdtica de Ehrenfest.

Mis concretamente, hemos abordado tres problemas diferentes: (1) Hemos presentado
una nueva ruta para el estudio de funcionales de intercambio y correlacion (XCFs) en DFT.
Creemos que esta ruta puede ayudar a mejorar, sistemdticamente, las aproximaciones actuales.
La hemos probado en el modelo de Hubbard unidimensional (1DHM), usado como ejemplo:
hemos optimizado el funcional de la aproximacién de densidad local con el ansatz de Bethe
(BALDA) con respecto al pardmetro de la interaccidn en el sitio de la cadena de Hubbard; (2)
Usando la combinacién de la teoria de control 6ptimo cuédntico (QOCT) con TDDFT, junto
con el modelo de dinamica molecular no adiabatico de Ehrenfest (EMD), hemos buscado
la forma de los pulsos ldser (cortos) que provocan mejor la ionizacién de pequeios clusters
de sodio llevandolos a su explosion de Coulomb; (3) Hemos investigado diferentes familias
de propagadores numéricos para las ecuaciones de Kohn-Sham dependientes del tiempo
(TDKS). Hemos medido su precision y eficiencia, y los hemos comparado con métodos de
propagacion bien consolidados en el campo de la estructura electrénica, como la regla del
punto medio de la exponencial (EMR) o el integrador explicito de cuarto orden de Runge-
Kutta (RK4). Después extendimos los métodos libres de conmutadores de Magnus (CFM) al
modelo EMD+TDDFT, desarrollando una metodologia para aplicar el integrador numérico a
ambas partes de un sistema hibrido cldsico-cudntico consistente en reescribir las ecuaciones

del movimiento como una sola ecuacién de Schrodinger no lineal.
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Con respecto al primer tema, hemos investigado un nuevo camino para el estudio de XCFs
en DFT, que potencialmente podria llevar a encontrar nuevas y mejores aproximaciones.
Esta ruta se basa en la independencia de DFT con respecto a la funcién de interaccién
electron-electron (IF): la teoria puede formularse para formas practicamente arbitrarias de
esta funcidn, y no sélo para la funcién real de Coulomb. Basandonos en esta idea, hemos
establecido un procedimiento numérico para asignar a cada XCF la IF que mejor se le ajusta:
las densidades exactas obtenidas usando esta IF son las que mds se parecen a las obtenidas
resolviendo las ecuaciones de Kohn-Sham con ese XCF. Como prueba de concepto, hemos
optimizado el funcional BALDA, usado para la descripcién del 1DHM, en el contexto de
lattice-DFT. Primero exploramos optimizaciones con un tamafio mdximo de la cadena de
20 sitios. Para ir mas all4, tuvimos que usar la teoria del grupo de renormalizacion de
la matriz de densidad (DMRG), una teoria que es especialmente adecuada para sistemas
unidimensionales. Usando DMRG pudimos expandir la optimizacién a cadenas de hasta 40
sitios.

Hemos utilizado el formalismo descrito para encontrar el funcional 6ptimo dentro de una
familia existente de XCFs — puesto que BALDA es de hecho una familia uniparamétrica
de funcionales —, para sistemas modelo de una dimension. El objetivo ahora seria ir mas
alla de este simple modelo, usando un procedimiento similar. El primer paso es definir
la IF exacta, usada de referencia, que en una situacion normal en 3D es simplemente la
interaccién de Coulomb 1/r, pero que para sistemas modelo (como el 1IDHM) puede ser
diferente. Después se debe elegir una familia parametrizada de XCFs. Entonces, usando el
método descrito anteriormente, se busca una IF correspondiente a cada XCF, y se compara
con la IF de referencia usando alguna férmula apropiada para la distancia entre IFs. Usando
un algoritmo de minimizacién sobre esta distancia, puede entonces encontrarse el mejor
XCF que, para una familia dada de potenciales externos, mejor reproduce las densidades
electrénicas exactas encontradas usando la IF de referencia. Una vez que este procedimiento
ha sido demostrado para sistemas unidimensionales, el principal obstdculo para su extension

a sistemas bi y tridimensionales es la necesidad de obtener densidades de referencia exactas.

Ademads del trabajo previo en los fundamentos tedricos de las teorias basadas en el
funcional de la densidad, también hemos trabajado en algunas aplicaciones pricticas de estos
métodos a problemas concretos. En particular, hemos aplicado QOCT al modelo de Ehrenfest
(un forma hibrida cldsico-cudntica de dindmica molecular no adiabatica) combinado con

TDDFT para la descripcion de los electrones. El objetivo era optimizar la forma de pulsos
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laser de corta duracién (unos pocos femtosegundos) para inducir la explosion de Coulomb
de clusters de sodio. La duracidn, frecuencia y fluencia de los pulsos estaban sujetas a
restricciones para asegurar que la solucién obtenida estuviera al alcance de los montajes
experimentales actuales. Ademas, una bisqueda sin ninguna restriccioén daria lugar a una
solucion trivial y que no se ajusta a la realidad fisica: obviamente, simplemente aumentando
hasta el infinito la intensidad de los pulsos se obtiene la explosiéon de Coulomb. Los sistemas
estudiados fueron clusters de sodio, yendo un paso més alld del trabajo previo hecho con esta
metodologia, que sélo trataba moléculas simples de hidrégeno.

Utilizamos dos objetivos de optimizacién distintos: el nimero de electrones perdidos al
finalizar el pulso, y la suma de los momentos opuestos entre parejas de nucleos, también al
finalizar el pulso. Ademas, las optimizaciones se llevaron a cabo de dos maneras diferentes:
o bien permitiendo que los nucleos se muevan durante la aplicacion del 1aser (optimizaciones
dindmicas), o bien con nucleos fijos (optimizaciones estdticas). El objetivo de hacer esta
distincion era estudiar si el movimiento nuclear durante la irradiacion de estos pulsos muy
cortos es relevante para la ionizacién. Si no es relevante, la combinacién completa de
QOCT+EMD+TDDFT no es necesaria, y los calculos se podrian realizar utilizando sélo
QOCT+TDDFT. Hemos concluido que la influencia del movimiento de los nicleos en el
caso de los pulsos de 16 fs no es relevante, ya que tanto las optimizaciones estdticas como las
dindmicas alcanzaron soluciones exitosas y parecidas. Para el caso de los pulsos de 32 fs, sin
embargo, la forma de los pulsos obtenidos a partir de las optimizaciones estdticas y dindmicas
empieza a divergir, aunque ambas soluciones provocan la explosién de Coulomb del cluster.
Finalmente, para los pulsos de 64 fs la optimizacidn estdtica es incapaz de producir un pulso
satisfactorio, haciendo necesario el uso del modelo completo QOCT+EMD+TDDFT.

Otra conclusion importante de este trabajo es que las soluciones triviales no son las
Optimas, y por tanto se necesita el formalismo de QOCT. Por solucion trivial, nos referimos
por ejemplo a pulsos cuya frecuencia se ajusta a la frecuencia de resonancia del estado
fundamental del cluster. Sin embargo, incluso para pulsos tan cortos como 16 fs, el pico
principal del espectro de los ldseres 6ptimos difiere de la frecuencia de resonancia del cluster.
La razon se halla en dos factores: al escaparse la carga electrénica, hay un corrimiento al azul
en la resonancia; y en contraste, cuando los clusters empiezan a expandirse, la resonancia
experimenta un corrimiento al rojo. Estos factores opuestos hacen que la solucién éptima sea
impredecible simplemente usando un razonamiento intuitivo, y por tanto se debe utilizar un
método como QOCT.

Como una conclusién final de este trabajo, hallamos que incluso cuando se usa TDDFT
(uno de los métodos computacionalmente mds baratos para lidiar con el problema de muchos

electrones) con dindmica de Ehrenfest, el coste de los cdlculos de QOCT eran bastante altos.
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Estos célculos requieren la propagacion de las ecuaciones TDKS, y de un sistema auxiliar
llamado generalmente coestado en la terminologia de OCT. Estas propagaciones, cuyo
objetivo es computar el gradiente del funcional objetivo con respecto a los pardmetros de
control, deben hacerse con alta precisién. La evolucién del sistema auxiliar es especialmente
complicada, ya que incluye operadores no hermiticos. Puesto que usamos paredes absorbentes
para tener en cuenta la pérdida de electrones, la norma de los orbitales varia durante la
propagacion convirtiéndose en una fuente de inestabilidad numérica. Estas dificultades
fueron nuestra motivacion para la bisqueda de propagadores més rapidos y robustos.

Por tanto, empezamos una busqueda de métodos de propagacion més eficientes para las
ecuaciones TDKS. Hemos estudiado integradores de cuatro familias que, o bien solo han
sido usados esporddicamente, o bien no han sido usados en absoluto por la comunidad que
utiliza la TDDFT: la expansion de Magnus sin conmutadores, métodos con varios pasos
previos, formulas de Runge-Kutta y férmulas de Runge-Kutta exponencial. Hemos puesto
una atencion especial en aquellos propagadores que conservan algunas propiedades de las
ecuaciones. Nos concentramos en la conservacion de la simplecticidad, ya que hemos
demostrado que las ecuaciones TDKS, en la aproximacién adiabdética, forman un sistema
simpléctico. De las cuatro familias analizadas, hallamos que los mejores métodos, en términos
de eficiencia, son los métodos de Magnus sin conmutadores. Los métodos con varios pasos
previos pueden ser notablemente precisos, a un coste computacional relativamente bajo, si se
usa un nimero elevado de pasos previos. Sin embargo, al hacer eso, los requerimientos de
memoria crecen y, mas importante aun, aparecen problemas de estabilidad. Estos hechos
hacen que no sean adecuados para sistemas grandes o numéricamente complejos, tales como
aquellos que implican ecuaciones rigidas (stiff). Entre los métodos de Runge-Kutta, el mejor
de ellos sigue siendo el “estdndar” RK4. Los métodos implicitos solo presentan un mejor
rendimiento cuando uno tiene que tratar con ecuaciones rigidas. Finalmente, los integradores
exponenciales de Runge-Kutta, que ciertamente funcionan mejor que los otros métodos
explicitos para ecuaciones rigidas, son caros de computar, y no muestran ninguna mejora en
términos de eficiencia con respecto a los métodos RK originales.

Dado el éxito de los métodos CFM, el siguiente paso natural fue implementarlos para
el modelo EMD+TDDFT que utilizamos en nuestro proyecto previo. Este es un modelo
cldsico-cudntico, y probablemente los métodos de propagacion que hemos estudiado pueden
extenderse a otras aproximaciones cldsico-cudnticas similares. Nos hemos esforzado en

utilizar el mismo propagador para todo el sistema, en contraste con los algoritmos habituales,
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que mezclan un método rapido para los nucleos con uno més lento y preciso para los elec-
trones. Esta mezcla puede dar lugar al deterioro de algunas propiedades de los propagadores.
Para aplicar el mismo propagador a los dos subconjuntos de ecuaciones de movimiento (las
ecuaciones de Newton para los nicleos y las ecuaciones TDKS para los electrones), tuvimos
que reescribir la parte cldsica, presentdndolo como una ecuacién de Schrédinger no lineal —
que es la también la forma de las ecuaciones TDKS.

Las férmulas para los integradores CFM se desarrollaron inicialmente para sistemas
lineales y requieren, en cada intervalo de la propagacién, del Hamiltoniano a tiempos inter-
medios. Dado que el Hamiltoniano de Kohn-Sham es no lineal y por lo tanto es desconocido
en esos tiempos intermedios, hemos tratado con este problema extrapolando el Hamiltoniano
a partir de pasos previos, dando lugar a un método de propagacion explicito y dependiente
de pasos previos. Aunque el orden de la extrapolacién s6lo necesita ser del mismo orden
que el del método, hallamos que yendo mas alld podiamos incrementar cuantiosamente la
precision del integrador. Examinamos dos formulaciones de los propagadores CFM de orden
4 y dos de orden 6. Los cuatro métodos mostraron mejor rendimiento que la EMR para todos
los pasos temporales explorados. Para baja precision, los métodos de orden 4 son una mejor
eleccion que los de orden 6, y también presentan mejor estabilidad para pasos temporales
mads grandes. Por otro lado, para muy alta precision los métodos de orden 6 superan a sus
equivalentes de orden 4. Esta es una conclusion general: las férmulas mas sofisticadas se
vuelven maés eficientes si se requieren altas precisiones.

Con los propagadores CFM mostrando un rendimiento sobresaliente comparado con
métodos bien consolidados como la EMR o RK4, y con una implementacién que nos
asegura que las propiedades del integrador se conservan, el siguiente paso seria probarlos
para estudiar problemas en sistemas mas grandes y complejos. Usando el formalismo
QOCT+EMD+TDDFT, combinado con esta familia de propagadores, se podria abordar, por
ejemplo, el problema de la fotoisomerizacion 6ptima de moléculas grandes, o el problema de
inducir una reaccion fotoquimica dada. También se podria pensar en cambiar la naturaleza de
lo parametros de optimizacion: de aquéllos que definen un pulso laser externo, a pardimetros
internos de la molécula o material. De esta forma, el objetivo podria ser, por ejemplo,
encontrar la configuracién del estado inicial que posea ciertas propiedades deseadas de
respuesta (tales como la maxima absorcion de luz en el espectro visible, la conductividad,

etc.)
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