3,808 research outputs found

    Optimal block cosine transform image coding for noisy channels

    Get PDF
    The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered

    A user's guide for the signal processing software for image and speech compression developed in the Communications and Signal Processing Laboratory (CSPL), version 1

    Get PDF
    A complete documentation of the software developed in the Communication and Signal Processing Laboratory (CSPL) during the period of July 1985 to March 1986 is provided. Utility programs and subroutines that were developed for a user-friendly image and speech processing environment are described. Additional programs for data compression of image and speech type signals are included. Also, programs for the zero-memory and block transform quantization in the presence of channel noise are described. Finally, several routines for simulating the perfromance of image compression algorithms are included

    Maximum aposteriori joint source/channel coding

    Get PDF
    A maximum aposteriori probability (MAP) approach to joint source/channel coder design is presented in this paper. This method attempts to explore a technique for designing joint source/channel codes, rather than ways of distributing bits between source coders and channel coders. For a nonideal source coder, MAP arguments are used to design a decoder which takes advantage of redundancy in the source coder output to perform error correction. Once the decoder is obtained, it is analyzed with the purpose of obtaining 'desirable properties' of the channel input sequence for improving overall system performance. Finally, an encoder design which incorporates these properties is proposed

    Design of source coders and joint source/channel coders for noisy channels

    Get PDF
    A theory behind a proposed joint source/channel coding approach is developed and a variable rate design approach which provides substantial improvement over current joint source/channel coder designs is obtained. The Rice algorithm as applied to the output of the Gamma Ray Detector of the Mars Orbiter is evaluated. An alternative algorithm is obtained which outperforms the Rice both in terms of data compression and noisy channel performance. A high-fidelity low-rate image compression algorithm is developed which provides almost distortionless compression of high resolution images

    Feedforward data-aided phase noise estimation from a DCT basis expansion

    Get PDF
    This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion of discrete cosine transform (DCT) basis functions containing only a few terms. We propose a feedforward algorithm that estimates the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting (linearized) mean-square phase estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise independent contribution, that results front the phase noise modeling error. We investigate the effect of the symbol sequence length, the pilot symbol positions, the number of pilot symbols, and the number of estimated DCT coefficients it the estimation accuracy and on the corresponding bit error rate (PER). We propose a pilot symbol configuration allowing to estimate any number of DCT coefficients not exceeding the number of pilot Symbols, providing a considerable Performance improvement as compared to other pilot symbol configurations. For large block sizes, the DCT-based estimation algorithm substantially outperforms algorithms that estimate only the time-average or the linear trend of the carrier phase. Copyright (C) 2009 J. Bhatti and M. Moeneclaey

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    Study of on-board compression of earth resources data

    Get PDF
    The current literature on image bandwidth compression was surveyed and those methods relevant to compression of multispectral imagery were selected. Typical satellite multispectral data was then analyzed statistically and the results used to select a smaller set of candidate bandwidth compression techniques particularly relevant to earth resources data. These were compared using both theoretical analysis and simulation, under various criteria of optimality such as mean square error (MSE), signal-to-noise ratio, classification accuracy, and computational complexity. By concatenating some of the most promising techniques, three multispectral data compression systems were synthesized which appear well suited to current and future NASA earth resources applications. The performance of these three recommended systems was then examined in detail by all of the above criteria. Finally, merits and deficiencies were summarized and a number of recommendations for future NASA activities in data compression proposed

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs
    corecore