56 research outputs found

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Scalable Coordinated Beamforming for Dense Wireless Cooperative Networks

    Full text link
    To meet the ever growing demand for both high throughput and uniform coverage in future wireless networks, dense network deployment will be ubiquitous, for which co- operation among the access points is critical. Considering the computational complexity of designing coordinated beamformers for dense networks, low-complexity and suboptimal precoding strategies are often adopted. However, it is not clear how much performance loss will be caused. To enable optimal coordinated beamforming, in this paper, we propose a framework to design a scalable beamforming algorithm based on the alternative direction method of multipliers (ADMM) method. Specifically, we first propose to apply the matrix stuffing technique to transform the original optimization problem to an equivalent ADMM-compliant problem, which is much more efficient than the widely-used modeling framework CVX. We will then propose to use the ADMM algorithm, a.k.a. the operator splitting method, to solve the transformed ADMM-compliant problem efficiently. In particular, the subproblems of the ADMM algorithm at each iteration can be solved with closed-forms and in parallel. Simulation results show that the proposed techniques can result in significant computational efficiency compared to the state- of-the-art interior-point solvers. Furthermore, the simulation results demonstrate that the optimal coordinated beamforming can significantly improve the system performance compared to sub-optimal zero forcing beamforming

    Latency reduction by dynamic channel estimator selection in C-RAN networks using fuzzy logic

    Get PDF
    Due to a dramatic increase in the number of mobile users, operators are forced to expand their networks accordingly. Cloud Radio Access Network (C-RAN) was introduced to tackle the problems of the current generation of mobile networks and to support future 5G networks. However, many challenges have arisen through the centralised structure of C-RAN. The accuracy of the channel state information acquisition in the C-RAN for large numbers of remote radio heads and user equipment is one of the main challenges in this architecture. In order to minimize the time required to acquire the channel information in C-RAN and to reduce the end-to-end latency, in this paper a dynamic channel estimator selection algorithm is proposed. The idea is to assign different channel estimation algorithms to the users of mobile networks based on their link status (particularly the SNR threshold). For the purpose of automatic and adaptive selection to channel estimators, a fuzzy logic algorithm is employed as a decision maker to select the best SNR threshold by utilising the bit error rate measurements. The results demonstrate a reduction in the estimation time with low loss in data throughput. It is also observed that the outcome of the proposed algorithm increases at high SNR values

    A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks

    Get PDF
    The diverse service requirements coming with the advent of sophisticated applications as well as a large number of connected devices demand for revolutionary changes in the traditional distributed radio access network (RAN). To this end, Cloud-RAN (CRAN) is considered as an important paradigm to enhance the performance of the upcoming fifth generation (5G) and beyond wireless networks in terms of capacity, latency, and connectivity to a large number of devices. Out of several potential enablers, efficient resource allocation can mitigate various challenges related to user assignment, power allocation, and spectrum management in a CRAN, and is the focus of this paper. Herein, we provide a comprehensive review of resource allocation schemes in a CRAN along with a detailed optimization taxonomy on various aspects of resource allocation. More importantly, we identity and discuss the key elements for efficient resource allocation and management in CRAN, namely: user assignment, remote radio heads (RRH) selection, throughput maximization, spectrum management, network utility, and power allocation. Furthermore, we present emerging use-cases including heterogeneous CRAN, millimeter-wave CRAN, virtualized CRAN, Non- Orthogonal Multiple Access (NoMA)-based CRAN and fullduplex enabled CRAN to illustrate how their performance can be enhanced by adopting CRAN technology. We then classify and discuss objectives and constraints involved in CRAN-based 5G and beyond networks. Moreover, a detailed taxonomy of optimization methods and solution approaches with different objectives is presented and discussed. Finally, we conclude the paper with several open research issues and future directions

    A survey on hybrid beamforming techniques in 5G : architecture and system model perspectives

    Get PDF
    The increasing wireless data traffic demands have driven the need to explore suitable spectrum regions for meeting the projected requirements. In the light of this, millimeter wave (mmWave) communication has received considerable attention from the research community. Typically, in fifth generation (5G) wireless networks, mmWave massive multiple-input multiple-output (MIMO) communications is realized by the hybrid transceivers which combine high dimensional analog phase shifters and power amplifiers with lower-dimensional digital signal processing units. This hybrid beamforming design reduces the cost and power consumption which is aligned with an energy-efficient design vision of 5G. In this paper, we track the progress in hybrid beamforming for massive MIMO communications in the context of system models of the hybrid transceivers' structures, the digital and analog beamforming matrices with the possible antenna configuration scenarios and the hybrid beamforming in heterogeneous wireless networks. We extend the scope of the discussion by including resource management issues in hybrid beamforming. We explore the suitability of hybrid beamforming methods, both, existing and proposed till first quarter of 2017, and identify the exciting future challenges in this domain
    corecore