384 research outputs found

    A new approach to optimal control of conductance-based spiking neurons

    Get PDF
    This paper presents an algorithm for solving the minimum-energy optimal control problem of conductance-based spiking neurons. The basic procedure is (1) to construct a conductance-based spiking neuron oscillator as an affine nonlinear system, (2) to formulate the optimal control problem of the affine nonlinear system as a boundary value problem based on the Pontryagin’s maximum principle, and (3) to solve the boundary value problem using the homotopy perturbation method. The construction of the minimum-energy optimal control in the framework of the homotopy perturbation technique is novel and valid for a broad class of nonlinear conductance-based neuron models. The applicability of our method in the FitzHugh-Nagumo and Hindmarsh-Rose models is validated by simulations

    Optimal Control of Weakly Forced Nonlinear Oscillators

    Get PDF
    Optimal control of nonlinear oscillatory systems poses numerous theoretical and computational challenges. Motivated by applications in neuroscience, we develop tools and methods to synthesize optimal controls for nonlinear oscillators described by reduced order dynamical systems. Control of neural oscillations by external stimuli has a broad range of applications, ranging from oscillatory neurocomputers to deep brain stimulation for Parkinson\u27s disease. In this dissertation, we investigate fundamental limits on how neuron spiking behavior can be altered by the use of an external stimulus: control). Pontryagin\u27s maximum principle is employed to derive optimal controls that lead to desired spiking times of a neuron oscillator, which include minimum-power and time-optimal controls. In particular, we consider practical constraints in such optimal control designs including a bound on the control amplitude and the charge-balance constraint. The latter is important in neural stimulations used to avoid from the undesirable effects caused by accumulation of electric charge due to external stimuli. Furthermore, we extend the results in controlling a single neuron and consider a neuron ensemble. We, specifically, derive and synthesize time-optimal controls that elicit simultaneous spikes for two neuron oscillators. Robust computational methods based on homotopy perturbation techniques and pseudospectral approximations are developed and implemented to construct optimal controls for spiking and synchronizing a neuron ensemble, for which analytical solutions are intractable. We finally validate the optimal control strategies derived using the models of phase reduction by applying them to the corresponding original full state-space models. This validation is largely missing in the literature. Moreover, the derived optimal controls have been experimentally applied to control the synchronization of electrochemical oscillators. The methodology developed in this dissertation work is not limited to the control of neural oscillators and can be applied to a broad class of nonlinear oscillatory systems that have smooth dynamics

    Generalizations of the Kolmogorov-Barzdin embedding estimates

    Full text link
    We consider several ways to measure the `geometric complexity' of an embedding from a simplicial complex into Euclidean space. One of these is a version of `thickness', based on a paper of Kolmogorov and Barzdin. We prove inequalities relating the thickness and the number of simplices in the simplicial complex, generalizing an estimate that Kolmogorov and Barzdin proved for graphs. We also consider the distortion of knots. We give an alternate proof of a theorem of Pardon that there are isotopy classes of knots requiring arbitrarily large distortion. This proof is based on the expander-like properties of arithmetic hyperbolic manifolds.Comment: 45 page

    Stationary bumps in a piecewise smooth neural field model with synaptic depression

    Get PDF
    We analyze the existence and stability of stationary pulses or bumps in a one–dimensional piecewise smooth neural field model with synaptic depression. The continuum dynamics is described in terms of a nonlocal integrodifferential equation, in which the integral kernel represents the spatial distribution of synaptic weights between populations of neurons whose mean firing rate is taken to be a Heaviside function of local activity. Synaptic depression dynamically reduces the strength of synaptic weights in response to increases in activity. We show that in the case of a Mexican hat weight distribution, there exists a stable bump for sufficiently weak synaptic depression. However, as synaptic depression becomes stronger, the bump became unstable with respect to perturbations that shift the boundary of the bump, leading to the formation of a traveling pulse. The local stability of a bump is determined by the spectrum of a piecewise linear operator that keeps track of the sign of perturbations of the bump boundary. This results in a number of differences from previous studies of neural field models with Heaviside firing rate functions, where any discontinuities appear inside convolutions so that the resulting dynamical system is smooth. We also extend our results to the case of radially symmetric bumps in two–dimensional neural field models
    • …
    corecore