12 research outputs found

    3D-2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization

    Get PDF
    A 3D-2D dimension reduction for a nonlinear optimal design problem with a perimeter penalization is performed in the realm of Γ\Gamma-convergence, providing an integral representation for the limit functional.Comment: to appear on Comptes Rendus Mathematiqu

    A variational method for second order shape derivatives

    Full text link
    We consider shape functionals obtained as minima on Sobolev spaces of classical integrals having smooth and convex densities, under mixed Dirichlet-Neumann boundary conditions. We propose a new approach for the computation of the second order shape derivative of such functionals, yielding a general existence and representation theorem. In particular, we consider the p-torsional rigidity functional for p grater than or equal to 2.Comment: Submitted paper. 29 page

    New Directions in Geometric and Applied Knot Theory

    Get PDF
    The aim of this book is to present recent results in both theoretical and applied knot theory—which are at the same time stimulating for leading researchers in the field as well as accessible to non-experts. The book comprises recent research results while covering a wide range of different sub-disciplines, such as the young field of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore