28,030 research outputs found

    On the optimal feedback control of linear quantum systems in the presence of thermal noise

    Full text link
    We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to non-classical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general analytical upper bounds for the single mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.Comment: 10 pages, 2 figures. v2: minor changes to the letter; better explanation of the necessary and sufficient conditions to achieve the bounds (in the supplemental material); v3: title changed; comparison between optimal general-dyne strategy and homodyne strategy is discussed; supplemental material included in the manuscript and few references added. v4: published versio

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Data-driven Efficient Solvers and Predictions of Conformational Transitions for Langevin Dynamics on Manifold in High Dimensions

    Full text link
    We work on dynamic problems with collected data {xi}\{\mathsf{x}_i\} that distributed on a manifold MRp\mathcal{M}\subset\mathbb{R}^p. Through the diffusion map, we first learn the reaction coordinates {yi}N\{\mathsf{y}_i\}\subset \mathcal{N} where N\mathcal{N} is a manifold isometrically embedded into an Euclidean space R\mathbb{R}^\ell for p\ell \ll p. The reaction coordinates enable us to obtain an efficient approximation for the dynamics described by a Fokker-Planck equation on the manifold N\mathcal{N}. By using the reaction coordinates, we propose an implementable, unconditionally stable, data-driven upwind scheme which automatically incorporates the manifold structure of N\mathcal{N}. Furthermore, we provide a weighted L2L^2 convergence analysis of the upwind scheme to the Fokker-Planck equation. The proposed upwind scheme leads to a Markov chain with transition probability between the nearest neighbor points. We can benefit from such property to directly conduct manifold-related computations such as finding the optimal coarse-grained network and the minimal energy path that represents chemical reactions or conformational changes. To establish the Fokker-Planck equation, we need to acquire information about the equilibrium potential of the physical system on N\mathcal{N}. Hence, we apply a Gaussian Process regression algorithm to generate equilibrium potential for a new physical system with new parameters. Combining with the proposed upwind scheme, we can calculate the trajectory of the Fokker-Planck equation on N\mathcal{N} based on the generated equilibrium potential. Finally, we develop an algorithm to pullback the trajectory to the original high dimensional space as a generative data for the new physical system.Comment: 59 pages, 16 figure

    Restart could optimize the probability of success in a Bernoulli trial

    Full text link
    Recently noticed ability of restart to reduce the expected completion time of first-passage processes allows appealing opportunities for performance improvement in a variety of settings. However, complex stochastic processes often exhibit several possible scenarios of completion which are not equally desirable in terms of efficiency. Here we show that restart may have profound consequences on the splitting probabilities of a Bernoulli-like first-passage process, i.e. of a process which can end with one of two outcomes. Particularly intriguing in this respect is the class of problems where a carefully adjusted restart mechanism maximizes probability that the process will complete in a desired way. We reveal the universal aspects of this kind of optimal behaviour by applying the general approach recently proposed for the problem of first-passage under restart.Comment: 6 pages and 3 figures in the main text + 4 pages of supplementary informatio

    Degree Variance and Emotional Strategies Catalyze Cooperation in Dynamic Signed Networks

    Get PDF
    We study the problem of the emergence of cooperation in dynamic signed networks where agent strategies coevolve with relational signs and network topology. Running simulations based on an agent-based model, we compare results obtained in a regular lattice initialization with those obtained on a comparable random network initialization. We show that the increased degree heterogeneity at the outset enlarges the parametric conditions in which cooperation survives in the long run. Furthermore, we show how the presence of sign-dependent emotional strategies catalyze the evolution of cooperation with both network topology initializations.Comment: 16 Pages, Proceeding of the European Conference on Modelling and Simumatio

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3,4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Volatility Forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly.

    Classical Robustness of Quantum Unravellings

    Full text link
    We introduce three measures which quantify the degree to which quantum systems possess the robustness exhibited by classical systems when subjected to continuous observation. Using these we show that for a fixed environmental interaction the level of robustness depends on the measurement strategy, or unravelling, and that no single strategy is maximally robust in all ways.Comment: 8 Pages, 2 figures, Version 2. Minor changes to wording for clarification and some references added. Accepted for publication in Europhysics Letter
    corecore