3 research outputs found

    Optimal design of hybrid FEC/ARQ schemes for real-time applications in wireless networks

    No full text

    Load Balancing for the Agile All-Photonic Network

    Get PDF
    The Agile All-Photonic Network (AAPN) uses Time Division Multiplexing (TDM) to better utilize the bandwidth of Wavelength Division Multiplexing (WDM) systems. It uses agile all-photonic switches as advances in the photonic switching technology made the design of all-photonic devices with switching latency in the sub-microseconds feasible. The network has a simplified overlaid star architecture that can be deployed in a Metropolitan Area Network (MAN) or a Wide Area Network (WAN) environment. This overlaid architecture, as opposed to general mesh architecture, scales network capacity to multiples of Tera bits per second, simplif�ies routing, increases reliability, eliminates wavelength conversion, and the need for accurate traffic engineering. The objective of this thesis is to propose and analyze dif�ferent load balancing methods for the deployment of the AAPN network in a WAN environment. The analysis should provide interested Internet Service Providers (ISPs) with a comprehensive study of load balancing methods for using the AAPN network as their backbone network. The methods balance the load at the ow level to reduce packet reordering. The methods are stateless and can compute routes quickly based on the packet flow identi�er. This is an important issue when deploying AAPN as an Internet backbone network where the number of flows is large and storing ow state in lookup tables can limit the network performance. The load balancing methods, deployed at the edge nodes, require reliable signaling with the bandwidth schedulers at the core nodes. To provide a reliable channel between the edge and core nodes, the Control Messages Delivery Protocol (CMDP) is proposed as part of this thesis work. The protocol is designed to work in environments where propagation delays are long and/or the error rates are high. It is used to deliver a burst of short messages in sequence and with no errors. Combined with the reliable routing protocol proposed previously for the AAPN network, they form the control plane for the network. To extend the applicability of the load balancing methods to topologies beyond AAPN overlaid star topology, the Valiant Load Balancing (VLB) method is used to build an overlaid star topology on top of the physical network. The VLB method provides guaranteed performance for highly variable tra�c matrices within the hose traffic model constraints. In addition to the guaranteed performance, deploying the VLB method in the AAPN network, eliminates signaling and replaces the dynamic core schedulers with static scheduler that can accommodate all tra�c matrices within the hose tra�c model boundaries

    Real-time data flow models and congestion management for wire and wireless IP networks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 103-111).In video streaming, network congestion compromises the video throughput performance and impairs its perceptual quality and may interrupt the display. Congestion control may take the form of rate adjustment through mechanisms by attempt to minimize the probability of congestion by adjusting the rate of the streaming video to match the available capacity of the network. This can be achieved either by adapting the quantization parameter of the video encoder or by varying the rate through a scalable video technique. This thesis proposes a congestion control protocol for streaming video where an interaction between the video source and the receiver is essential to monitor the network state. The protocol consists of adjusting the video transmission rate at the encoder whenever a change in the network conditions is observed and reported back to the sender
    corecore