8,093 research outputs found

    Creative Thinking and Modelling for the Decision Support in Water Management

    Get PDF
    This paper reviews the state of art in knowledge and preferences elicitation techniques. The purpose of the study was to evaluate various cognitive mapping techniques in order to conclude with the identification of the optimal technique for the NetSyMod methodology. Network Analysis – Creative System Modelling (NetSyMod) methodology has been designed for the improvement of decision support systems (DSS) with respect to the environmental problems. In the paper the difference is made between experts and stakeholders knowledge and preference elicitation methods. The suggested technique is very similar to the Nominal Group Techniques (NGT) with the external representation of the analysed problem by means of the Hodgson Hexagons. The evolving methodology is undergoing tests within several EU-funded projects such as: ITAES, IISIM, NostrumDSS.Creative modelling, Cognitive mapping, Preference elicitation techniques, Decision support

    Effective communication in requirements elicitation: A comparison of methodologies

    Get PDF
    The elicitation or communication of user requirements comprises an early and critical but highly error-prone stage in system development. Socially oriented methodologies provide more support for user involvement in design than the rigidity of more traditional methods, facilitating the degree of user-designer communication and the 'capture' of requirements. A more emergent and collaborative view of requirements elicitation and communication is required to encompass the user, contextual and organisational factors. From this accompanying literature in communication issues in requirements elicitation, a four-dimensional framework is outlined and used to appraise comparatively four different methodologies seeking to promote a closer working relationship between users and designers. The facilitation of communication between users and designers is subject to discussion of the ways in which communicative activities can be 'optimised' for successful requirements gathering, by making recommendations based on the four dimensions to provide fruitful considerations for system designers

    Q-Strategy: A Bidding Strategy for Market-Based Allocation of Grid Services

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational services is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic service provisioning and usage of Grid services, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a bidding agent framework for implementing artificial bidding agents, supporting consumers and providers in technical and economic preference elicitation as well as automated bid generation by the requesting and provisioning of Grid services. Secondly, we introduce a novel consumer-side bidding strategy, which enables a goal-oriented and strategic behavior by the generation and submission of consumer service requests and selection of provider offers. Thirdly, we evaluate and compare the Q-strategy, implemented within the presented framework, against the Truth-Telling bidding strategy in three mechanisms – a centralized CDA, a decentralized on-line machine scheduling and a FIFO-scheduling mechanisms

    Rational bidding using reinforcement learning: an application in automated resource allocation

    Get PDF
    The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems. The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici

    Automated negotiation with Gaussian process-based utility models

    Get PDF
    Designing agents that can efficiently learn and integrate user's preferences into decision making processes is a key challenge in automated negotiation. While accurate knowledge of user preferences is highly desirable, eliciting the necessary information might be rather costly, since frequent user interactions may cause inconvenience. Therefore, efficient elicitation strategies (minimizing elicitation costs) for inferring relevant information are critical. We introduce a stochastic, inverse-ranking utility model compatible with the Gaussian Process preference learning framework and integrate it into a (belief) Markov Decision Process paradigm which formalizes automated negotiation processes with incomplete information. Our utility model, which naturally maps ordinal preferences (inferred from the user) into (random) utility values (with the randomness reflecting the underlying uncertainty), provides the basic quantitative modeling ingredient for automated (agent-based) negotiation
    • …
    corecore