163 research outputs found

    Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    Full text link

    CO2 reduction through low cost electrification of the diesel powertrain at 48V

    Get PDF
    In order to achieve fleet average CO2 targets, mass market adoption of low CO2 technologies is required. Application of low cost technologies across a large number of vehicles is more cost-effective in reducing fleet CO2 than deploying high-impact, costly technology to a few. Therefore, to meet the CO2 reduction challenge, commercially viable, low cost technologies are of significant interest. This paper presents results from the ‘ADEPT’ collaborative research program which focuses on CO2 reduction through the application of intelligent 48V electrification to diesel engines for passenger car applications. Results were demonstrated on a C-segment vehicle with a class-leading 4-cylinder 1.5 litre Euro 6 diesel engine. Electrification was applied through a high power, high efficiency, switched reluctance belt integrated starter generator (B-ISG) capable of both generation and motoring, and an Advanced Lead Carbon Battery for energy storage. The conventional alternator was replaced with a highly efficient DC-DC converter to supply energy to the 12V system. These technologies enabled powertrain efficiency improvement through the recovery of kinetic energy with regenerative braking and reapplication of the recovered energy through motoring to offset fuel usage. Efficiency was further optimised through application of engine downspeeding and advanced auto-stop strategies to extended engine-off time. Additional electrification was investigated through 48V ancillaries, including water-pump and air-conditioning compressor, and a turbo-compound generator for waste heat recovery from exhaust gas. These technologies have demonstrated a combined CO2 reduction of 10–11% against the conventional vehicle baseline. Additional studies of advanced thermal systems for improved warm-up, and lubrication control for FMEP reduction have also been conducted on this program. These indicate that by applying intelligent electrification to ancillaries a further 3–4% reduction in CO2 is achievable. Overall, this program shows that 48V technologies can achieve CO2 savings with a lower cost per gram CO2 than full hybrid solutions

    Optimal Sizing of Waste Heat Recovery Systems for Dynamic Engine Conditions

    Get PDF
    In this study, a methodology for optimal sizing of waste heat recovery (WHR) systems is presented. It deals with dynamic engine conditions. This study focuses on Euro-VI truck applications with a mechanically coupled Organic Rankine Cycle-based WHR system. An alternating optimization architecture is developed for optimal system sizing and control of the WHR system. The sizing problem is formulated as a fuel consumption and system cost optimization problem using a newly developed, scalable WHR system model. Constraints related to safe WHR operation and system mass are included in this methodology. The components scaled in this study are the expander and the EGR and exhaust gas evaporators. The WHR system size is optimized over a hot World Harmonized Transient Cycle (WHTC), which consists of urban, rural and highway driving conditions. The optimal component sizes are found to vary for these different driving conditions. By implementing a switching model predictive control (MPC) strategy on the optimally sized WHR system, its performance is validated. The net fuel consumption is found to be reduced by 1.1% as compared to the originally sized WHR system over the total WHTC

    MODEL PREDICTIVE CONTROL OF ENERGY SYSTEMS FOR HEAT AND POWER APPLICATIONS

    Get PDF
    Building and transportation sectors together account for two-thirds of the total energy consumption in the US. There is a need to make these energy systems (i.e., buildings and vehicles) more energy efficient. One way to make grid-connected buildings more energy efficient is to integrate the heating, ventilation and air conditioning (HVAC) system of the building with a micro-scale concentrated solar power (MicroCSP) sys- tem. Additionally, one way to make vehicles driven by internal combustion engine (ICE) more energy efficient is by integrating the ICE with a waste heat recovery (WHR) system. But, both the resulting energy systems need a smart supervisory controller, such as a model predictive controller (MPC), to optimally satisfy the en- ergy demand. Consequently, this dissertation centers on development of models and design of MPCs to optimally control the combined (i) building HVAC system and the MicroCSP system, and (ii) ICE system and the WHR system. In this PhD dissertation, MPCs are designed based on the (i) First Law of Thermo- dynamics (FLT), and (ii) Second Law of Thermodynamics (SLT) for each of the two energy systems. Maximizing the FLT efficiency of an energy system will minimise energy consumption of the system. MPC designed based on FLT efficiency are de- noted as energy based MPC (EMPC). Furthermore, maximizing the SLT efficiency of the energy system will maximise the available energy for a given energy input and a given surroundings. MPC designed based on SLT efficiency are denoted as exergy based MPC (XMPC). Optimal EMPC and XMPC are designed and applied to the combined building HVAC and MicroCSP system. In order to evaluate the designed EMPC and XMPC, a com- mon rule based controller (RBC) was designed and applied to the combined building HVAC and MicroCSP system. The results show that the building energy consump- tion reduces by 38% when EMPC is applied to the combined MicroCSP and building HVAC system instead of using the RBC. XMPC applied to the combined MicroCSP and building HVAC system reduces the building energy consumption by 45%, com- pared to when RBC is applied. Optimal EMPC and XMPC are designed and applied to the combined ICE and WHR system. The results show that the fuel consumption of the ICE reduces by 4% when WHR system is added to the ICE and when RBC is applied to both ICE and WHR systems. EMPC applied to the combined ICE and WHR system reduces the fuel consumption of the ICE by 6.2%, compared to when RBC is applied to ICE without WHR system. XMPC applied to the combined ICE and WHR system reduces the fuel consumption of the ICE by 7.2%, compared to when RBC is applied to ICE without WHR system

    Off-highway vehicle technology roadmap.

    Full text link

    Lean NOx Trap Catalysis for Lean Burn Natural Gas Engines

    Get PDF
    As the nation’s demand for energy grows along with concern for the environment, there is a pressing need for cleaner, more efficient forms of energy. The internal combustion engine is well established as one of the most reliable forms of power production. They are commercially available in power ranges from 0.5 kW to 6.5 MW, which make them suitable for a wide range of distributed power applications from small scale residential to large scale industrial. In addition, alternative fuels with domestic abundance, such as natural gas, can play a key role in weaning our nations dependence on foreign oil. Lean burn natural gas engines can achieve high efficiencies and can be conveniently placed anywhere natural gas supplies are available. However, the aftertreatment of NOx emissions presents a challenge in lean exhaust conditions. Unlike carbon monoxide and hydrocarbons, which can be catalytically reduced in lean exhaust, NOx emissions require a net reducing atmosphere for catalytic reduction. Unless this challenge of NOx reduction can be met, emissions regulations may restrict the implementation of highly efficient lean burn natural gas engines for stationary power applications. While the typical three-way catalyst is ineffective for NOx reduction under lean exhaust conditions, several emerging catalyst technologies have demonstrated potential. The three leading contenders for lean burn engine de-NOx are the Lean NOx Catalyst (LNC), Selective Catalytic Reduction (SCR) and the Lean NOx Trap (LNT). Similar to the principles of SCR, an LNT catalyst has the ability to store NOx under lean engine operation. Then, an intermittent rich condition is created causing the stored NOx to be released and subsequently reduced. However, unlike SCR, which uses urea injection to create the reducing atmosphere, the LNT can use the same fuel supplied to the engine as the reductant. LNT technology has demonstrated high reduction efficiencies in diesel applications where diesel fuel is the reducing agent. The premise of this research is to explore the application of Lean NOx Trap technology to a lean burn natural gas engine where natural gas is the reducing agent. Natural gas is primarily composed of methane, a highly stable hydrocarbon. The two primary challenges addressed by this research are the performance of the LNT in the temperature ranges experienced from lean natural gas combustion and the utilization of the highly stable methane as the reducing agent. The project used an 8.3 liter lean burn natural gas engine on a dynamometer to generate the lean exhaust conditions. The catalysts were packaged in a dual path aftertreatment system, and a set of valves were used to control the flow of exhaust to either leg during adsorption and regeneration. The rich conditions for regeneration were created by injecting natural gas directly into the exhaust stream. An oxidation and reforming catalyst were placed upstream of the LNT to enhance the utilization of the methane. The duration of time for catalyst adsorption (sorption period) and the amount of fuel for regeneration (injection rate) were the two primary variables used in developing the regeneration strategy. The goal of this study was to optimize the regeneration strategy for 5 modes of engine operation (10%, 25%, 50%, 75% and 100% load) at 1800 rpm. In optimizing this strategy, NOx reduction efficiencies greater than 90% were demonstrated for 25% and 50% engine load. Testing at 10%, 75% and 100% load revealed the temperature dependence of both the LNT and oxidation catalyst. Low temperatures at 10% load hindered the oxidation catalyst’s ability to break down the methane, while the storage capacity of the LNT falls off at the higher temperatures of 75% and 100% load. This created a narrow temperature window in which the performance could be optimized

    Module 1 : Engineering Trends

    Get PDF
    Incorporar aquests documents a la Col·lecció del Centre de Recerca i Estudis pel Desenvolupament Organitzatiu. Considerar que el registre té més d'un arxiu, ja que s'incorpora traduït a diversos idiomes

    A General Method to Determine the Optimal Profile of Porting Grooves in Positive Displacement Machines: the Case of External Gear Machines

    Get PDF
    In all common hydrostatic pumps, compressibility affects the commutation phases of the displacing chambers, as they switch their connection from/to the inlet to/from the outlet port, leading to pressure peaks, localized cavitation, additional port flow fluctuations and volumetric efficiency reduction. In common pumps, these effects are reduced by proper grooves that realizes gradual port area variation in proximity of these transition regions. This paper presents a method to automatically find the optimal designs of these grooves, taking as reference the case of external gear pumps. The proposed procedure does not assume a specific geometric morphology for the grooves, and it determines the best feasible designs through a multi-objective optimization procedure. A commercial gear pump is used to experimentally demonstrate the potentials of the proposed method, for a particular case aimed at reducing delivery flow oscillations

    CO2 reduction through low cost electrification of the diesel powertrain at 48V

    Get PDF
    In order to achieve fleet average CO2 targets, mass market adoption of low CO2 technologies is required. Application of low cost technologies across a large number of vehicles is more cost-effective in reducing fleet CO2 than deploying high-impact, costly technology to a few. Therefore, to meet the CO2 reduction challenge, commercially viable, low cost technologies are of significant interest. This paper presents results from the ‘ADEPT’ collaborative research program which focuses on CO2 reduction through the application of intelligent 48V electrification to diesel engines for passenger car applications. Results were demonstrated on a C-segment vehicle with a class-leading 4-cylinder 1.5 litre Euro 6 diesel engine. Electrification was applied through a high power, high efficiency, switched reluctance belt integrated starter generator (B-ISG) capable of both generation and motoring, and an Advanced Lead Carbon Battery for energy storage. The conventional alternator was replaced with a highly efficient DC-DC converter to supply energy to the 12V system. These technologies enabled powertrain efficiency improvement through the recovery of kinetic energy with regenerative braking and reapplication of the recovered energy through motoring to offset fuel usage. Efficiency was further optimised through application of engine downspeeding and advanced auto-stop strategies to extended engine-off time. Additional electrification was investigated through 48V ancillaries, including water-pump and air-conditioning compressor, and a turbo-compound generator for waste heat recovery from exhaust gas. These technologies have demonstrated a combined CO2 reduction of 10–11% against the conventional vehicle baseline. Additional studies of advanced thermal systems for improved warm-up, and lubrication control for FMEP reduction have also been conducted on this program. These indicate that by applying intelligent electrification to ancillaries a further 3–4% reduction in CO2 is achievable. Overall, this program shows that 48V technologies can achieve CO2 savings with a lower cost per gram CO2 than full hybrid solutions
    • …
    corecore