12,816 research outputs found

    Is there a more effective way to reduce carbon emissions?

    Get PDF
    Whilst emissions trading systems are widely held to be able to deliver lowest-cost abatement, uncertainty reduces their effectiveness. We consider a new scheme, the Tender-Price Allocation Mechanism, which focuses carbon factor cost expenditure on abatement rather than just revenue transfers. It is a scheme that reduces uncertainty and the costs of uncertainty for both firms and regulators. It also incorporates a suite of incentives that compensates for the externalities associated with abatement investment.

    GIS-based suitability analysis on hybrid renewal energy site allocation using integrated MODIS and ASTER Satellite imageries in Peninsular Malaysia

    Full text link
    © 2018 Proceedings - 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018 This study attempts to find the most suitable places to establish hybrid renewable energy sites (e.g. biomass and solar energy) in Malaysia. We used space borne satellite-derived solar irradiance estimation which is useful and accurate approach for solar resource calculation. To do so, MODIS Terra and Aqua satellite were used to extract values of Aerosol Optical Depth (AOD) at 550 nm. Subsequently, other topographic contribution factors were derived from ASTER satellite imagery. MODIS satellite imagery was classified by support vector machine to extract land use/land cover. Additionally, sixteen different metrological stations were utilized to calibrate the solar irradiances achieved from MODIS satellite and provide daily wind data over the entire Peninsular Malaysia. Finally, simple additive weighting method was implemented in geographical information system (GIS) platform to develop the hybrid RE suitability model. MODIS solar radiation result showed a high correlation with field observation. The result of hybrid renewable energy suitability analysis revealed that coastal areas of Hulu Terengganu, have high potential for allocating sites. This country scale research can be used as a guidance/preliminary assessment to narrow down the scope of new potential hybrid RE in regional scale

    A financial approach to renewable energy production in Greece using goal programming

    Get PDF
    Investing in renewable energy production is a high interest venture considering global energy needs and the environmental impact of fossil fuel consumption. Motivated by the goals set by the European Union towards 2020, this study aims at designing a renewable energy map (installing solar power plants) in Greece. Three aspects are considered, namely, social, financial, and power production aspects. A goal programming model is developed under target and structural constraints, and all possible weight combinations are examined. The solutions derived from each iteration are subjected to a financial meta-analysis, considering different tax and return scenarios aligned to the Greek taxation and banking system. The analysis considers Greece and each region separately, taking net present value (NPV) as an objective measure to assess the solutions. From the results, it is concluded that the internal rate of return is approximately 22.5%−25%22.5%−25% for the overall network. In addition, higher NPV values are obtained when the financial and power production aspects are given greater emphasis. The proposed model provides multi-dimensional information for decision makers; investors can determine the optimal budgeting mix, and policy makers can determine the weight on each aspect that guarantees the success of the venture

    Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

    Get PDF
    Abstract:Wind energy uptake in South Africa is significantly increasing both at the micro‐ and macro‐level and the possibility of embedded generation cannot be undermined considering the state of electricity supply in the country. This study identifies a wind hotspot site in the Eastern Cape province, performs an in silico deployment of three utility‐scale wind turbines of 60 m hub height each from different manufacturers, develops machine learning models to forecast very short‐term power production of the three wind turbine generators (WTG) and investigates the feasibility of embedded generation for a potential livestock industry in the area. Windographer software was used to characterize and simulate the net output power from these turbines using the wind speed of the potential site. Two hybrid models of adaptive neurofuzzy inference system (ANFIS) comprising genetic algorithm and particle swarm optimization (PSO) each for a turbine were developed to forecast very short‐term power output. The feasibility of embedded generation for typical medium‐scale agricultural industry was investigated using a weighted Weber facility location model. The analytical hierarchical process (AHP) was used for weight determination. From our findings, the WTG‐1 was selected based on its error performance metrics (root mean square error of 0.180, mean absolute SD of 0.091 and coefficient of determination of 0.914 and CT = 702.3 seconds) in the optimal model (PSO‐ANFIS). Criteria were ranked based on their order of significance to the agricultural industry as proximity to water supply, labour availability, power supply and road network. Also, as a proof of concept, the optimal location of the industrial facility relative to other criteria was X = 19.24 m, Y = 47.11 m. This study reveals the significance of resource forecasting and feasibility of embedded generation, thus improving the quality of preliminary resource assessment and facility location among site developers

    From Wind to Hybrid: A Contribution to the Optimal Design of Utility-Scale Hybrid Power Plants

    Get PDF
    ABSTRACT: When a substantial number of wind parks are approaching the end of their lifespan, and developers of renewables are facing decisions about what to do with their assets, concepts such as hybrid power plants are emerging as a promising solution to enable renewable integration in a cost-effective and robust manner. This work proposes a decision-aid algorithm to perform a comprehensive analysis of hybrid power plants, focusing on the energetic contribution and economic feasibility of converting existing wind power plants into hybrid power plants (i.e., installing photovoltaic panels and a storage system). The analysis was performed by comparing the option of converting existing wind plants into hybrid plants with a pure repowering exercise or overplanting using wind technology only. The obtained results unequivocally demonstrate the added value of hybrid power plants as they promote: (i) a higher installed capacity and yearly capacity factor (up to 50%); (ii) an increased efficiency of existing electric infrastructures; and (iii) a positive contribution to a sustainable energy system with the ability to generate economic value.info:eu-repo/semantics/publishedVersio

    What to expect from a greater geographic dispersion of wind farms? - A risk portfolio approach

    Get PDF
    The UK, like many other industrialised countries, is committed to reducing greenhouse gas emissions under the Kyoto Protocol. To achieve this goal the UK is increasingly turning towards wind power as a source of emissions free energy. However, the variable nature of wind power generation makes it an unreliable energy source, especially at higher rates of penetration. Likewise the aim of this paper is to measure the potential reduction in wind power variability that could be realised as a result of geographically dispersing the location of wind farm sites. To achieve this aim wind speed data will be used to simulate two scenarios. The first scenario involves locating a total of 2.7 gigawatts (GW) of wind power capacity in a single location within the UK while the second scenario consists of sharing the same amount of capacity amongst four different locations. A risk portfolio approach as used in financial appraisals is then applied in the second scenario to decide upon the allocation of wind power capacity, amongst the four wind farm sites, that succeeds in minimising overall variability for a given level of wind power generation. The findings of this paper indicate that reductions in the order of 36% in wind power variability are possible as a result of distributing wind power capacity

    Towards Environmentally Sustainable and Cost-Effective Food Distribution in the U.S.

    Get PDF
    Distribution centers (DCs) and supermarkets have an important role in food sustainability, but no previous research has accounted for their environmental impact. The purpose of this research was to assess environmental sustainability of grocery, perishables, and general merchandise DCs; to estimate food storing and retailing impact; and to provide cost-effective strategies to reduce DCs’ environmental impacts. The importance and relevance of the research is threefold: improving sustainability of DCs, food storing, and food retailing. The main method used in this research was the life cycle assessment (LCA) method. An initial study calculated environmental impacts of the Wal-Mart Stores, Inc. DCs, which combined a building energy consumption simulation, a process modeling tool for conveyors, regional water consumption and scarcity, and an LCA model of DCs’ material and construction environmental impacts. Further research provided an in-depth analysis of refrigerated zones within DCs and supermarkets in the United States. The study represents an initial attempt at assessing the environmental impact of food storage and retailing. We developed a model for calculating environmental impact of food storing and retailing in different states. Drawing on the data about DCs’ energy consumption and the impact of climate change, a multi-objective optimization model including cost, non-renewable fossil energy use, and climate change was developed. The optimization model used on-site solar panels and off-site wind technologies to find cost-effective energy mixes, which will reduce environmental impacts and shift DCs from energy consumers to energy producers and net zero DCs. We found solutions to the Pareto-optimal zero energy DCs, which were achieved by installing roof solar panels and/or erecting wind turbines at nearby locations. A pairwise Monte Carlo analysis showed when the switch to renewable energy became superior in terms of reducing fossil energy use and environmental impact. The research has shown variation of environmental impacts by building type, size, state, and climate zone; has identified which food has the highest and lowest storage and retailing impacts; and has found a feasible option to increase solar and wind energy use in DCs. Supporting datasets for chapters 2, 3, and 4 are included in Appendices 1, 2, and 3, respectively

    Effect of virtual power plant scheme on the supply and demand sides based on the techno-economic analysis

    Get PDF
    北九州市立大学博士(工学)This research proposed a comprehensive method for analyzing the feasibility of using a Virtual Power Plant (VPP) to benefit both the plant and demand sides. First, the energy-saving potential of a VPP composed of a photovoltaic and energy storage system was explored. Second, the economic performance of the VPP was evaluated based on a payback period and total life cycle cost analysis. Then, considering the imbalance of the benefits between the demand and plant sides, cooperative game theory was applied to explore the cooperation potential. The influence of government subsidy policies on both the plant and demand sides was a simultaneous concern. Finally, the profit of the alliance, comprising both the demand and plant sides was allocated, based on the Shapley value. This study highlights the excellent energy-saving potential from implementing a VPP. This research provides policy guidance for the Japanese government to promote VPPs in the future.doctoral thesi

    A State-of-the-Art review on the drive of renewables in Gujarat, State of India: Present situation, barriers and future initiatives

    Get PDF
    Given the recent increasing public focus on climate change issues, the share of electricity generation by renewable energy resources is increasing day by day. Increased renewables share will give us robust, sustainable, and climate-friendly energy systems for the future. Renewable energy penetration with the current power systems needs substantial research, planning and development which are now the primary focus throughout the world. In this study, a global renewable energy scenario is explained in detail in contrast with India, considering a case study elucidating the comprehensive review of the Gujarat state in India. The primary focus is on Gujarat state’s actions plans to pertain to harvest renewable energy and maximizing its share in the energy mix. This study examines the actions and the policies adopted by the Gujarat government to overcome the potential barriers in order to support non-conventional as well as renewable energy development. It also investigates the numerous techno-economic and social constraints with possible solutions in promoting the deployment of upcoming renewable energy resources across Gujarat. This study can be used as a guideline for the government, policymakers, utilities, stakeholders and researchers to promote an increased renewable energy share in Gujarat as well as at other places around the globe
    corecore