18 research outputs found

    Optimal Sobolev regularity for linear second-order divergence elliptic operators occurring in real-world problems

    Get PDF
    On bounded three-dimensional domains, we consider divergence-type operators including mixed homogeneous Dirichlet and Neumann boundary conditions and discontinuous coefficient functions. We develop a geometric framework in which it is possible to prove that the operator provides an isomorphism of suitable function spaces. In particular, in these spaces, the gradient of solutions turns out to be integrable with exponent larger than the space dimension three. Relevant examples from real-world applications are provided in great detail

    The 3D transient semiconductor equations with gradient-dependent and interfacial recombination

    Get PDF
    We establish the well-posedness of the transient van Roosbroeck system in three space dimensions under realistic assumptions on the data: non-smooth domains, discontinuous coefficient functions and mixed boundary conditions. Moreover, within this analysis, recombination terms may be concentrated on surfaces and interfaces and may not only depend on charge-carrier densities, but also on the electric field and currents. In particular, this includes Avalanche recombination. The proofs are based on recent abstract results on maximal parabolic and optimal elliptic regularity of divergence-form operators

    Analysis of improved Nernst--Planck--Poisson models of compressible isothermal electrolytes. Part I: Derivation of the model and survey of the results

    Get PDF
    We consider an improved Nernst--Planck--Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convection--diffusion--reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross--diffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper we establish the existence of a global--in--time weak solution for the full model, allowing for a general structure of the mobility tensor and for chemical reactions with highly non linear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time. With respect to our former study [DDGG16], we also essentially improve the a priori estimates, in particular concerning the relative chemical potentials

    Extrapolated elliptic regularity and application to the van Roosbroeck system of semiconductor equations

    Get PDF
    In this paper we present a general extrapolated elliptic regularity result for second order differential operators in divergence form on fractional Sobolev-type spaces of negative order Xs-1,qD(Ω) for s > 0 small, including mixed boundary conditions and with a fully nonsmooth geometry of Ω and the Dirichlet boundary part D. We expect the result to find applications in the analysis of nonlinear parabolic equations, in particular for quasilinear problems or when treating coupled systems of equations. To demonstrate the usefulness of our result, we give a new proof of local-in-time existence and uniqueness for the van Roosbroeck system for semiconductor devices which is much simpler than already established proofs
    corecore