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The two-dimensional block transform coding scheme based on the discrete cosine 
transform has been studied extensively for image coding applications. While this 
scheme has proven to be efficient in the absence of channel errors, its performance 
degrades rapidly over noisy channels. In this paper we present a method for the 
joint source-channel coding optimization of a scheme based on the ZD block cosine 
transform when the output of the encoder is to be transmitted via a memoryless 
binary symmetric channel. Our approach involves an iterative algorithm for the 
design of the quantizers (in the presence of channel errors) used for encoding the 
transform coefficients. This algorithm produces a set of locally optimum ( in the 
mean squared-error sense) quuntizers and the corresponding binury Code assign- 
ment for the assumed transform coefficient statistics. To determine the optimum 
bit crssignmcnt among the transform coefficients, we have used an algorithm based 
on the steepest descent method, which under certain convexity conditions on the 
performance of the channel-optimized quantizers, yields the optimd bit allocation. 
Comprehensive simulation results for the performance of this locally optimum sys- 
tem over noisy channels have been obtained and appropriate comparisons against 
a reference system designed for no channel errors have been rendered. It is shown 
that substantial performance improvements can be obtained by using this scheme. 
Furthermore, theoretically predicted results for an assumed ZD image model are 
provided. 

'Thia work WM rapported in part by a grant from NASA, Langley Research Center under grant 
NAG1-582, in part by Martin Marietta Laboratories and in part by the National Science Foundation 
under grant NSFD CDR-85-00108. 
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The two-dimensional (2-D) block cosine transform coding scheme has been well 
studied in image coding situations from a rate distortion-theoretic perspective. 
Apart from providing good performance it is image independent and can be ef- 
ficiently implemented using fast algorithms [SI. 

It is known that the performance of the above system degrades rapidly in the 
presence of channel errors. In particular work done in [l] has shown that a careful 
selection of the parameters of the block cosine transform, as well as the channel 
coding and modulation methods, are essential for maintaining a good performance 
when data is to be transmitted over a noisy channel. 

In this paper we optimize the mean squared-error of a block cosine transform 
coding scheme over a noisy channel, with a constraint on the average transmission 
rate, when the transform coefficients are encoded using zero-memory encoders. We 
show that the optimization problem can be reduced to: 

1. optimal allocation of bits for encoding the transform coefficients in such a way 
that both the source and the channel characteristics are taken into consider- 
ation. 

2. designing optimal zero-memory encoder/decoder pairs for the transmission of 

It has been shown [2] that even when a noisy channel is present, the optimal 
structure of a zero-memory encoder for a stationary one-dimensional random pro- 
cess, under the mean squared-error criterion consists of a quantizer followed by a 
codeword assignment to each of the quantization intervals. For a given bit alloca- 
tion vector, we apply the results of a new algorithm [4] that designs an optimal 
quantizer, its associated codeword assignment and decoder (referred to as the en- 
coder/decoder pair) so as to minimize the total average reconstruction error across 
a noisy channel. We then optimize the allocation of bits among the transform c e  
efficients by formulating it as an integer programming problem and then use an 
incremental bit allocation procedure based on the method of steepest descent [3]. 
Under certain convexity conditions, it is possible to show that this algorithm yields 
the optimal bit allocation, in a number of steps equal to the total number of bits 
to be allocated per block. 

We compare the performance of the optimal system, as applied to images, 
against a reference system, where each of the transform coefficients are encoded 
using Lloyd-Max quantizers followed by the natural binary code assignment. The 
performance gains of the optimal system over the reference system are extremely 
encouraging. Simulation studies have revealed improvements in the signal-to-noise 
ratio (SNR) of around 8 dB, at a transmission rate of 1 bit/pixel, and for a binary 
symmetric channel with a crossover probability of 0.05. The results are just as en- 
couraging from a subjective viewpoint. The quality of the reconstructed image for 
the optimal system is seen to be far superior to the reference system, especially as 

each of the transform coefficients over a noisy channel. 
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Figure 1: Block Transform Coding Scheme. a 
the channel gets noisier. The important point is that these performance improve- 
ments are not obtained at the expense of transmission bandwidth. Furthermore, we 
have obtained theoretically predicted performance results based on a 2-D separable 
Gauss-Markov model for the source. 

The rest of this paper is organized as follows: In Section 11 we develop notation 
and describe the system under consideration. In Section 111 we present an analy- 
sis of the system and describe the algorithm used to design the encoder/decoder 
pairs optimally and the algorithm that does the optimal bit allocation. Section IV 
contains a description of the system as implemented, theoretically predicted perfor- 
mance results and simulation results on two test images. Finally a summary and 
conclusions is provided in Section V. 

e 

11 Preliminaries 
a 

In what follows we assume that the source is an Ldimensional vector source r e p  
resented by a zero mean, stationary, discrete-parameter stochastic process {X,} 
whose moment matrix is denoted by LX. In a typical block transform coding 
scheme the source output vector X = (XO, XI,. . . , XL-I)' is transformed to a 
vector = (Yo, Y1,. . . , Y L - ~ ) ~  by a nonsingular (L x L) transformation matrix A - 
according to 

Each of the L components of (also referred to as the transform coefficients) 
is separately quantized and encoded using fixed-length binary codewords. The 
resulting vector of binary codewords Q = (UO, U1, . . . , VL-I)' is transmitted across 
the communication channel. We call the set of L encoders the "block encOder." 
Here we assume that the communication channel is modeled as a memoryless binary 
symmetric channel (BSC) with crossover probability E .  

The received vector = (Vo, VI,. . . , VL,~)~, each component of which is a binary 
sequence, is decoded component-wise by a decoder, and the resulting vector is 
then transformed by A-' - to yield a representation vector z, of the murce vector 

- Y = AX. - (1) 

0 

* 
~ 

- X,'in the receiver, i.e., 
- 8 = A-12. - 

e 
'The parameter index has been dropped rince the oource is stationary. 

3 



0 

Y U V Y 

Figure 2: A Typical Zero-Memory Encoder/Decoder Pair. 

The block diagram of this coding scheme is illustrated in Fig. 1. The 8%" comp- 
nent, Vi, of is an ti-bit codeword and the vector I = ( t o ,  rl, . . . , r~-1)= is called 
the bit allocution vector. For a given bit allocation vector r, the average number of 
bits used to represent a source symbol is given by to, described by 

i=O Y 

The squared-error distortion measure is used exclusively in what follows. The 
average per-symbol distortion D is described by 

Each of the L encoder/decoder pairs has a similar structure and so we shall 
describe one of them as illustrated in Fig. 2. As shown, Y represents a generic 
transform coefficient. In our scheme, the encoder 7(.) is essentially a quantizer 
followed by a code assignment , which maps every quantization level to a specific r-bit 
codeword. The encoder mapping is specified by a vector of quantization thresholds 
- T = &TI,. . . ,TN)=, and a set of binary codewords of length r, described by 
A, = {ul,u2,. . . , u ~ }  where ui is defined aa the codeword to which all source 
outputs in the interval !8_l,X:.]  are mapped, i. e., 

and where N is the number of quantization levels. Let A, = (u1, u2, . . . , UM} denote 
the set of all possible received t-bit sequences, and let = (R1, R2,. . . , RM)* be 
the set of reconstruction levels. The decoder mapping g ( - )  is deiined in terms of the 
received sequences and the reconstruction levels by 

(6) g(u) = &, if u = vi, i =  1,2, . . . ,M. 

Note that the number of quantization levels satisfies N 5 2', whereas the number 
of possible received sequences is given by M = 2'. 
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III Problem Statement and Analysis 
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For the system described in the previous section, we wish to minimize the mean- 
squared error 

(7) 
1 

D = -  L E{tr [(X - m x  - a=]}, 
subject to a constraint on the average number of bits per-symbol required to trans- 
mit the source, i. e., 

L-l 

and subject to a constraint on the minimum and the maximum number of bits that 
can be allocated to a single coefficient, i. e., 

O<ri <rmClz, i = O , l ,  ..., L - 1 ,  

where the t i 's  and LF are assumed to be integer-valued and rmoz is a prescribed 
integer. If A - is chosen to be an orthonormal matrix, the distortion may be simplified 
to 1 

(9) 

which can then be expressed as a sum of the component distortions by 
1 L-1 

D = - T E(& - g)2. 
Ir i=o 

The ?" component distortion, E(Y;. - R)2, is a function of the number of bits 
ri, allocated for transmitting the 2" component and will be denoted hereafter by 
t&(ri). For a given bit allocation vector L, in order to minimize D, it suffices to 
minimize each of the component distortions. Let di (ri) denote the minimum value 
of the i"' component distortion when ri bits are used to to transmit the r?' trans- 
form coefficient. Then the minimum average distortion for a given bit allocation L, 
denoted by D*(r) is given by 

Let US assume that the values of d:(r), i = O , l , .  . . , L- 1, and r = O , l , .  . . ,r,,, 
are known. In order to solve the optimization problem, it remains to determine the 
optimal bit allocation, say E', that satisfies the constraints in (8) and(9) and such 
that D ' ( f )  5 D*(E) for all 

In the rest of this section we will first briefly describe an algorithm that optimizes 
the performance of the zero-memory encoder/decoder pair acmes a noisy channel, 
thus providing us with the (locally) optimal distortion figures for the component 
dhtortions. We will then describe an optimal bit allocation algorithm, that, under 
some mild conditions, yields the optimal E' in LF steps. Together, these algorithms 
are then used to solve the constrained optimization problem as formulated at the 
beginning of this section. 

which satisfy the same constraints. 

5 



A Optimal Zero-Memory Encoder/Decoder Design 

In this subsection we describe an algorithm to minimize the component distortions 
4(ri)  for a given ri. Since the optimization procedure is the same for each of the L 
transform coefficients, we shall consider a generic term and denote it by d(r). 

We refer to an earlier paper [4] in which we described an iterative algorithm 
that converges to a locally optimal encoder/decoder design for the system shown 
in Fig. 2. This procedure results in the optimal value of the component distortion 
d(r) for a given value of r. 

The encoder essentially consists of an N-level quantizer followed by a code as- 
signment map. As shown in [4], the average squared-error distortion is a function 
of the following parameters: 

1. The set of threshold levels 

2. The value of N, the number of quantization intervals; 

3. The code assignment, i.e., the codewords to which the quantizer intervals 

= (To, TI,. . . , T'jv)*; 

should be mapped, and, 

e 

e 

* 

* 

4. The set of reconstruction levels in the decoder. 

The distortion' d(r) can be expressed as 
00 

d ( d  = /_mPr(v)E{(v - P)'P = d d v ,  (13) 

in which py(.) denotes the probability density function (p.d.f.) of the source to 
be encoded (in our application, a generic transform coefficient), and E{. }  is the 
expectation operator. The necessary conditions for optimality are developed by 
deriving: 

a. The necessary and sufficient conditions for optimizing the decoder mapping g 
for a fixed encoder mapping 7. 

b. The necessary and sufficient conditions for optimizing the encoder mapping -y 

The system that satisfies the above two conditions simultaneously is a locally 
optimal system. The optimal decoder mapping for a fixed encoder mapping follows 
directly from a well-known result in estimation theory and is given by 

for a fixed decoder mapping g. 

= E{YIV = vi}, 1 9 2 9  ., M. (14) 

On the other hand, for a fixed decoder mapping, it is straightforward to show that 
the optimal encoder mapping is such that it maps a value of Y = g to a codeword 
ui, .if and only if 

~ ( ( 9  - P)'~v = ui) 5 ~ ( ( 9  - P)'~v = uj}, V j  # i. (15) 

lThe distortion a h  depends on 7 and g but, for the sake of brevity, this is not explicitly reflected 
in our notation. 
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For a fixed decoder g(-), upon defining A,(g) as the set of values of y that should be 
mapped to the codeword ui in preference to any other codeword, and A*j(g) as the 
set of values of y that should be mapped to ui in preference to uj, we may express 
Ai(g) 

N 

= n Aj(g). (16) 
j=lj#i 

Analysis of (13) shows that &j(g) may be expressed as 

Aij(g) = {y : 2y [E{PlU = Uj} - E{PlU = ui}] 

E{P21U = uj} - E{P21U = Ui}}. (17) 

(18) 

(19) 

We now define 
A ej = E{P'IU = uj} - E{P*IU = ~i}, 

A pij = E{P~u = uj} - E{P~u = ui}, 

Therefore, Aij(g) is an interval, and hence, so is A,(g). We may now define the 
upper and lower endpoints of Ai(g) by 

tr = min {tij}, 
j:@;i>O 

and 
tf = max {tij}, 

j :@; j<O 

respectively, and use (22) and (23) to characterize A-(g) by 

(23) 

4, if pij = 0 and Qij < 0 for some j, 
Ab) = ( 2,  if Pij = 0, ej 2 0, Vj, (24) 

[&ti.] , otherwise, 

provided t k t  tf 5 ti. for all i = 1,2,. . . , N. In order to resolve the ambiguity on 
the endpoints of the quantization intervals, we define the set &(g) to be identical 
to A,(g), except when A(g) = [tf,tY], in which case &(g) = (tf,tr]. Then, the 
optimum encoder mapping 7 for a fized decoder mapping g is given by 

A 

7(y)=u;,  y€&(g), i = l , 2 , . . - , M .  (25) 
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It is important to note that when the channel is noisy, we do encounter situations 
in which tf > tr ,  even though &j # 0 for all j # i. The correct interpretation of 
the situation when tf > tr for some i ,  is that no value of the source output is to 
be encoded by the t2* codeword and hence this codeword is not to be transmitted. 
Equation (24) thus provides us with a method of identifying a subset of codewords 
which should be used to encode the output of the zero-memory encoder/decoder 
pair. If the number of codewords in this subset is N, N 5 M then (24), in effect, tells 
u8 that an N-level quantizer is optimum for minimizing the mean squared-error. 
Note that if tf > tr for some i ,  then (24) cannot be used to obtain the optimal 
encoder. In [4], we describe a method for obtaining the optimal encoder even when 
tf > tr for some i .  By successive application of this method and (14), an iterative 
design algorithm is developed that converges to a locally optimal encoder/decoder 
pair. In order to be brief we shall not describe this algorithm here but shall refer 
the interested reader to (41. 

It is interesting to mention, however, that for a Gaussian source and a BSC with 
a crossover probability of 0.01 and a rate of 8 bits/sample, our results indicate a 
(locally) optimal quantizer that possesses only 29 of the possible 256 levels. 

We used this algorithm to generate the (locally) optimal, distortion vs. rate 
performance, &(t), needed for the bit allocation algorithm described next. We 
mention at this point that the distortion vs. rate performance of the optimal en- 
coder/decoder pair, was observed to be convex for rates up to 8 bits/sample, and for 
a Gaussian source density. This observation is important since convexity is required 
in the development of the optimal bit allocation algorithm. 

B Optimal Bit Allocation Algorithm 

In the absence of an analytical expression for the distortion vs. rate performance of 
the optimal encoder/decoder pairs described above, we resort to an integer program- 
ming algorithm to determine the optimal bit allocation vector f. The algorithm 
described in the previous section yields the following distortion values: 

di ( t i ) ,  i=O,1 ,  ..., L - I ;  ri=O,I,  ..., 7L. (26) 

We shall assume that the functions d,'(+) are convex and decreasing for all i = 
0, 1, . . . , L - 1. Here, by convexity, we mean that &(r - 1) - d, (r) 2 &(r) - 4 (t + l), 
for all integers t 2 1. Let us consider the problem of minimizing 

subject to 

L-1 

and 
ri LO, i = O , 1 ,  ..., L - 1 .  
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After describing a steepest descent algorithm that yields the optimal bit allocation 
- r* for the above problem, we will show how the same algorithm may be used to 
determine the optimal bit allocation, when an additional constraint is placed on 
the rnuzimurn number of bits that can be allocated to each component, i.e., when 

The algorithm proceeds as follows [3]. 

1. Set k=O; Set ri = 0, i = 0,1,. . . , L - 1. 

2. Set k = k + 1; compute the index i k  which satisfies 

3. Set rik = r i k  + 1. If k < FLY go to step 2; else stop. 

We state the following theorem without proof, details of which may be found in [3]. 

Theorem 1: If the distortion functions in (26) are convex and non-increasing, then 
the steepest descent algorithm as described above, yields the bit allocation vector 
- r* that minimizes (27) subject to the constraints in (28) and (29). 

In order to use the steepest descent algorithm to solve the problem under the 
additional constraint on individual bit allocations, as stated in (30), we define a 
new set of distortion functions &(r) by 

The corresponding average distortion E(r) is given by, 

(33) 

The following theorem establishes that the minimization of E(r) subject to (28) 
and (29) is equivalent to the minimization of D*(r)  subject to (28)-(30). 

Theorem 2: If the functions described in (26) are convex and strictly decreasing, 
then the bit allocation vector f, that minimizes B(r) subject to (28) and (29), 
minimizes D*(r) subject to (28), (29) and the additional constraint (30). 
Proof: The set of feasible bit allocation vectors that satisfy constraints (28), (29) and 
(30) is contained in the set of feasible bit allocation vectors that satisfy constraints 
(28) and (29). The functions &(r), i = O , l ,  . . . , L - 1, are convex and non- 
increasing since we assumed that the functions di(r), i = O , l ,  ... ,L - 1, were 
convex and decreasing. Hence by applying the steepest descent algorithm, we may 
determine the bit allocation vector f that minimizes B(r) subject to (28), (29). 
Further, since F 5 Lrm2, the steepest descent algorithm will never allocate more 
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than r-= bits to any of the L components. To see this, assume, without any loss of 

where ri < r-,, i = 1,2,. . . , L - 1. At the (k + 1)" step, an index &+I is selected 
for which (31) is true. Since (&(rmoz) - &(rmoz + 1)) = 0, it follows that i k + 1  # 0, 
which proves the theorem. 

generality, that at the kth step of the bit allocation process, I: = (rmot, rl, . . . , rL-1) T , 
Y - 

IV Numerical and Simulation Results 

We have implemented an image coding system using the method outlined in the 
previous sections. The 2-D discrete cosine transform has been chosen as the source 
transformation and we have assumed that the image could be modeled by a sta- 
tionary ZD Gaussian random field. In order to compute the theoretically predicted 
performance, we have made the additional assumption, that the model has a 2- 
D separable, first-order, Gauss-Markov structure. These results serve as a useful 
benchmark of system performance. The 2-D Gauss-Markov random field is de- 
scribed according to 

X(i,j) = prX(i - 1, j) + pcX(i , j  - 1) - p,pcX(i - 1 , j  - 1) + W ( i ,  j ) ,  

i , j = O , l ,  ..., L-1 ,  (34) 

where pr and pc are the vertical (row) and horizontal (column) correlation coeffi- 
cients, respectively, and W ( i , j )  is a 2-D sequence of independent and identically 
distributed Gaussian random variables with zero-mean and variance 0;. It is also 
assumed that values of X(-1,j) are known for j = -l,O, 1,. . . ,L-  1 and the values 
of X ( i ,  -1) are known for i = O,l,. . . , L - 1. For a stationary process the source 
variance ofu and u& must be related by 

2 
0, = Oi(1 - pS)(l - pf). (35) 

The image frame is blocked into blocks of size L x L. These blocks are then operated 
on by the 2D-DCT defined by 

(2 i  + 1)mr 
2L 

(2j  + 1)nr 
2L ' cos cos 

m , n = 0 , 1 ,  ..., L - 1 ,  (36) 

where C(0) = l/& and C(m) = 1 for m = 1,2,. . . , L - 1. The inverse transform 
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(2D-IDCT) is defined by 

0 
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0 

2 L-1L-1 

L m=o n=o 
x(i,j) = - c(m)c(n)~(m,n). 

(2i + 1)mx (23' + 1)nx 
2L ' 2L 

COS COS 

i , j  =0,1,  ..., L -  1. (37) 

The 2D-DCT is a separable orthonormal transformation and the analysis of 
Section II extends to two dimensions along exactly the same lines. In particular, 
the source is now represented by a matrix X - and by using the orthonormality of 
the transformation, we can express the average squared-error distortion as 

where is now the bit allocation matriz, and dmn(rmn) is the optimal distortion 
incurred in transmitting the (m, n):" transform coefficient across the channel using 
rmn bits. The optimal bit allocation algorithm now requires L27 steps to complete 
the allocation, where L23 is again the total number of bits that are to be allocated 
to the image block of size L x L. 

Since the source is assumed to be Gaussian, each of the transform coefficients are 
also Gaussian, which implies that the component distortions may all be expressed 
in terms of a set of (at most) rmr variance-normalized distortion functions as 

Here, dm,(r) is the minimum distortion achievable by a zero-memory encoder/decoder 
pair designed for a unit-uuriunee Guuseiun source as a function of the transmission 
rate: r. Also ukn is the variance of the (m,n)'" transform coefficient. 

For the 2D-DCT and the 2-D Gauss-Markov model the variance ukn may be 
expressed [l] as the product of u:(rn) and u:(n) which are defined by 

(2; + 1)mx (2j + l)m7r 
2L ' COS 

2L 
COS 

m = 0 , 1 ,  ..., L - 1 ,  

and 
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A 2aX 2 .C'(.) = - T c (n) p p '  

* 

I, 

0 

0 

<=O j=Q LI 

(2i + 1)nr (23- + 1)nr 
2L ' COS 

2L 
COS 

n=0,1, ..., L-1, (41) 

respectively. 
In order to compute the theoretically predicted performance for the assumed 

2-D Gauss-Markov image model, we have estimated the values of pr, pc and a; 
from the "GIRL" and the "MOON" images, each of size 256 x 256. These values 
are summarized in Table 1. The variances of the transform coefficients (for an 
L x L transform) have then been computed using (40) and(41), following which, 
the optimal bit allocation vector and the corresponding performance results have 
been obtained using the steepest descent algorithm with rmz set to 8 bits. Results 
based on the 2-D Gauss-Markov model have also been computed for a reference 
system in which the transform coefficients are quantized by Lloyd-Max quantizers 
designed for a Gaussian source and encoded using the natural binary code. The bit 
allocation matrix used here is the one that is optimal for the case when no channel 
errors are present (rMz = 8). These results, referred to as the numerical results 
are presented in Tables 2 and 3 for the 'MOON" image at rates of 1 bit/pixel and 
0.5 bit/pixel respectively, and in Tables 6 and 7 for the "GIRL" image at rates of 
1 bit/pixel and 0.5 bit/pixel respectively. Each of these tables contains results for 
block sizes of 32 x 32, 16 x 16 and 8 x 8, at values of e = 0.0, 0.005, 0.01 and 0.05. 

Monte-Carlo simulation results for real-world images have also been obtained, 
without any modeling assumptions. Here each image of size 256x256 has been 
blocked off into blocks of size L x L. Each block has then been transformed, and 
the variances of the transform coefficients have been estimated from the transformed 
image data. We assume the mean and variance data of the transform coefficients 
is available at the receiver, and that when zero bits are allocated to any trans- 
form coefficient, it is decoded to its mean value in the receiver. Simulations have 
also been run for the reference system which was described earlier. Examples of 
reconstructed image quality obtained through simulations are illustrated in Fig- 
ures 3-8. These figures illustrate the performance of the optimal systems for values 
of e = 0.005, e = 0.01 and = 0.05, for a block size of 32 x 32, at an average rate 
of 1 bit/pixel. To consider the effects of mismatch on the system performance, we 
have also included the performance of the optimal systems, designed for the values 
of e mentioned above, when a noiseless channel is present. The performance results 
obtained through simulations are summarized in Tables 4 and 5 for the "MOON" 
image and in Tables 8 and 9 for the "GIRL" image. These results am presented for 
block shes of 32 x 32, 16 x 16 and 8 x 8, at values of e = 0.0, 0.005, 0.01 and 0.05. 

It is obvious from the numerical and simulation results that the optimal system 
results in improvements in signal-tenoise ratio over the reference system. These 
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improvements are particularly significant for very noisy channels. To be specific, 
the numerical results for the "GIRL" image indicate performance improvements of 
approximately 8 dB at a rate of 1 bit/pixel, for a block size of 8 x 8 and a channel 
crossover probability of 0.005. The performance improvements are seen to increase 
as the block size increases and as the crossover probability increases. By comparing 
corresponding values for the "GIRL" and the "MOON" image it can also be seen 
that the improvements are larger for the "GIRL" image which possesses the higher 
correlation coefficients of the two images considered. An interesting point is that 
the performance of the reference system does not always improve as the block size is 
increased or as the the bit rate is increased for a fized channel crossover probability. 
It does however for the optimal system, a result that is intuitively satisfying. 

To illustrate the effect of the noisy channel on the bit allocation matrix we have 
also presented in Figures 9-11 sample bit allocation matrices at 1 bit/pixel for the 
optimal system designed for values of e = 0.0, 0.01 and 0.05 . The size of these bit 
allocation matrices is 32 x 32 and they have been obtained for the 2-D Gauss-Markov 
image model having the same correlation coefficients as the "GIRL" image. The 
sample bit allocations for the optimal system indicate that as the channel crossover 
probability increases, there is a tendency to allocate more bits to the high energy 
coefficients (those in the top left corner of the matrix) and thus provide greater 
channel protection to these coefficients at the expense of more distortion for the 
lower energy coefficients. 

The trends in the simulation results are seen to be similar to those in the nu- 
merical results, though the performance improvements are not quite as large. For 
example, an improvement of 2.3 dB is observed by simulating the system for the 
"GIRL" image, at a rate of 1 bit/pixel, a block size of 8 x 8 and for a crossover 
probability of 0.005. The corresponding figure predicted by the numerical results 
is approximately 8 dB. We believe that the difference in the numerical results and 
the simulation results, is most probably a result of inappropriate modeling of the 
source. The Gaussian assumption is not always a good one as shown in [6]. But 
what is probably more important is the fact that nonstationary image models are 
inherently superior to stationary image models [7]. It would be useful to note here 
that the system optimization method is general enough to handle situations where 
the transform coefficients are non-Gaussian, with (possibly) distinct p.d.f.'s. 

The examples of reconstructed image quality at 1 bit/pixel, confirm the trends 
indicated by the numerical and simulation results. The image quality for the optimal 
system is definitely superior to that of the reference system, and the improvements 
in quality are more noticeable for the highly correlated "GIRL" image than for the 
"MOON" image. 

V.. Summary and Conclusions 

We have optimized the performance of the 2-D discrete cosine transform coding 
scheme over a noisy channel by (i) optimizing the bit allocation among the transform 
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coefficients and (ii) designing optimal encoder/decoder pairs for transmission of the 
transform coefficients over a noisy channel. 

We have obtained theoretically predicted performance results based on an as- 
sumed 2-D Gauss-Markov model, as well as simulation results for a real-world image. 
In both cases it is shown that the optimal system offers noticeable performance 
improvements over the conventional system based on Lloyd-Max quantization of 
the transform coefficients. The performance improvements are more noticeable at 
higher bit rates and for noisier channels. 

a 
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e IMAGE 
MOON 

MEAN VARIANCE p~ Pc 
127.23 823.78 0.9017 0.9090 

a 
MSE 
SNR 
MSE 
SNR 

e 

e = 0.05 € = 0.0 6 = 0.005 € = 0.01 
REF. OPT. REF. OPT. REF. OPT. REF. OPT. 
18.77 18.77 57.37 29.36 95.79 35.29 396.75 78.26 
16.42 16.42 11.57 14.48 9.34 13.68 3.17 10.22 
14.38 14.38 53.80 23.97 93.04 29.30 400.43 69.58 
17.58 17.58 11.85 15.36 9.47 14.49 3.13 10.73 

16 x 16 

32 x 32 
MSE 
SNR 

12.64 12.64 52.50 21.44 92.19 26.42 402.99 65.71 
18.14 18.14 11.96 15.85 9.51 14.94 3.105 10.98 

I GIRL I 73.57 I 1816.56 10.9790 10.97461 

Table 1: Image Statistics. 

Table 2: Numerical Results; 1 bit/pixel; 'MOON" Image. 

a 

P 32 x 32 MSE 34.84 34.84 70.74 46.51 106.48 53.03 386.58 97.77 
32 x 32 SNR 13.74 13.74 8.59 12.48 8.88 11.91 3.29 9.26 

Table 3: Numerical Results; 0.5 bits/pixel; "MOON" Image. 
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Table 4: Simulation Results; 1 bit/pixel; "MOON" Image. 

BLOCK 
SIZE 
8 x 8 MSE 
8 x 8 SNR 

16 x 16 MSE 

f = 0.0 c = 0.005 € = 0.01 e = 0.05 
REF. OPT. REF. OPT. REF. OPT. REF. OPT. 
99.34 99.34 140.42 115.90 173.56 124.16 437.47 175.63 
9.19 9.19 7.68 8.52 6.76 8.22 2.75 6.71 
75.95 75.95 118.12 101.20 157.12 106.15 442.16 154.56 

16 x 16 
32 x 32 
32 x 32 

Table 5: Simulation Results; 0.5 bits/pixel; ''MOON'' Image. 

SNR 10.35 10.35 8.44 9.11 7.20 8.90 2.70 7.27 
MSE 56.40 56.40 96.12 68.68 136.14 75.47 490.22 124.68 
SNR 11.65 11.65 9.33 10.79 7.82 10.38 2.25 8.20 
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BLOCK 
SIZE 
8 x 8 MSE 
8 x 8 SNR 

1 6 x  16 MSE 
16 x 16 SNR 
32 x 32 MSE 

0 

€ =  

REF. 
4.80 
25.78 
2.776 
28.16 
2.14 

E = 0.005 I € = 0.01 E = 0.05 

0.0 
OPT. 

REF. I OPT. 1 REF. 1 OPT. 

4.80 

REF. I OPT. I 

25.78 
2.776 
28.16 
2.14 

32 x 32 I SNR I 29.29 I 29.29 I 12.18 I 21.42 I 9.22 1 19.67 I 2.36 I 13.00 

Table 6: Numerical Results; 1 bit/pixel; "GIRL" Image. 

BLOCK 
SIZE 
8 x 8  
8 x 8  

16 x 16 
16 x 16 
32 x 32 
32 x 32 

0.0 
OPT. 
21.61 
19.25 
10.13 
22.54 
7.16 

24.04 
I I I 1 

12.16 I 19.67 1 9.31 I 18.28 I 2.52 I 12.53 
~ 

Table 7: Numerical Results; 0.5 bits/pixel; "GIRL" Image. 
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a 

)i 

€ = 0.0 I = 0.005 I € = 0.01 I L = 0.05 
SIZE 
8 x 8  
8 x 8  

16 x 16 
16 x 16 
32 x 32 
32 x 32 

BLOCK 
SIZE 
8 x 8  
8 x 8  

16 x 16 
16 x 16 
32 x 32 
32 x 32 

Table 8: Simulation Results; 1 bit/pixel; "GIRL" Image. 

0 
Table 9: Simulation Results; 0.5 bits/pixel; "GIRL" Image. 
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ommm PAGE Es 
OF POOR QUALITY 

Original "GIRL" 
Image. Ref. designed for e = 0.00. 

Opt. designed for E = 0.005, 
Actual e = 0.00. 

Figure 3: The Original "GIRL" Image and Simulation Results at 1 bit/pixel, Block 
Size = 32 x 32, for the Optimum System (Opt.), and for the Reference System 
(Ref .) . 
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ORIGINAU PAGE rs 
OF PO??. ??J?tTTY 

Opt. designed for e = 0.01, 
Actual E = 0.00. 

0pt.designed for E = 0.005, 
Actual E = 0.005. 

Opt. designed for e = 0.05, 
Actual E = 0.0. 

Ref., 
Actual e = 0.005. 

Figure 4: 
Size= 32 x 32. 

Simulation Results for the UGIRL” Image at 1 bit/pixel, Block 
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ORIGINAL‘ PAGE IS 
OF POOR QUALITY 

Opt. designed for e = 0.01, 
Actual e = 0.01. 

Ref., 
Actual e = 0.01. 

Opt. designed for e = 0.05, 
Actual e = 0.05. 

Ref., 
Actual e = 0.05. 

Figure 5: 
Size= 32 x 32. 

Simulation Results for the “GIRL” Image at 1 bit/pixel, Block 
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e 

* 

a 

0 

ORIGlNllf: l?GE rs 
OF POOR QUALITY 

Original "MOON" 
Image. Ref. designed for c = 0.00. 

Opt. designed for c = 0.005, 
Actual c = 0.00. 

Figure 6: The Original "MOON" Image and Simulation Results at 1 bit/pixel, Block 
Size = 32x32, for the OptimumSystem (Opt.), and for the Reference System (Ref.). 
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e 

0 

Opt. designed for E = 0.01, 
Actual E = 0.00. 

0pt.designed for E = 0.005, 
Actual E = 0.005. 

Opt. designed for E = 0.05, 
Actual E = 0.0. 

Ref., 
Actual E = 0.005. 

Figure 7: Simulation Results for the "MOON" Image at 1 bit/pixel, Block 
She= 32 x 32. 
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Opt. designed for c = 0.01, 
Actual c = 0.01. 

Ref., 
Actual c = 0.01. 

Opt. designed for e = 0.05, 
Actual c = 0.05. 

Ref., 
Actual e = 0.05. 

Figure 8: 
Size= 32 x 32. 

Simulation Results for the "MOON" Image at 1 bit/pixel, Block 
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a 

e 

0 

A 

8 8 8 7 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4  
8 7 6 6 5 5 5 5 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
0 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  
7 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1  
7 5 5 4 4 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
7 5 4 4 3 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
6 5 4 3 3 3 2 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 5 4 3 3 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 4 4 3 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 4 3 3 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 4 3 3 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 4 3 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 4 3 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 4 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 4 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 4 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Figure 9: Sample Bit Allocation Matrix for the Optimal System, Block Size 32 x 32, 
e = 0.0, 1 bit/pixel. 
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e 

e 

e 

e 

0 

0 

0 

8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6  
8 8 8 8 8 7 7 6 6 5 5 5 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2  
8 8 8 7 6 5 5 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1  
8 8 7 6 5 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
8 8 6 5 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 7 5 3 3 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 7 5 3 2 2 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 3 3 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 3 2 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 5 3 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 5 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 5 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 4 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 4 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
7 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0 0 0 0 0 0 0  

Figure 10: Sample Bit Allocation Matrix for the Optimal System, Block Size 32 x 32, 
e = 0.01, 1 bit/pixel. 
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e 

a 

0 

a 

0 

e 

8 8 8 8 8 8 8 8 8 8 8 8 8 0 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 6 6  
8 8 8 8 0 8 8 8 7 6 6 6 6 5 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2  
8 8 8 8 8 6 6 6 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
8 8 8 7 6 3 3 3 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
8 8 8 6 3 3 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 8 6 3 3 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 8 6 3 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 8 6 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 7 3 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

Figure 11: Sample Bit Allocation Matrix for the Optimal System, Block Size 32 x 32, 
E = 0.05, 1 bit/pixel. 
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