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Abstract
Designing agents that can efficiently learn and inte-
grate user’s preferences into decision making pro-
cesses is a key challenge in automated negotiation.
While accurate knowledge of user preferences is
highly desirable, eliciting the necessary informa-
tion might be rather costly, since frequent user in-
teractions may cause inconvenience. Therefore, ef-
ficient elicitation strategies (minimizing elicitation
costs) for inferring relevant information are critical.
We introduce a stochastic, inverse-ranking utility
model compatible with the Gaussian Process pref-
erence learning framework and integrate it into a
(belief) Markov Decision Process paradigm which
formalizes automated negotiation processes with
incomplete information. Our utility model, which
naturally maps ordinal preferences (inferred from
the user) into (random) utility values (with the
randomness reflecting the underlying uncertainty),
provides the basic quantitative modeling ingredient
for automated (agent-based) negotiation.

1 Introduction
Automated (agent-based) negotiation formalizes a wide range
of interactions in multi-agent systems, covering topics such as
HF trading [McGroarty et al., 2018], cloud computing [Sim,
2011], pervasive computing [Ramchurn et al., 2004], smart
grids [Ketter et al., 2018], supply chain management [Wang
et al., 2009]. In such systems, agents can successfully substi-
tute humans in making complex decisions, provided that they
have good knowledge of the user’s goals [Kraus et al., 1995].

In many situations agents do not have access to all infor-
mation required for taking optimal decisions. For instance, if
negotiation takes place over multiple issues then quantifying
the desirability of various outcomes requires the considera-
tion of trade-offs. The combinatorial explosion in the number
of potential outcomes makes it intractable (too costly) for a
user to determine and communicate all dependencies before-
hand, while many of them could be also irrelevant since, for
instance, they could be highly unattractive for the other nego-
tiating party (which, in the sequel, will be called opponent).

∗An abridged version of this work was presented at AAMAS ’19.

An important challenge in automated negotiation is de-
signing agents which can efficiently strike a balance between
negotiation and (user’s) preference elicitation [Baarslag et
al., 2017]. (PO)MDP models have been employed for both
negotiation [Paruchuri et al., 2009] and preference elicita-
tion [Boutilier, 2002; Chajewska et al., 2000], while pref-
erence elicitation models were further adapted to negotia-
tion processes in which agents may elicit utility values by
submitting queries to the user [Baarslag and Gerding, 2015;
Mohammad and Nakadai, 2018]. In this paper, which extends
the framework presented in [Leahu et al., 2019], we adopt a
similar modeling paradigm, but have agents learn from com-
parative queries; thus not asking the user to quantify the desir-
ability of a specific outcome, but to compare a pair of alterna-
tives. Preference quantification is rarely available in practice
- and even then may be inconsistent over time - [Kingsley and
Brown, 2006], which motivates our choice of ordinal utility
models, i.e. based on pair-wise comparisons.

A key ingredient in our modeling paradigm is defining suit-
able utility models, quantifying the preferences of both the
user and the opponent for every possible negotiation outcome
by means of (random) utility functions, with the randomness
illustrating the underlying uncertainty. That is, in the absence
of (full) knowledge of the user/opponent’s preferences, the
agent maintains quantitative beliefs over them, which are be-
ing updated, as new data emerges, through interactions with
the user/opponent. Therefore, it is highly desirable that a util-
ity model should be general (to account for a wide range of
scenarios) and flexible (to allow easy integration of new data).

In this paper we propose a stochastic utility model, where
the underlying randomness is formalized by a Gaussian Pro-
cess (GP), which is integrated into a MDP negotiation frame-
work. The use of GP’s in Machine Learning has gained much
popularity [Rasmussen and Williams, 2006] since GP’s allow
for a rather general treatment of random functions, compared
to other models (e.g. linear with random slope coefficient).
Moreover, the Laplace approximation of the Bayesian pos-
terior distribution makes GP-based models flexible, as new
data can be easily integrated by means of GP parameter up-
dates. While the use of the GP’s in formalizing uncertain
preferences is well established [Chu and Ghahramani, 2005a;
Chu and Ghahramani, 2005b], standard utility models (based
on uncertain beliefs) for negotiating agents are still lacking.
Filling this gap is one of the main contributions of this paper.
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Figure 1: Agent interactions in preference learning and negotiation.

This paper furthers the state-of-the-art in the following di-
rections: First, it extends the GP-based preference learning
model [Chu and Ghahramani, 2005b] by allowing ties be-
tween alternatives; this is in contrast with the standard model
which assumes that the user can always indicate a clear pref-
erence between any pair of alternatives. Secondly, we adapt
the model to online learning, by deriving explicit sequential
update rules which facilitate integration of new data in real
time. Ultimately, we introduce a stochastic, inverse-rank util-
ity model, mapping preferences into utility values in a natural
way. The resulting utility mapping is a monotone transfor-
mation of a GP-like preference function (thus obeys essen-
tially the same update rules), but unlike the preference func-
tion (which introduces subjective beliefs which can not be
validated by user interactions) is data measurable, i.e. the ran-
domness is completely (up to approximation errors) removed
when full information on user preferences becomes available;
this distinguishes our model from alternative GP-based utility
models in preference elicitation [Bonilla et al., 2010].

We further integrate our utility model into a two-objective
(belief) MDP model which combines negotiation actions with
preference elicitation, resulting in a fairly general mathe-
matical framework for automated negotiation with uncertain
knowledge. Namely, a negotiating agent employs utility mod-
els (called henceforth user, resp. opponent model) for both
parties involved in the negotiation process and performs suc-
cessive interactions with the user (by means of comparative
queries, incurring certain elicitation costs) and the opponent
(deal offers), updating the two utility models accordingly; see
Figure 1. While the user utility can be readily used to define
rewards, the use of the opponent utility in formalizing its be-
havior requires, in general, further modeling assumptions.

To illustrate the use of our utility model, we consider a ne-
gotiating agent which, before taking any negotiation action
(i.e. accepting or making a new offer), explores the user’s
preferences in order to reduce uncertainty around the utility
values corresponding to the outcomes relevant for the nego-
tiation. For a better insight into the decision mechanism, we
choose a small-scale example for our numerical experiments.

Since our focus is on preference elicitation (rather than on
negotiation), we shall assume that the agent employs a one-
step look ahead negotiation strategy, thus aiming to maxi-
mize his immediate (one-step) expected reward. Our setup
is somewhat similar to the ultimatum game [Zhong et al.,
2002], which can be seen as the one-shot, final-offer ver-
sion of the classic alternating offers protocol [Baarslag et al.,
2015]. However, in our setting, the agents can have mutu-
ally non-exclusive objectives since arbitrary utilities over the
outcome space are possible (e.g. single-peaked preferences),
allowing for integrative negotiation scenarios where win-win
agreements are possible [Kowalczyk and Bui, 2000].

2 Problem Formulation
An agent conducts a negotiation on some user’s behalf, in
a sequential way, based on an offer/counter-offer protocol.
Negotiation ends when either party accepts the other party’s
offer, resulting in some outcome-dependent rewards for each
party. The space of all possible outcomes of the negotiation
is denoted by X and is assumed that, initially, an agreement-
offer y ∈ X (e.g. an outside option) is available to the agent.

In the absence of complete information, the agent main-
tains a belief µ formalizing the user’s utility and a belief η
governing the opponent’s behavior. A first challenge for the
agent is to decide whether to accept y, make an offer x 6= y,
or elicit some additional information (i.e. making a sequence
of queries) from the user, in order to obtain a more accurate
µ-belief, before taking any decision. Once the agent decides
to negotiate (i.e. to make an offer x 6= y), it can be either
that the offer gets accepted, with some acceptance probability
(calculated based on the current η-belief), yielding a suitable
reward (the expected value of which is calculated based on
the current µ-belief), or the offer is further negotiated by the
opponent, resulting in a new agreement-offer z and a suitable
updated opponent belief. Alternatively, at any time, the agent
may submit a user-query to update its (user) belief. In this
context, the problem we tackle is devising a judicious rule
for deciding whether to elicit more information (and, if yes,
which information) before continuing negotiation.

In the above paradigm, negotiation actions alternate with
preference elicitation actions (queries). By an elicitation pol-
icy we mean a sequence π = (q1, . . . , qn), with n ≥ 0, of
queries made during an elicitation cycle, i.e. between two
successive negotiation actions. To each query, a ‘bother’ cost
γ(q), in the form of a discount factor, is associated. Since
our focus is on learning preferences (rather than elaborating
optimal negotiation strategies, which requires a complex op-
ponent behavior modeling and assumptions), we aim to de-
rive efficient elicitation policies maximizing the immediate
expected reward R(x|y, µ, η) obtained by the agent by mak-
ing offer x in state (y, µ, η) (to be understood as ‘accept y’ if
x = y). To be more specific, we define

R(x|y, µ, η) :=

{
Eµ[U(y)] x = y;

Eµ,η[U(x)P(x)] x 6= y,
(1)

where U denotes the user’s utility function under belief µ and
P denotes the opponent’s acceptance probability under belief
η. We further define the maximal immediate expected reward

R(y, µ, η) := max
x
R(x|y, µ, η). (2)

Finally, defining the state-value function
V(y, µ, η) := max

π
γ[π] · E[R(y, [µ|π], η)], (3)

where γ[π] := γ(q1) · . . . · γ(qn) denotes the cost of the pol-
icy π = (q1, . . . , qn) and [µ|π] denotes the random belief ob-
tained by updating µ w.r.t. the (predicted) outcomes of π, an
optimal elicitation policy is any maximizer in (3). An optimal
elicitation cycle ends when a state (y, µ, η), satisfying

V(y, µ, η) = R(y, µ, η),

is reached and an offer maximizing (1) is made; note the the
above equality can be regarded as a stopping condition.
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3 Stochastic Utility Models
A utility belief on X is a Gaussian probability law µ on RX,
specified by a mean and a covariance function, µ : X −→ R
resp. k : X2 −→ R. A sample from µ is a random function
G : X −→ R, which will be called a Gaussian Process (GP).
Utility beliefs are used to define utility models (random utility
functions) which are updated based on pairwise comparisons.

3.1 Utility Belief Update
In instance preference learning [Chu and Ghahramani,
2005b], data is available in the form
(+) u ≺ v, meaning that “v is (strictly) preferred to u”;
(−) u � v, meaning that “u is (strictly) preferred to v”;
(∼) u ∼ v, meaning “no preference between u and v”,
for some arbitrary pair q := (u, v) ∈ X2, with u 6= v.

Given a utility belief µ (specified by parameters µ and k)
and some outcome ε = u ./ v, where ./ ∈ {≺,∼,�}, of
the pair-wise comparison (u, v), we denote by [µ|ε] the up-
dated belief, which we define as the Laplace approximation
of the Bayesian posterior of µ, conditioned on ε. To derive the
mean/covariation functions µ̄ε, resp. k̄ε of the updated belief
[µ|ε], we use an adaptation of the standard method [Chu and
Ghahramani, 2005b] to our setup, i.e. we adjust the likelihood
function to include ties between alternatives. We do so by in-
troducing a new (precision) parameter δ ≥ 0 and interpreting
the outcome u ∼ v as |G(v)−G(u)| ≤ δ.

For a pair (u, v), the likelihood P{u ≺ v|G} is given by

P{u ≺ v|G} = Φ

(
G(v)−G(u)− δ

ς

)
,

where Φ denotes the standard Gaussian c.d.f. and ς is a model
parameter accounting for the uncertainty in the user answer;
note that, for δ = 0 one recovers the standard model in [Chu
and Ghahramani, 2005b]. Letting further
Mq := µ(v)− µ(u), Vq := k(v, v)− 2k(u, v) + k(u, u),

the predictive distribution of the query outcomes is given by

P{(±)} = Φ

(
±Mq − δ√
Vq + ς2

)
;P{(∼)} = 1− P{(+)} − P{(−)}. (4)

Let f(b) := log Φ ((b− δ)/ς), for b ∈ R, and β(M,V ),
for M ∈ R, V ≥ 0, denote the unique solution of

β = M + V · f ′ (β) . (5)
Then the updated belief [µ|ε] is specified by

µ̄ε(x) := µ(x) +Bε (k(x, v)− k(x, u)) , (6)
respectively
k̄ε(x, z) := k(x, z) (7)

− Cε(k(x, v)− k(x, u))(k(z, v)− k(z, u))

1 + CεVq
,

where Bε ∈ R and Cε > 0 are defined as follows:
• for ε = (±) we have

Bε = ±f ′ (β(±Mq, Vq)) , Cε = −f ′′ (β(±Mq, Vq)) ;

• for ε = (∼) we have

Bε = − Mq

ς2 + Vq
, Cε =

1

ς2
.

This concludes the belief update rules.

3.2 Ranking-based Utility Models
A utility model with underlying utility belief formalized by a
GP G, is a random (utility) function U : X −→ R satisfy-
ing U(x) ≤ U(z) if and only if G(x) ≤ G(z). The mono-
tonicity assumption ensures that ordinal data can be properly
integrated in the belief update process; see Section 3.1.

In this paper, we propose the inverse-rank utility model

U(x) :=
∑
z∈X

1{G(z) ≤ G(x)}; (8)

that is, U(x) denotes the (random) number of negotiation out-
comes whose G-value does not exceed that of x. U(x) is an
integer between 1 and ℵ := #X, representing the ranking of
G(x) within the increasing sequence of G-values, i.e.

U
(

arg min
x
G(x)

)
= 1, U

(
arg max

x
G(x)

)
= ℵ.

Next to its intuitive domain interpretation (utility as num-
ber of outcomes that are not preferred), the inverse-rank util-
ity model (8) has two attractive formal properties, which set
it apart from alternative models, e.g. U = G or U = exp(G).
First, the utility values remain in some fixed interval. Sec-
ondly, our model is data-measurable, in the sense that is built
from observable variables only; put differently, a full knowl-
edge of user’s preferences makes the model deterministic.

Furthermore, under the utility belief µ = (µ,k), the ex-
pected utility of some particular outcome x will be given by

Eµ[U(x)] =
∑
z∈X

Φ

(
µ(x)− µ(z)√

k(x, x)− 2k(x, z) + k(z, z)

)
; (9)

note, however, that the expected utility values are not integers
anymore, but still remain in the (continuous) range [0,ℵ].

In the context of negotiation, assume that the agent has an
offer x on the table, which is accepted with probability P(x),
or negotiated (hoping for a better deal) with remaining prob-
ability. Provided that the agent has no insight into the future
negotiation process, a future agreement can be regarded as a
uniform sample from the negotiation space; thus the chance
of not improving the current deal x is U(x)/ℵ, which pro-
vides a natural model for the acceptance probability P(x) (if
interpreted as the probability of not getting a better deal).

(y, µ, η)

Accept Offer y

R = Eµ[U(y)]

Compare u vs. v Make Offer x

Preference ./ x is Accepted

R = Eµ[U(x)]

Receive Offer z

(y, [µ|u ./ v], η) (z, µ, [η|x ≺ z])

Legend: transient state terminal state action reaction

Figure 2: The belief MDP dynamics.
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4 Belief MDP with Stochastic Utility Models
In the context of Section 2, let µ = (µ,k), η = (η, `) denote
user’s, resp. opponent’s, utility beliefs; we denote by G, resp.
H , the corresponding GP-samples. In particular, for a specific
agreement x ∈ X, the user’s utility is given by

U(x) =
∑
s∈X

1{G(s) ≤ G(z)},

and the corresponding opponent’s acceptance probability by

P(x) ≈
∑
s∈X

1{H(s) ≤ H(z)},

where ≈ means equality up to some multiplicative constant.
Assuming stochastic independence between the user’s and

the opponent’s utility beliefs, µ and η, it follows that
Eµ,η[U(x)P(x)] = Eµ[U(x)] Eη[P(x)],

where, in accordance with (9), it holds that

Eµ[U(x)] =
∑
s∈X

Φ

(
µ(x)− µ(s)√

k(x, x)− 2k(x, s) + k(s, s)

)
,

respectively

Eη[P(x)] ≈
∑
s∈X

Φ

(
η(x)− η(s)√

`(x, x)− 2`(x, s) + `(s, s)

)
.

The above formulas express the numerical elements required
in (1), (2), (3) by means of the agent’s current beliefs.

To describe the MDP dynamics, we first note that the MDP
states can be classified into transient and terminal states, with
rewards being obtained only upon reaching a terminal state.
Furthermore, given a transient state (y, µ, η), the set of avail-
able actions consists of all possible user queries, formalized
as pairs q = (u, v), and negotiation actions (offers) x ∈ X (re-
call that y means ‘accept’). Making a query q = (u, v) results
in an outcome ε, which can be either (+) u ≺ v, (−) u � v
or (∼) u ∼ v, having predictive distribution specified by (4).
The agent moves in the new transient state (y, [µ|ε], η), where
[µ|ε] is specified by (6)–(7). On the other hand, the agent can
either accept y, expecting the reward U(y), or make the offer
x 6= y expecting one of the following scenarios:

(i) x is accepted by the opponent, with probability P(x),
resulting in a reward U(x);

(ii) x is negotiated by the opponent, resulting in the agent
receiving a (counter-) offer z 6= x.

Acceptance (by either agent or opponent) results in terminal
states, where belief updates are not necessary. On the other
hand, should the opponent decide to negotiate the agent’s of-
fer - case (ii) - the agent moves into the new (transient) state
(z, µ, [η|x ≺ z]), inferring that z is preferred (by the oppo-
nent) to x. The belief MDP dynamics are illustrated in Figure
2, which is the particularization of Figure 1.

Remark: The probability of receiving some counter-offer
z depends on the opponent’s reasoning and requires further
modeling assumptions for the agent. However, for the prob-
lem formulated in Section 2, this probability (of the opponent
making a specific counter-offer) is not relevant, as the agent
does not optimize his actions w.r.t. future opponent offers; it
is only the acceptance probability of x which matters.

Algorithm 1 decides between elicitation and negotiation
Input: [(y, µ, η);L]
Parameter: query cost-function γ
Output: myopic action “Action”

1: %← R(y, µ, η); // reward based on current belief
2: Act← arg maxxR(x|y, µ, η);
3: for {any relevant query q /∈ L} do
4: if {% < Q(y, µ, η; q)} then
5: %← Q(y, µ, η; q);
6: Act← q; // make q a candidate for the next query
7: end if
8: end for
9: return Act

5 The Myopic Elicitation Strategy
We devise an algorithm that determines an optimal elicitation
cycle w.r.t. a myopic look ahead strategy. Namely, the queries
are decided in a sequential manner, by evaluating at each step
whether to negotiate (accept y or make an offer) or make a
new query, which, by reducing the utility uncertainty around
the points of interest, could possibly increase the immediate
expected reward obtained by future negotiation actions.

Formally, our algorithm evaluates
Q(y, µ, η; q) := γ(q) E[R(y, [µ|ε], η)], (10)

for all queries q := (u, v) and outcomes ε = u ./ v of q,
where the expectation is calculated w.r.t. the predictive distri-
bution (4) of the random preference ./ =≺,∼,�, based on
the current µ-belief. Furthermore, it decides as follows:
• if the stopping condition

max
q
Q(y, µ, η; q) ≤ R(y, µ, η), (11)

is fulfilled, then the elicitation cycle ends with the offer
x∗(y, µ, η) = arg max

x
R(x|y, µ, η); (12)

• else, a query q∗ := arg maxqQ(y, µ, η; q) is made.
Algorithm 1 illustrates the myopic (one-step ahead) explo-

ration of all relevant (in some sense to be specified) queries
and decides whether extra elicitation is profitable; if yes, it
also returns an optimal query. To reduce the complexity of
the exploration process, the agent maintains a list L of pair-
wise preferences based on the information elicited so far, i.e.
preferences either confirmed directly by the user (as answers
to queries) or inferred from known preferences by transitivity
(assuming user’s preference consistency). The queries which
do not have a certain answer based on the ordinal data in L
are called relevant and the list is being updated after each an-
swered query, to ensure that the search space for new relevant
queries decreases after each user interaction.

By iterating the decision rule formalized by Algorithm 1
until condition (11) is fulfilled, one obtains a myopic elicita-
tion cycle; see Algorithm 2. Note that, restricting the maxi-
mization to relevant queries (only) ensures convergence.

Remark: Our algorithm performs only a one-step ahead
search, corresponding to maximizing in (3) w.r.t. policies (in-
terpreted as sequences of queries) of length n = 1. Possibly
more accurate solutions can be obtained by extending the op-
timization range to multiple-step search.
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Algorithm 2 generates a myopic elicitation cycle
Input: [(y, µ, η);L]
Parameter: query cost-function γ
Output: the next negotiation action

1: Act← Query.
2: while {Act = Query} do
3: if {Action[(y, µ, η);L] 6= Offer} then
4: q ← Action[(y, µ, η);L]
5: make query q and obtain outcome ε
6: µ← [µ|ε]; // update belief µ cf. (6) and (7)
7: L← [L; ε]; // update the list L
8: else
9: Act← Offer;

10: end if
11: end while
12: return x∗(y, µ, η) given by (12);

6 Experimental Setup
To illustrate our approach, we perform an experimental com-
parison of the myopic elicitation strategy formalized by Algo-
rithm 1 against a ‘randomized’ elicitation strategy, in which
the agent randomly generates a sequence of relevant queries
and then makes the optimal negotiation offer (12), based on
the resulting updated belief (given the corresponding query
outcomes). We shall achieve that by simulating ‘parallel’ ne-
gotiation processes, in which the two elicitation strategies are
confronted with the same opponent behavior.

To implement our experimental setup, we assume the exis-
tence of ‘ground truth’ utility functions φ and ψ, quantifying
the preferences for the agent, resp. opponent, and perform
simulations, based on the following assumptions:
• the answer to a query (u, v) is generated in accordance

with the utility φ, by comparing φ(u) with φ(v);
• upon receiving an offer x, the opponent either accepts

it, with a probability proportional to ψ(x), or negotiates
the offer, by making a random counter-offer z, satisfying
ψ(x) < ψ(z), with probability proportional to ψ(z), i.e.

P{counter-offer = z|offer = x} =
ψ(z) 1{x ≺ z}∑
s ψ(s) 1{x ≺ s} ,

where ≺ denotes the opponent’s preference ordering.
Remark: The functions φ and ψ satisfy the equation

f(x) = 1 +
∑
z 6=x

1{f(z) < f(x)}+
1

2

∑
z 6=x

1{f(x) = f(z)};

that is, both can be recovered from a full set of ordinal data.
For the ‘random’ strategy, we use a parameter p ∈ (0, 1)

formalizing the probability of making a new query. The agent
generates an elicitation cycle, as follows: at each step decides
with probability p to make a new (relevant) query and with
probability (1−p) to stop elicitation and take the best negoti-
ation action (12) based on the current belief; should it decide
to elicit more information, it will randomly select a new query
from the remaining relevant ones.

Remark: While myopic elicitation (described in Section 5)
is, essentially, an ‘exploitation’ strategy, random elicitation
can be regarded as a fully ‘exploration’ strategy.

x 0 1 2 3 4 5 6 7 8 9

φ(x) 1 2.5 4 9 7 6 8 10 5 2.5

ψ(x) 1 2 4 6 8 10 9 7 5 3

Table 1: Ground truth utility functions

Finally, we assume that all queries are equally costly, with
each query inducing a discount γ ∈ (0, 1] on the final reward
and we compare the two strategies with respect to the ‘true’
expected reward (discounted by the total elicitation costs);
that is, for each of the two scenarios we calculate the ex-
pected discounted (true) utility E[γνφ(ω)] obtained by the
agent, where ω denotes the negotiation outcome, ν denotes
the total number of queries made during the negotiation pro-
cess and the expectation accounts for the random opponent
actions (and for the randomly generated elicitation cycles).

7 Tables and Numerical Results
For our experiments, we choose a negotiation space consist-
ing of 10 items/options, labeled 0, 1, . . . , 9 and use the ordinal
utility functions φ (for the user) and ψ (for the opponent) dis-
played in Table 1. The agent starts the negotiation, having the
outside option y = 0 and ‘flat’ utility beliefs over both utility
functions, i.e. GP’s with µ,η = 0. In addition, we assume
a distance-based correlation structure k(x, z) = κ(|x − z|),
with κ(0) = 0.5, κ(1) = 0.3, κ(2) = 0.2, κ(3) = 0.1 and
κ = 0 otherwise; that is, closer items are stronger (positively)
correlated. Such a model is appropriate for negotiations over
items which can be organized in a spectrum, e.g. colors.

Our numerical experiments are summarized in Table 2, il-
lustrating the dependence, w.r.t. the query cost-factor γ, of
the (expected) discounted utility “Util” and the number of
queries “Que”, for both the myopic and random elicitation ap-
proaches, based on averages over 100 (myopic), respectively
400 (random), simulations of the negotiation process.

We note that the myopic approach clearly outperforms the
random one in terms of discounted expected utility, scoring
higher for any cost-factor γ. A graphical head-to-head com-
parison of the two strategies is provided in Figure 4.

Remark: The number of simulation runs based on which
the metrics of interest are calculated does only influence the
accuracy (variance) of the estimates in Table 2; thus the dif-
ferent numbers of simulation runs for the two approaches do
not induce any bias in the above head-to-head comparison.

In the myopic approach, both the expected discounted util-
ity and the query number are increasing in the cost-factor γ,
as expected, reaching the maximal values of 7.66, resp. 10.03,
in the cost-free scenario γ = 1; see Figure 3. The intuition is
that, as the elicitation cost decreases (γ increases), the agent
will elicit (on average) more information at the same costs,
learning more accurately the user’s preferences, which will
result in better negotiation outcomes. On the other hand, in
the random approach, the discounted utility is still monotone,
but the number of queries is (roughly) constant since, in this
case, the elicitation strategy does not account for the cost-
factor γ (but only on p), whereas the discount (still) does.
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γ 97.0 97.5 98.0 98.5 99.0 99.5 100.0

Util 6.54 6.57 6.89 6.98 7.26 7.30 7.66

Que 1.82 2.38 4.27 4.60 6.35 8.26 10.03

Util 3.97 4.03 4.22 4.28 4.33 4.76 4.80

Que 4.39 4.62 4.20 4.40 4.72 4.12 4.10

Table 2: Summary of simulation results for the myopic (top rows)
and random (bottom rows) elicitation strategies, for various γ’s.
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Figure 3: The expected number of queries (top), resp. the discounted
utility (bottom) plotted with respect to the cost-factor γ (expressed
as percentage). Dashed lines represent relevant performance levels.

Finally, note that, with complete knowledge of both user’s
and opponent’s utilities, the myopic action for the agent is to
make offer 6, maximizing R(x|0) = φ(x)ψ(x)/10. Since
ψ(6) = 9, the opponent will accept it (with probability 0.9)
or will propose item 5, since ψ(5) = 10. The myopic action
for the agent is again 6 (which brings an immediate expected
reward R(6|5) = 7.2 > 6 = φ(5) and the agent, resp. the
opponent, will keep repeating offers 6, resp. 5, until the op-
ponent accepts item 6; this will happen quite fast, after an
expected number of 1/9 iterations. Therefore, under com-
plete knowledge of φ and ψ, following the myopic negotia-
tion strategy, the agent obtains (with probability 1) an agree-
ment over item 6, having the utility value φ(6) = 8, which is
an upper bound on what it can achieve using the myopic ne-
gotiation strategy. The outcome 6 coincides, in this case, with
the maximizer of the ‘combined’ utility φ · ψ, which has the
following interpretation: it is the outcome which maximizes
the number of pairs of negotiation outcomes which are simul-
taneously not better for the user and opponent, respectively.

Remark: The gap between the cost-free expected utility
7.66 (obtained for γ = 1) and the upper limit 8 is motivated
by the lack of information about the opponent’s preferences.
Indeed, although the agent can make an unlimited number
of cost-free queries, presumably learning the exact user util-
ity function, the lack of information on the opponent’s utility
function could end up in having sub-optimal offers accepted
by the opponent, thus resulting in a lower (expected) utility.

-

6

100 99.5 99.0 98.5 98.0 97.5 97.0 96.5

4
5
6

8• • • • • • • •
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Figure 4: The expected discounted utility for the myopic strategy (•)
vs. random strategy (∗). Dashed lines indicate relevant utility levels.

8 Conclusion and Future Research Directions
In this paper, we consider an agent negotiating on behalf of
a user, using a GP-based adaptive model to formalize the un-
certain information on both the user and the opponent’s pref-
erences. We formulate a myopically optimal elicitation algo-
rithm that computes the best query to pose to the user in or-
der to achieve a good negotiation outcome while minimizing
elicitation costs. Through numerical experiments we find that
our myopic elicitation strategy performs clearly better than a
baseline strategy which randomly decides to pose queries.

Our algorithm performs a one-step look-ahead search to
decide on the next negotiation action. Going beyond the my-
opic approach would require a more demanding optimization
process, but also a more complex modeling paradigm, which,
in order to account for the opponent’s future actions, requires
more than an acceptance probability (predictive) model.

While, for illustrative purposes, our numerical experiments
are performed on a one-dimensional negotiation space with
merely 10 items, our approach carries over to far more com-
plex negotiation spaces. In terms of complexity, computation
of (expected) utility is quadratic and is required after each
belief update. For a more efficient approach, the computation
can be formalized as a matrix-vector multiplication, for which
parallelization methods offer attractive alternatives. Further-
more, our GP-based utility model can be adapted to multi-
issue negotiation spaces, where monotonicity properties and
various types of dependency between the issues and attributes
(which typically reduce computational complexity) can be in-
cluded through appropriate tuning of the covariance function.

Given our elicitation model of preference judgments, the
queries are homogeneous (in type and cost structure). How-
ever, our model admits generalizations to different types of
queries, with type and/or timing dependent costs.

Based on the above considerations, we are confident that
the modelling paradigm proposed in this paper opens up a
wide range of promising avenues for extending our approach
to more complex (automated) negotiation frameworks char-
acterized by (user) preference uncertainty.
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