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Extrapolated elliptic regularity and application to the van
Roosbroeck system of semiconductor equations

Hannes Meinlschmidt, Joachim Rehberg

Abstract

In this paper we present a general extrapolated elliptic regularity result for second order
differential operators in divergence form on fractional Sobolev-type spaces of negative order
Xs−1,q
D (Ω) for s > 0 small, including mixed boundary conditions and with a fully nonsmooth

geometry of Ω and the Dirichlet boundary part D. We expect the result to find applications in the
analysis of nonlinear parabolic equations, in particular for quasilinear problems or when treating
coupled systems of equations. To demonstrate the usefulness of our result, we give a new proof of
local-in-time existence and uniqueness for the van Roosbroeck system for semiconductor devices
which is much simpler than already established proofs.

1 Introduction

Let Ω ⊂ Rd be a bounded domain with nonsmooth boundary of which the set D is a subset. Let
further ρ be a bounded measurable uniformly-a.e. positive definite coefficient matrix defined on Ω,
and let −∇ · ρ∇ be the associated second-order differential operator in divergence form. One may
consider this operator as the principal part of a possibly more general linear differential operator.
Assume that for some q ∈ (1,∞) the following optimal elliptic regularity property holds true:

−∇ · ρ∇u ∈ W−1,q
D (Ω) =⇒ u ∈ W 1,q

D (Ω), (1.1)

where W−1,q
D (Ω) := (W 1,q′

D (Ω))?, the space of antilinear functionals on W 1,q′

D (Ω), and the subscript
D refers to zero boundary trace on D. Of course, the probably best known optimal elliptic regularity
result is the Hilbert space case q = 2 where (1.1) is always true under our assumptions on ρ if D is
sufficiently large such that 1 /∈ W 1,2

D (Ω). There are countless works extending this result also to (1.1)
for the integrability scale q > 2; we mention exemplarily [9, 22, 26, 27] where also mixed boundary
conditions and nonsmooth data Ω and ρ are treated. In this paper we establish an optimal elliptic
regularity result for a differentiability scale such as Hs−1,q

D (Ω) = (H1−s,q′
D (Ω))? starting from (1.1).

More precisely, we show that if (1.1) holds true for some q ∈ (1,∞) and if there is τ > 0 such
that each component ρij of the coefficient matrix function is a multiplier on the Bessel potential space
Hτ,q
D (Ω), then there exists a number s̄ ∈ (0, τ ] such that

−∇ · ρ∇u ∈ Hs−1,q
D (Ω) =⇒ u ∈ H1+s,q

D (Ω) (1.2)

for s ∈ (−s̄, s̄). (We give precise definitions of function spaces and assumptions in Section 2 be-
low.) The result is obtained from (1.1) by an extrapolation technique: We establish that W 1,q

D (Ω) and
W−1,q
D (Ω) are “interior points” in the interpolation scale of Bessel potential spaces and the dual scale,

and that−∇ · ρ∇ is compatible with that scale. Then the Sneiberg extrapolation theorem ([56]) gives
the result. This is what is meant by the titular extrapolated elliptic regularity. We remark that (1.1) is
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H. Meinlschmidt, J. Rehberg 2

already nontrivial to have, in particular if q is not around 2. The extrapolation technique and recent
interpolation results also allow to obtain (1.2) for the Slobodetskii scale W 1+s,q

D (Ω) and W s−1,q
D (Ω)

as a byproduct. Moreover, we in fact establish (1.2) not only for pure second-order operators but also
for such including lower order terms and in particular boundary forms arising from Robin boundary
conditions. Thanks to a quantitative version of the Sneiberg theorem which was recently established
in [3], we can also provide property (1.2) and bounds on the inverse operators uniform in the given
data. Such uniform results are extremely useful in the treatment of nonautonomous or even quasilinear
evolution equations, cf. [41,47,48].

Note that while inferring (1.2) from (1.1) may feel like an “expected” result, the necessary groundwork
behind the reasoning is highly nontrivial since we suppose essentially no smoothness in the data at all.
This is in particular the case since (1.2) for q > d (ambient space dimension) is of elevated interest
to us for conceptual reasons in the treatment of abstract nonlinear evolution equations. Let us take
this for granted at the moment; we explain it in detail in the next subsection of this introduction. It is
known since the sixties that in the present case of nonsmooth data, one in general cannot expect q in
the assumed (1.1) to be larger than a prescribed number q̄ > 2, see for example [17,42,52]. (Due to
Sobolev embeddings, the size of s in (1.2) is thus also limited in the general case.) This makes already
the assumption (1.1) sensible for q > d = 3. In fact, to the best of the authors’ knowledge, the only
comparable results for (1.2) which include mixed boundary conditions and nonsmooth data are [30],
for a relatively restricted geometry, and [27], with very general geometry. Both works are limited to q
close to 2 in (1.2), starting from the Lax Milgram result. Another conceptual obstacle is the availability
of a suitable interpolation theory framework for Hσ,q

D (Ω) spaces also for q 6= 2. Fortunately, both
issues have been resolved recently:

(i) In [12], the authors collect a rich setting of geometric constellations for Ω, D and the coefficient
functions ρ under which (1.1) is satisfied for q > d = 3. This includes a wide array of quite
nonsmooth situations occurring in real-world problems.

(ii) In their seminal paper [6], Bechtel and Egert establish a comprehensive interpolation theory for
the Bessel potential (and Sobolev Slobodetskii) scale in an extremely general geometric setup.
Their work extends previously known results under similar geometric assumptions in [16] for the
Hilbert scale corresponding to q = 2. (In fact, these older results were used in [27].)

We explicitly point out that both works are highly nontrivial and in turn rest on other difficult results.
(See [12, Introduction] for more background.) Let us also note that already (1.1) for q > d itself has
turned out to be an extremely valuable and well suited—one might even say, indispensable—property
in the treatment of nonlinear and/or coupled systems of evolution equations with highly nonsmooth
data arising in real-life problems, see e.g. [13, 29, 39, 40]. We next motivate why we need also the
optimal regularity result (1.2) for q > d in the fractional Sobolev scales.

Motivation and real-world example: semiconductor equations

One of the main areas where optimal elliptic regularity results like (1.2) are needed is the analysis
of nonlinear evolution equations. We give a real-world example in Section 4 below by considering the
van Roosbroeck system of semiconductor equations, but we expect many more applications to be sus-
ceptible to similar reasoning. For now, consider for example the following abstract Fokker-Planck type
evolution equation posed in some Banach space X over some time interval J as a model problem:

∂tu−∇ · µ∇u = ∇ · uµ∇
(
−∇ · ρ∇

)−1
f + |∇u|2 + g in X, (1.3)
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Extrapolated elliptic regularity 3

where µ is another matrix coefficient function of the same quality as ρ, while f and g are appro-
priate data, the latter e.g. coming from inhomogeneous Neumann boundary conditions. Such model
equations are related to the viscous Hamilton-Jacobi equation or the deterministic KPZ equation; we
exemplarily refer to [8,21,46]. One may imagine having obtained this abstract equation from eliminat-
ing the second equation in the abstract system

∂tu−∇ · µ∇u−∇ · uµ∇w = |∇u|2 + g,

−∇ · ρ∇w = f.

It turns out that in this situation, in order to deal with the quadratic nonlinearity in (1.3) in the framework
of classical theory for semilinear equations ([45, Ch. 6]), X should be chosen an as interpolation
space of the form [Lq(Ω),W−1,q

D (Ω)]1−s with parameters q > d and s ∈ (0, 1 − d
q
); this was

observed in [25, Sect. 6], see also [13, Sect. 4.1]. We fix X to be such a space for the following.
Note thatX = [Lq(Ω),W−1,q

D (Ω)]1−s can indeed be identified with the (dual) Bessel potential space
Hs−1,q
D (Ω) under very mild assumptions on Ω and the geometry of D. We also mention that dealing

with the quadratic nonlinearity in (1.3) does not require explicit knowledge of the domains of the
elliptic operators inX . This however changes when we consider the drift term for u where we assume
that f is in general not more regular than generic elements of Hs−1,q

D (Ω)—e.g. also arising from
inhomogeneous Neumann boundary conditions—, because then we further have to assure that the
operators ∇ · uµ∇(−∇ · ρ∇)−1 in (1.5) are bounded ones when considered on X in order to
obtain a self-consistent abstract formulation. More precisely the domain of −∇ · ρ∇ in X must be
continuously embedded into the domain of ∇ · u(t)µ∇ in X for t ∈ J . The optimal case and thus
the natural candidate for the domain of definition for these elliptic operators in X = Hs−1,q

D (Ω) is
the space H1+s,q

D (Ω), cf. e.g. [58, Ch. 5.7.1]. While the actual domains of the operators ∇ · u(t)ρ∇
in X will in general not coincide with H1+s,q

D (Ω) and vary with t without further assumptions, one
easily observes that H1+s,q

D (Ω) is indeed the largest space which will embed continuously into every
such t-dependent domain. Thus, in general, ∇ · uµ∇(−∇ · ρ∇)−1 will be bounded on X exactly
when the optimal elliptic regularity result (1.2) holds true. In that sense, wellposedness of the reduced
problem (1.3) boils down exactly to the availability of the optimal regularity property (1.2) for q > d.

In the second part of the paper, we rigorously follow the above roadmap and prove local-in-time
existence and uniqueness for the van Roosbroeck system for semiconductor devices using the ex-
trapolated elliptic regularity result. The van Roosbroeck system describes the evolution of the triple
(u1, u2, ϕ) of unknowns—representing electron- and hole densities and electrostatic potential—during
the (finite) time interval J = (0, T ) by the following system of coupled equations, consisting of the
Poisson equation

− div (ε∇ϕ) = d + u1 − u2 in J × Ω,

ϕ = ϕD on J ×D,
ν · (ε∇ϕ) + εΓϕ = ϕΓ on J × Γ,

(1.4a)

so a quasi-static elliptic equation with inhomogeneous Dirichlet and Robin boundary data, and, for
k = 1, 2, the current-continuity equations

∂tuk − div jk = rΩ(u, ϕ) in J × (Ω \ Π)

uk = Uk on J ×D,
ν · jk = rΓ(u, ϕ) on J × Γ,

[ν · jk] = rΠ(u, ϕ) on J × Π,

uk(0) = u0
k on Ω,

(1.4b)
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with the currents

jk = µk
(
∇uk + (−1)kuk∇ϕ

)
. (1.4c)

The latter equations are nonlinear Fokker-Planck equations with inhomogenenous mixed boundary
conditions and a jump condition along a surface Π ⊂ Ω. Here, Ω ⊂ R3 is a bounded domain rep-
resenting a semiconductor device, ν its unit outer normal at ∂Ω and the latter is decomposed into a
Dirichlet part D and a Neumann/Robin part Γ := ∂Ω \D. We pose only very low regularity assump-
tions on the geometry of D,Γ and Π which will cover nearly all practical situations arising in realistic
devices. This is made more precise in Section 4 below, where the model and the involved quanti-
ties are also explained in detail. We refer to the introduction of [13] for a comprehensive collection
of related literature. In fact, the van Roosbroeck system (1.4) was treated under similar assumptions
recently in [13]; however, the analysis there is quite involved since the system need be reformulated
“globally” in the quasi Fermi levels. We are able to provide a much simpler treatment basing on the
extrapolated elliptic regularity result (1.2) by solving (1.4a) for ϕ in dependence of u and inserting this
dependence into (1.4b), thereby reducing the current-continuity equations to equations in u alone. Let
us explain the principal idea and its connection to the above.

Suppose that we have formally solved (1.4a) for ϕ in dependence of u and consider the (reduced)
recombination functions u 7→ (rΩ, rΓ, rΠ)(u, ϕ(u)) in (1.4b). Then an abstract reduced formulation
of (1.4b) would be

∂tu−∇ · µ∇u = ∇ · uµ∇
(
−∇ · ε∇+ tr∗Γ εΓ trΓ

)−1
(d + u+ tr∗Γ ϕΓ) + f(u) (1.5)

where the nonlinearity f represents the reduced recombination functions, trΓ is the trace operator onto
Γ, and we have ignored the multiple components of u and the Dirichlet boundary data in the equations
for the sake of exposition at this point. This equation is of the same type as the model problem (1.3).
In fact, it turns out that the commonly used Avalanche generation model for rΩ contained in f in (1.5)
in a sense behaves quite similarly to the quadratic gradient nonlinearity in (1.5), see Remark 4.7, and
all the arguments from the above motivation apply. In the case of (1.4), we indeed need property (1.2)
also for the second order operator including the boundary form tr∗Γ εΓ trΓ corresponding to the Robin
boundary conditions.

Outline

The first part of this work first establishes the necessary groundwork for all of the following in Section 2.
We prove the extrapolated elliptic regularity result in full generality with lower order terms together with
the necessary preparations as announced in the introduction in Section 3 (Theorem 3.9). In the second
part, Section 4, the elliptic regularity results are then put to work for providing a proof of (local-in-time)
existence and uniqueness of solutions to the Van Roosbroeck system (1.4) which is considerably
easier than having to deal with one big macroscopic standard model for the electron/hole flux within
the semiconductor as done in [13] (Theorem 4.17). We restrict ourselves to Boltzmann statistics. This
is done only for technical simplicity, since already here all crucial effects which we want to make visible
are already present. We note that one can carry out an analogous program for the quasilinear system
arising in case of Fermi-Dirac statistics, see Remark 4.18.
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2 Preliminaries

All notation used in this paper is considered as standard or self-explanatory by the authors. Up to
Section 4, where we treat the van Rooesbroeck system (1.4), we consider a general space dimension
d ≥ 2. Starting from Section 4, we fix d = 3.

2.1 Assumptions

We pose the following general assumptions on the underlying spatial domain Ω ⊆ Rd and its bound-
ary part D ⊆ ∂Ω. They are supposed to hold true from now on for the rest of this work. We recall the
following notion, refering to e.g. [31]:

Definition 2.1 (Regular set). Let 0 < N ≤ d. The set Λ ⊆ Rd is called N -set or N -regular, if there
exist constants 0 < c ≤ C such that

crN ≤ HN(Br(x) ∩ Λ) ≤ CrN (x ∈ Λ, r ∈ (0, 1]). (2.1)

Remark 2.2. ForN = d, the upper estimate requirement in (2.1) is trivial. Thus, the interior thickness
condition, so that there exists γ > 0 such that

|Br(x) ∩ Λ| ≥ γ|Br(x)| (x ∈ Λ, r ∈ (0, 1]), (ICT)

becomes a sufficient condition for Λ to be d-regular. In fact, the interior thickness condition (ICT) can
equivalently be required only for x ∈ ∂Λ ([5, Lem. 3.2]). In the latter form, the property is also called
d-thick by some authors, see e.g. [9]. There will be yet another thickness assumption for the treatment
of the semiconductor equations in Assumption 4.1.

Assumption 2.3 (Geometry). The set Ω ⊂ Rd is a bounded domain satisfying the interior thickness
condition (ICT). (Equivalently: Ω is a d-set.) Moreover, the boundary ∂Ω has the following properties:

(i) D ⊆ ∂Ω is a closed (d− 1)-set.

(ii) There are Lipschitz coordinate charts available around ∂Ω \D, that is, for every x ∈ ∂Ω \D,
there is an open neighborhood U of x and a bi-Lipschitz mapping φx : U → (−1, 1)d such that
φx(x) = 0 and φx(U ∩ Ω) = (−1, 0)× (−1, 1)d−1.

Remark 2.4. From (d − 1)-regularity of D and the Lipschitz charts for ∂Ω \D we obtain that the
whole boundary ∂Ω is also a (d− 1)-set. See [6, Ex. 2.4/2.5].

2.2 Function spaces

For s ∈ R and p ∈ (1,∞), let Hs,p(Rd) denote the Bessel potential spaces. We mention that
H−s,p

′
(Rd) = Hs,p(Rd)?. We further note that for k ∈ N0, the classical Sobolev space of kth order

W k,p(Rd) coincides with Hk,p(Rd) up to equivalent norms. See e.g. [58, Ch. 2.3.3&2.6.1].

Definition 2.5 (Sobolev-Slobodetskii spaces). Let p ∈ (1,∞) and s > 0 not an integer. Write
s = k + σ with k ∈ N0 and σ ∈ (0, 1). Then the space W s,p(Rd) is given by the normed vector
space of functions u ∈ Lp(Rd) for which

‖u‖W s,p(Rd) := ‖u‖Wk,p(Rd) +

(
d∑
i=1

∫∫
Rd×Rd

|∂ki u(x)− ∂ki u(y)|p

|x− y|d+σp
dx dy

)1/p

<∞.
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Moreover, we define W−s,p′(Rd) := W s,p(Rd)?, the space of antilinear continuous functionals on
W s,p(Rd).

Let X ∈ {H,W} for the remainder of this section. We next turn to traces.

Proposition 2.6 ([31, Thms. VI.1&VII.1]). Let E ⊂ Rd be a (d − 1)-set and let s ∈ (1
p
, 1 + 1

p
) with

p ∈ (1,∞). Then the trace operator trE defined by

(trE u)(x) := lim
r↘0

1

|Br(x)|

∫
Br(x)

u (x ∈ E)

maps Xs,p(Rd) continuously into Lp(E;Hd−1).

Definition 2.7 (Function spaces with zero trace). LetE ⊂ Rd be a (d−1)-set and let s ∈ (1
p
, 1+ 1

p
)

with p ∈ (1,∞). Then we define Xs,p
E (Rn) := ker trE in Xs,p(Rn).

The versions of the spaces Xs,p and Xs,p
E on Ω are defined as quotient spaces corresponding to

restriction to Ω of their Rd versions as follows:

Definition 2.8 (Function spaces on Ω). Let p ∈ (1,∞) and s > 0.

(i) We define Xs,p(Ω) to be the factor space of restrictions to Ω of Xs,p(Rd), equipped with the
natural quotient norm. Moreover, X−s,p

′
(Ω) := Xs,p(Ω)?.

(ii) Let now s ∈ (1
p
, 1 + 1

p
) and let E ⊆ Ω be a (d− 1)-set. Then, as before, we define Xs,p

E (Ω)

to be the factor space of restrictions to Ω ofXs,p
E (Rd), equipped with the natural quotient norm.

Moreover, X−s,p
′

E (Ω) := Xs,p
E (Ω)?.

Remark 2.9. The definition of the spaces Xs,p(Ω) as factor spaces of restrictions implies that these
spaces inherit the usual Sobolev-type embeddings between them from their full-space analogues.

Remark 2.10. Let s ∈ (0, 1). Then it is well known that since Ω satisfies (ICT), the factor space
W s,p(Ω) agrees with the space W s,p

∗ (Ω) defined intrinsically by the set of all functions u ∈ Lp(Ω)
such that

‖u‖W s,p
∗ (Ω) := ‖u‖Lp(Ω) +

(∫∫
Ω×Ω

|u(x)− u(y)|p

|x− y|d+sp
dx dy

)1/p

<∞

up to equivalent norms. (See [31, Thm. V.1]). Moreover, very recently it was shown in [5] that if E ⊆
∂Ω is (d − 1)-regular and Ω satisfies the interior thickness condition (ICT) for x ∈ ∂Ω \ E, then
W s,p
E (Ω) coincides with the intrinsically givenW s,p

∗ (Ω)∩Lp(Ω, dist−spE ), also up to equivalent norms.

We next quote interpolation results from [6] for symmetric interpolation where both involved spaces
carry partially vanishing trace. This result and its dual variant below will be used for the extrapolated
elliptic regularity result in Section 3.

Proposition 2.11 (Interpolation [6, Thm. 1.2]). Let pi ∈ (1,∞) and si ∈ ( 1
pi
, 1 + 1

pi
) for i = 1, 2.

Set 1
pθ

= 1−θ
p0

+ θ
p1

and sθ = (1 − θ)s0 + θs1. Let further E ⊆ Ω be a (d − 1)-set. Then, up to
equivalent norms, we have [

Xs0,p0

E (Ω), Xs1,p1

E (Ω)
]
θ

= Xsθ,pθ
E (Ω) (2.2)

and (
Xs0,p0

E (Ω), Xs1,p1

E (Ω)
)
θ,pθ

= W sθ,pθ
E (Ω), (2.3)

with the following exceptions: if sθ = 1 in (2.3), then we must already have s0 = s1 = 1; moreover,
X = W is permitted in (2.2) only if either all or none of s0, s1, sθ are 1.

DOI 10.20347/WIAS.PREPRINT.2705 Berlin 2020
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Corollary 2.12. Adopt the assumptions of Proposition 2.11. Then, up to equivalent norms, we have[
X−s0,p0

E (Ω), X−s1,p1

E (Ω)
]
θ

= X−sθ,pθE (Ω)

and (
X−s0,p0

E (Ω), X−s1,p1

E (Ω)
)
θ,pθ

= W−sθ,pθ
E (Ω),

with the exceptions as in Proposition 2.11.

Proof. The assertions follow from the corresponding ones in Proposition 2.11 by general duality prop-
erties of the interpolation functors, see e.g. [58, Ch. 1.11.3]. Before we validate the assumptions there,
let us note that the present corollary is an assertion about anti-dual spaces, whereas the cited result is
about ordinary dual spaces. However, we can recover the anti-dual case from the dual one by means
of the retraction-coretraction theorem ([58, Ch. 1.2.4]) using the mapping ψ 7→ [f 7→ 〈ψ, f〉] both as
the retraction and coretraction between anti-dual and dual space.

Now let us turn to the assumptions in [58, Ch. 1.11.3]: First, Xs0,p0

E (Ω) ∩ Xs1,p1

E (Ω) is dense in
Xsi,pi
E (Ω) for i = 1, 2. This can be seen as follows: For all p ∈ (1,∞) and s ∈ (1

p
, 1+ 1

p
), the spaces

Xs,p
E (Rd) are complemented subspaces of Xs,p(Rd) by virtue of a (s, p)-uniform projection P as

shown in [6, Lem. 3.1]. ButXs0,p0(Rd)∩Xs1,p1(Rd) is dense inXsi,pi(Rd), hence P
(
Xs0,p0(Rd)∩

Xs1,p1(Rd)
)

= Xs0,p0

E (Rd)∩Xs1,p1

E (Rd) is dense in Xsi,pi
E (Rd). This then immediately transfers to

density of Xs0,p0

E (Ω) ∩Xs1,p1

E (Ω) in Xsi,pi
E (Ω).

Moreover, the spaces Xsi,pi
E (Ω) are reflexive: They are factor spaces of Xsi,pi

E (Rd) which are reflex-
ive because they are complemented subspaces of the reflexive spaces Xsi,pi(Rd) as already seen
above.

2.3 Operators

Finally, let us define the elliptic operators in divergence form and associated operators. We first estab-
lish the usual intrinsic norm onW 1,p

D (Ω), which so far only carries the abstract quotient norm inherited
from W 1,p

D (Rd). For E ⊂ Rd, let us define

C∞E (Rd) :=
{
f ∈ C∞c (Rd) : dist(supp f, E) > 0

}
, and C∞E (Ω) := C∞E (Rd)�Ω.

Lemma 2.13 ([6, Prop. B.3]). Let p ∈ (1,∞). Then

‖f‖∗W 1,p(Ω) :=
(
‖f‖pLp(Ω) + ‖∇f‖pLp(Ω)

) 1
p

is an equivalent, intrinsic norm on W 1,p
D (Ω). In fact, W 1,p

D (Ω) is the closure of C∞D (Ω) in this norm.

Definition 2.14 (Coefficient functions). Let 0 < ρ• ≤ ρ• be given. We define C(ρ•, ρ•) to be the set
of all measurable functions ρ : Ω→ Cd×d such that

Re ξHρ(x)ξ ≥ ρ•‖ξ‖2 and ‖ρ(x)‖L(Cd→Cd) ≤ ρ• hold true for almost all x ∈ Ω and all ξ ∈ Cd.

From now on, whenever we refer to C(a, b) we tacitly assume 0 < a ≤ b.

Definition 2.15 (Second-order elliptic operator in divergence form). Let ρ ∈ C(ρ•, ρ•). We define the
second-order operator −∇ · ρ∇ by〈

−∇ · ρ∇u, v
〉

:=

∫
Ω

ρ∇u · ∇v.
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By the assumption on ρ, it is clear that −∇ · ρ∇ ∈ L(W 1,p
D (Ω) → W−1,p

D (Ω)) for all p ∈ (1,∞),
with the operator norm bounded by ρ•.

Remark 2.16. (i) For p = 2, based on Lemma 2.13, the Lax-Milgram lemma implies that−∇·ρ∇
is continuously invertible whenever 1 /∈ W 1,2

D (Ω), and in this case the norm of the inverse is
bounded by ρ−1

• .

(ii) In connection with the previous point and the introduction with the elliptic regularity property (1.1),
let us point out that −∇ · ρ∇ will in general not be surjective as an operator W 1,p

D (Ω) →
W−1,p
D (Ω) for p 6= 2, even if 1 /∈ W 1,p

D (Ω). This is why often the maximal co-restriction to, say,
W−1,p
D (Ω) for p > 2 of −∇ · ρ∇ : W 1,2

D (Ω) → W−1,2
D (Ω) is considered, as an unbounded

operator in W−1,p
D (Ω). We will however not need this distinction for this work.

Definition 2.17 (First-order operators). Let β ∈ L∞(Ω;Cd). We define the first-order operators
−∇ · β and β · ∇ by

〈
−∇ · βu, v

〉
:=

∫
Ω

u β · ∇v and
〈
β · ∇u, v

〉
:=

∫
Ω

β · ∇u v.

The operators give rise to continuous linear operators W 1,p
D (Ω)→ W−1,p

D (Ω) for every p ∈ (1,∞).
This follows via Sobolev embedding.

We next introduce a suitable trace operator for functions in W s,p(Ω).

Lemma 2.18 ([9, Thm. 8.7 (iii)]). Let p ∈ (1,∞) and s ∈ (1
p
, 1 + 1

p
). Let E ⊆ Ω be a (d − 1)-set

and consider u ∈ W s,p(Ω). Then the inner trace i-trE u given by

(i-trE u)(x) := lim
r↘0

1

|Br(x) ∩ Ω|

∫
Br(x)∩Ω

u (x ∈ E)

is well defined and coincides with the trace of any W s,p(Rd)-extension of u, that is, i-trE u = trE û
for all û ∈ W s,p(Rd) such that û�Ω = u.

We refer to Remark 2.2 regarding the assumption d-thick in [9]. In view of the foregoing Lemma 2.18,
there will be no ambiguity if we use the notation trE also for the interior trace operator on W s,p(Ω).
We thus do so from now on.

Corollary 2.19. Let p ∈ (1,∞) and s > 1
p
. Let E ⊆ Ω be a (d− 1)-set.

1 Let sp < d and s + d−1
q

= d
p
. Then trE : W s,p(Ω) → Lr(E;Hd−1) is continuous for r = q

and even compact for r ∈ [1, q).

2 Let sp > d. Then trE : W s,p(Ω)→ L∞(E;Hd−1) is compact.

Proof. There is a continuous extension operatorW s,p(Ω)→ W s,p(Rd) by [31, Thm. VI.1] since Ω is
a d-set by assumption; cf. also Remark 2.10. It is sufficient to establish the claims for s ∈ (1

p
, 1 + 1

p
)

due to Sobolev embedding. Thus, we can rely on Lemma 2.18 to derive the desired properties from
the trace operator on the full space in this case.
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(i) It is sufficient to establish the continuity assertion for r = q. To this end, we combine [7,
Thm. 6.8] with [31, Thm. V.1] applied to E. This shows that trE : W s,p(Rd) → Lq(E;Hd−1)
is continuous. Regarding compactness, let us note that if r ∈ [1, q), then s+ d−1

r
> d

p
, hence

(d−1
r
− d

p
, s) 6= ∅. Choosing α from that interval, we haveW s,p(Rd) ↪→ Hα,p(Rd) by classical

embeddings. Now the proof of [7, Cor. 7.3] applies mutatis mutandis.

(ii) In this case, every function fromW s,p(Rd) admits a Hölder continuous bounded representative
by classical Sobolev embedding. The assertion follows from the Arzelà-Ascoli theorem.

With the foregoing Corollary 2.19, the following is well defined:

Definition 2.20. Let E ⊆ Ω be a (d− 1)-set and let % ∈ L∞(E;Hd−1). We define

〈
tr∗E % trE u, v

〉
:=

∫
E

% (trE u) (trE v) dHd−1.

The operators tr∗E % trE define continuous linear operators W 1,p
D (Ω) → W−1,p

D (Ω) for every p ∈
(1,∞).

We next put all the above defined operators to work for our main result.

3 Extrapolation of elliptic regularity

In this section, we establish the main result, Theorem 3.9. We first quote the Sneiberg theorem in a
quantitative version from [3, Appendix]. It is the abstract result which will allow us to extrapolate the
isomorphism property.

Theorem 3.1 (Quantitative Sneiberg). Let (X0, X1) and (Y0, Y1) be interpolation couples of Banach
spaces, and letA be a continuous linear operator satisfyingA ∈ L(X0 → Y0)∩L(X1 → Y1). Then
the set

I(A) :=
{
θ ∈ (0, 1) : A ∈ Liso

(
[X0, Y0]θ → [X1, Y1]θ

)}
is an open interval. In fact, suppose that θ̄ ∈ I(A) and consider κ > 0 such that

‖Ax‖[X1,Y1]θ̄
≥ κ‖x‖[X0,Y0]θ̄

for all x ∈ [X0, Y0]θ̄.

Then ∣∣θ − θ̄∣∣ ≤ κmax
(
θ̄, 1− θ̄

)
6κ+ 12 max

(
‖A‖L(X0;Y0), ‖A‖L(X1;Y1)

) (3.1)

implies that θ ∈ I(A) with ‖A−1‖[X1,Y1]θ→[X0,Y0]θ ≤ 8κ−1.

Of course, I(A) in Theorem 3.1 can be empty. Since the Slobotedskii scale is obtained by real interpo-
lation, see (2.3), we also give the following corollary to Theorem 3.1 considering the real interpolation
scale.
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Corollary 3.2. Adopt the setting of Theorem 3.1. Then

I(A) ⊆
{
θ ∈ (0, 1) : A ∈ Liso

(
(X0, Y0)θ,q → (X1, Y1)θ,q

)}
for all q ∈ [1,∞].

Proof. Let θ ∈ I(A). Since I(A) is open by Theorem 3.1, we can choose τ, σ ∈ I(A) and λ ∈
(0, 1) such that θ = (1− λ)τ + λσ. Then

A :
(
[X0, X1]τ , [X0, X1]σ

)
λ,q
→
(
[Y0, Y1]τ , [Y0, Y1]σ

)
λ,q

remains continuously invertible for all q ∈ [1,∞]. But, by re-iteration, the space on the left hand side
is (X0, X1)(1−λ)τ+λσ,q = (X0, X1)θ,q, and the one on the right hand side is (Y0, Y1)(1−λ)τ+λσ,q =
(Y0, Y1)θ,q, cf. [58, Thm. 1.10.3.2].

Our next intermediate goal is to extend the gradient ∇ : H1,p(Ω) → Lp(Ω)d continuously to a map-
ping H1−s,p(Ω) → H−s,p(Ω)d. This will then allow to also extend the elliptic operator −∇ · ρ∇,
cf. Lemma 3.7 below. To this end, we first quote the following result regarding continuity of the zero
extension in the low regularity regime. (See Remark 2.4 to validate its assumptions.)

Lemma 3.3 ([6, Cor. 2.18]). Let p ∈ (1,∞) and s ∈ [0, 1
p
). Then the zero extension

(E0f)(x) =

{
f(x) if x ∈ Ω,

0 otherwise

is a continuous linear operator E0 : Xs,p(Ω)→ Xs,p(Rd) for both X = H or W .

Lemma 3.4. Let p ∈ (1,∞) and s ∈ [0, 1
p
). Then C∞∂Ω(Ω) is dense in Hs,p(Ω).

Proof. It is enough to show thatHs,p(Ω) is a subset of the closureHs,p
0 (Ω) ofC∞∂Ω(Ω) in theHs,p(Ω)

norm. Let f ∈ Hs,p(Ω). Lemma 3.3 asserts that E0f ∈ Hs,p(Rd). Clearly, E0f = 0 on Rd \ Ω. A
theorem of Netrusov ([1, Thm. 10.1.1]) thus implies that f ∈ Hs,p

0 (Ω).

Lemma 3.5. Let p ∈ (1,∞) and s ∈ (0, 1
p
∧ 1

p′
). Then the weak gradient ∇ ∈ L(H1,p(Ω) →

Lp(Ω)d) maps H1+s,p(Ω) continuously nonexpansively into Hs,p(Ω)d and admits a unique continu-
ous linear and still nonexpansive extension to a mapping∇ : H1−s,p(Ω)→ H−s,p(Ω)d.

Proof. The proof is based on the observation that the distributional (partial) derivative ∂j , j ∈ {1, . . . , d},
is a continuous linear contraction from Hσ,q(Rd) to Hσ−1,q(Rd) for all σ ∈ R and all q ∈ (1,∞).
This in turn can be seen e.g. for σ an integer via Hk,q(Rd) = W k,q(Rd) for k ∈ N0 and a duality
argument; the general case for σ then follows by interpolation. Moreover, this distributional derivative
is of course consistent with the weak derivative on H1,q(Rd).

The first claim thus follows immediately from the definitions of H1+s,p(Ω) and Hs,p(Ω) as the re-
strictions of the corresponding spaces on Rd. For the second one, consider f ∈ H1−s,p(Ω) and let

f̂ ∈ H1−s,p(Rd) be such that f̂�Ω = f . Let moreover ϕ ∈ C∞∂Ω(Ω) and identify it with its extension
by zero E0ϕ to Rd. Then E0ϕ ∈ Hs,p′(Rd) by Lemma 3.3 and in fact ‖ϕ‖Hs,p′ (Ω) = ‖E0ϕ‖Hs,p′ (Rd).
Let j ∈ {1, . . . , d}. We observe that〈

∂jf, ϕ
〉

:= −
∫

Ω

f ∂jϕ = −
∫
Rd
f̂ ∂jE0ϕ,
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hence∣∣〈∂jf, ϕ〉∣∣ ≤ ∥∥f̂∥∥H1−s,p(Rd)

∥∥∂jE0ϕ‖Hs−1,p′ (Rd)

≤
∥∥f̂∥∥

H1−s,p(Rd)

∥∥E0ϕ
∥∥
Hs,p′ (Rd)

=
∥∥f̂∥∥

H1−s,p(Rd)

∥∥ϕ∥∥
Hs,p′ (Ω)

.

Note that C∞∂Ω(Ω) is dense inHs,p′(Ω) since s ∈ [0, 1− 1
p
), cf. Lemma 3.4. Thus, taking the infimum

over all f̂ ∈ H1−s,p(Rd) such that f̂�Ω = f , we find ∂j ∈ L(H1−s,p(Ω) → H−s,p(Ω)), since
H−s,p(Ω) = (Hs,p′(Ω))? by definition.

We also need the notion of a multiplier.

Definition 3.6 (Multiplier). Let X be a Banach space of functions Ω→ C.

(i) A function ω : Ω → C is a multiplier on X if the superposition operator Mω defined by
(Mωf)(x) := ω(x)f(x) maps X continuously into itself. We write ω ∈ M(X) and the
multiplier norm is given by ‖ω‖M(X) := ‖Mω‖X→X .

(ii) For a matrix function ω : Ω → Cd×d where each component satisfies ωij ∈ M(X), we use
the associated multiplier norm defined by

‖ω‖M(X) =

√√√√ m∑
i=1

n∑
j=1

‖ωij‖2
M(X).

Using multiplier assumptions, all of the differential and boundary operators introduced in Section 2.3
can be extended to the Bessel scale. The collected result is as follows:

Lemma 3.7. Let p ∈ (1,∞) and τ ∈ (0, 1
p
∧ 1

p′
), and let moreover the following assumptions be

satisfied:

� ρ : Ω→ Cd×d such that ρij ∈M(Hτ,p(Ω)) ∩M(Hτ,p′(Ω)),

� βdiv, βg ∈M(Hτ,p(Ω))d ∩M(Hτ,p′(Ω))d,

� η ∈ Ld(Ω),

� E ⊆ Ω is a (d− 1)-set and % ∈ L∞(E;Hd−1).

Then the operator A defined by

A := −∇ · ρ∇−∇ · βdiv + βg · ∇+ η + tr∗E % trE (3.2)

maps H1+τ,p
D (Ω) continuously into Hτ−1,p

D (Ω), and linearly extends to a continuous mapping from
H1−τ,p
D (Ω) to H−1−τ,p

D (Ω).

Proof. We first show that−∇·ρ∇mapsH1+τ,p
D (Ω) continuously intoHτ−1,p

D (Ω) using the multiplier

assumption. So, let ϕ ∈ H1+τ,p
D (Ω) and ψ ∈ W 1,p′

D (Ω). Then ∇ψ ∈ Lp
′
(Ω) ⊂ H−τ,pD (Ω), and

using Lemma 3.5, we find〈
−∇ · ρ∇ϕ, ψ

〉
=
(
ρ∇ϕ,∇ψ

)
L2(Ω)d

≤ ‖ρ‖M(Hτ,p(Ω))‖∇ϕ‖Hτ,p(Ω)d‖∇ψ‖H−τ,p′ (Ω)d

≤ ‖ρ‖M(Hτ,p(Ω))‖ϕ‖H1+τ,p
D (Ω)‖ψ‖H1−τ,p′

D (Ω)
.
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Since W 1,p′

D (Rd) is dense in H1−τ,p′
D (Rd), so is W 1,p′

D (Ω) in H1−τ,p′
D (Ω). Accordingly, −∇ · ρ∇

maps H1+τ,p
D (Ω) continuously into Hτ−1,p

D (Ω).

Next, we show that −∇ · ρ∇ continuously extends to an operator from H1−τ,p
D (Ω) to H−1−τ,p

D (Ω).

We follow the same reasoning as above, this time for ϕ ∈ W 1,p
D (Ω) and ψ ∈ H1+τ,p′

D (Ω), to obtain〈
−∇ · ρ∇ϕ, ψ

〉
=
(
∇ϕ, ρH∇ψ

)
L2(Ω)d

≤ ‖ρH‖M(Hτ,p′ (Ω))‖ϕ‖H1−τ,p
D (Ω)‖ψ‖H1+τ,p′

D (Ω)
.

Density of W 1,p
D (Ω) in H1−τ,p

D (Ω) then yields that −∇ · ρ∇ extends continuously to H1−τ,p
D (Ω),

mapping into H−1−τ,p
D (Ω).

The first-order operators ∇ · βdiv and βg · ∇ work exactly analogously. For the zero-order operator,
the claim follows from Sobolev embeddings and Hölder’s inequality. Let us thus turn to the boundary
form operator. Choose s ∈ (τ, 1

p
∧ 1

p′
). Letting u ∈ H1+τ,p

D (Ω) and v ∈ H1+τ,p′

D (Ω), we estimate
easily via Corollary 2.19:〈

tr∗E % trE u, v
〉
≤ ‖%‖L∞(E;Hd−1)‖ trE u‖Lp(E;Hd−1)‖ trE v‖Lp′ (E;Hd−1)

. ‖%‖L∞(E;Hd−1)‖u‖W 1−s,p(Ω)‖v‖W 1−s,p′ (Ω). (3.3)

Now the assertion follows from the embeddings ([58, Thm. 4.6.1])

H1+τ,p
D (Ω) ↪→ H1−τ,p

D (Ω) ↪→ W 1−s,p(Ω), H1+τ,p′

D (Ω) ↪→ H1−τ,p′
D (Ω) ↪→ W 1−s,p′(Ω),

where the first ones in the respective chain are dense.

Remark 3.8. Let p ∈ (1,∞) and τ ∈ (0, 1
p
).

(i) All multipliers considered will be bounded: M(Hτ,p(Ω)) ↪→ M(Lp(Ω)) and L∞(Ω) =
M(Lp(Ω)), the latter up to equivalent norms. Indeed, note that the constant function 1 is
an element of Hτ,p(Ω). So let k ∈ N and consider for ω ∈M(Hτ,p(Ω)):

‖ω‖Lpk(Ω) = ‖ωk1‖
1
k

Lp(Ω) . ‖ω
k1‖

1
k

Hτ,p(Ω) . ‖ω‖M(Hτ,p(Ω))‖1‖
1
k

Hτ,p(Ω).

Since ‖1‖
1
k

Hτ,p(Ω) . 1, it follows by contradiction that ω ∈ L∞(Ω), and taking the limit as

k → ∞ gives the desired embedding. It is easy to see that L∞(Ω) and M(Lp(Ω)) are
isomorphic. Note moreover thatM(Hτ,p(Ω)) ↪→ M(Lp(Ω)) implies thatM(Hτ,p(Ω)) ↪→
M(Hσ,p(Ω)) for all σ ∈ [0, τ ] via complex interpolation ([6, Rem. 3.9]).

(ii) We do not have a general description of M(Hτ,p(Ω)) for τ > 0 in terms of classical func-
tion spaces. However, there is a substantial body of work devoted to multipliers on the usual
function spaces; we mention exemplarily the comprehensive books [38, 51], or [37, Sect. 5].
We give a few examples. Most generally, due to the condition τ < 1

p
, Lemma 3.3 implies that

M(Hτ,p(Rd)) ↪→M(Hτ,p(Ω)). It is moreover a classical result thatCσ(Ω) ↪→M(Hτ,p(Ω))
whenever τ < σ ≤ 1, where Cσ(Ω) denotes the space of σ-Hölder continuous functions. In
fact, already a slightly larger Besov space does the job: Bτ

∞,p(Ω) ↪→M(Hτ,p(Ω)). We refer
to e.g. [51, Ch. 4.7.1] and [27, Lem. 1], where it is also mentioned that Bτ

∞,p(Ω) ↪→ Cτ (Ω).
But continuity is not at all necessary for the multiplier property, in particular in the present low-
regularity case of τ < 1

p
: already the characteristic functions χΛ of certain subsets Λ ⊂ Ω

are also multipliers on Hτ,p(Ω). Examples for sets Λ with this property are convex sets ([38,
Rem. 3.5.3]) or sets of locally finite perimeter ([51, p. 214ff]); see also [54] for the probably most
general admissible class. (In fact, [54, Thm. 4.4] provides Lemma 3.3.)
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The following is our main result for this section. It holds for both X ∈ {H,W}.

Theorem 3.9. Let p ∈ (1,∞) and τ ∈ (0, 1
p
∧ 1

p′
). Let A be as in (3.2) and let the following

assumptions on the data be satisfied, as in Lemma 3.7:

� ρ : Ω→ Cd×d such that ρij ∈M(Hτ,p(Ω)) ∩M(Hτ,p′(Ω)),

� βdiv, βg ∈M(Hτ,p(Ω))d ∩M(Hτ,p′(Ω))d,

� η ∈ Ld(Ω),

� E ⊆ Ω is a (d− 1)-set and % ∈ L∞(E;Hd−1).

Suppose further that there is λ ∈ C such that

A+ λ ∈ Liso

(
W 1,p
D (Ω)→ W−1,p

D (Ω)
)
.

Then there is s̄ ∈ (0, τ ] such that

A+ λ ∈ Liso

(
X1+s,p
D (Ω)→ Xs−1,p

D (Ω)
)

(s ∈ (−s̄, s̄)). (3.4)

Further, both s̄ and the norms of the inverse operators (A+λ)−1 betweenXs−1,p
D (Ω) andX1+s,p

D (Ω)
for s ∈ (−s̄, s̄) can be estimated uniformly in the norm of all the given data and ‖A+λ‖−1

W 1,p
D (Ω)→W−1,p

D (Ω)
.

Proof. We only need to collect several results from above and combine them with the Sneiberg The-
orem 3.1. First, due to Lemma 3.7, we already know that A gives rise to continuous linear operators
H1+τ,p
D (Ω)→ Hτ−1

D (Ω) and H1−τ,p
D (Ω)→ H−1−τ,p

D (Ω), and it is clear that this extends to A+ λ.

Second, we note that, by Proposition 2.11 and Corollary 2.12,

W 1,p
D (Ω) =

[
H1+τ,p
D (Ω), H1−τ,p

D (Ω)
]

1
2

, W−1,p
D (Ω) =

[
Hτ−1,p
D (Ω), H−1−τ,p

D (Ω)
]

1
2

.

From Corollary 3.2 and Theorem 3.1 we thus infer that there is ε ∈ (0, 1
2
] such that the operators

A+ λ :


[
H1+τ,p
D (Ω), H1−τ,p

D (Ω)
]
δ
→

[
Hτ−1,p
D (Ω), H−1−τ,p

D (Ω)
]
δ(

H1+τ,p
D (Ω), H1−τ,p

D (Ω)
)
δ,p
→

(
Hτ−1,p
D (Ω), H−1−τ,p

D (Ω)
)
δ,p

remain continuously invertible for all δ ∈ (1
2
− ε, 1

2
+ ε). But according to Proposition 2.11, the former

spaces coincide with H1+s,p
D (Ω) → H1−s,p

D (Ω) and the latter ones with W 1+s,p
D (Ω) → W 1−s,p

D (Ω),
where we have set s := τ(1− 2δ). The range of δ then corresponds to s ∈ (−s̄, s̄) where s̄ := 2τε.
Thus we obtain exactly (3.4).

The claimed uniformity of s̄ and the norms of the inverses of A + λ follows immediately from (3.1)
in Theorem 3.1 and the associated norm estimate, together with the estimates on the extension and
restriction of A to the Bessel scale as obtained in Lemma 3.7.

Note that [12] gives a comprehensive list of settings where the principal part−∇·ρ∇ (or−∇·ρ∇+λ)
of A alone satisfies the isomorphism assumption in Theorem 3.9. It thus seems appropriate to state
an auxiliary result leading to the corresponding assumption for A, starting from just the principal part.

Corollary 3.10. Let p ≥ 2. Let λ ∈ C and suppose the following on the data:
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� ρ ∈ C(ρ•, ρ•),

� βdiv ∈ L∞(Ω))d and there is τ ∈ (0, 1
p
) such that βg ∈M(Hτ,p′

D (Ω))d,

� η ∈ Ld(Ω) and there exists η• ∈ R such that Re η ≥ η• a.e. on Ω,

� E ⊆ Ω is a (d−1)-set, % ∈ L∞(E;Hd−1) and Re % ≥ %• ≥ 0 in theHd−1-a.e. sense onE.

Moreover, assume that

α := Reλ+ η• −
(
‖βdiv‖L∞(Ω) + ‖βg‖L∞(Ω)

)2

2c•
≥ 0,

and that α + %• > 0 if λ 6= 0. Then

−∇ · ρ∇+ λ ∈ Liso

(
W 1,p
D (Ω)→ W−1,p

D (Ω)
)

=⇒ A+ λ ∈ Liso

(
W 1,p
D (Ω)→ W−1,p

D (Ω)
)

with A as in (3.2).

Recall that the assumption on βg implies that βg ∈ L∞(Ω), see Remark 3.8.

Proof of Corollary 3.10. We first intend to show that the lower order operatorB, soB := −∇·βdiv +
βg · ∇ + η + tr∗E % trE , is relatively compact on W−1,p

D (Ω) with respect to −∇ · ρ∇ + λ. Let τ
be from the assumption on βg. By the compactness of the embedding W 1,p

D (Ω) ↪→ H1−τ,p
D (Ω), it

suffices to prove that B : H1−τ,p
D (Ω) → W−1,p

D (Ω) is continuous. But this is straightforward to verify
from the assumptions; for the boundary operator tr∗E % trE we choose s ∈ (τ, 1

p
) and refer to the

estimate (3.3) and the embeddings mentioned right below.

With B relatively compact with respect to −∇ · ρ∇ + λ, it follows that A = −∇ · ρ∇ + λ + B is
(semi-)Fredholm on W 1,p

D (Ω) with index 0, since−∇· ρ∇+λ is so ([33, Ch. IV. Thm. 5.26]). Thus, it
is enough to show that A is injective on W 1,p

D (Ω). But this follows easily using ρ ∈ C(ρ•, ρ•) and the
conditions on α and %•. Here we also use that p ≥ 2. (Note that if λ = 0, then, by the isomorphism
assumption, 1 /∈ W 1,p

D (Ω).)

Remark 3.11. We complement the abstract results of Theorem 3.9 by attaching a boundary value
problem. Let for simplicity f ∈ Lp(Ω) and g ∈ Lp(Γ;Hd−1) as well as λ = 0. Under the assumptions
in Theorem 3.9, the abstract problem

Au = f + tr∗Γ g

admits a unique solution u ∈ H1+s,p
D (Ω) for some s > 0, and u depends continuously on f and g.

The associated boundary value problem is

− div
(
ρ∇u+ βdivu

)
+ βg · ∇u+ ηu = f in Ω,

−ρ∇u · ν + %u = g on Γ,

u = 0 on D.

The connection between the abstract and boundary value problem formulation can be made precise
under additional assumptions on Ω which would allow to apply the divergence theorem; see e.g. [10,
Ch. 1.2] or [20, Ch. 2.2].

DOI 10.20347/WIAS.PREPRINT.2705 Berlin 2020



Extrapolated elliptic regularity 15

4 The van Roosbroeck system of semiconductor equations

In this section we use Theorem 3.9 to give a direct treatment of the van Roosbroeck system of semi-
conductor equations. Here, we focus on Boltzmanns statistics only; see however Remark 4.18 below.
The van Roosbroeck system was already briefly introduced in the introduction and we now give a more
detailed explanation.

In the van Roosbroeck system, negative and positive charge carriers, electrons and holes, move by
diffusion and drift in a self-consistent electrical field; on their way, they may recombine to charge-
neutral electron-hole pairs or, vice versa, negative and positive charge carriers may be generated
from charge-neutral electron-hole pairs. The electronic state of the semiconductor device Ω ⊂ R3

resulting from these phenomena is described by the triple (u1, u2, ϕ) of unknowns consisting of the
densities u = (u1, u2) of electrons and holes and the electrostatic potential ϕ. Their evolution during
the (finite) time interval J = (0, T ) is then described by the equations already mentioned in the
introduction, so the Poisson equation

− div (ε∇ϕ) = d + u1 − u2 in J × Ω,

ϕ = ϕD on J ×D,
ν · (ε∇ϕ) + εΓϕ = ϕΓ on J × Γ,

(1.4a)

and, for k = 1, 2, the current-continuity equations

∂tuk − div jk = rΩ(u, ϕ) in J × (Ω \ Π)

uk = Uk on J ×D,
ν · jk = rΓ(u, ϕ) on J × Γ,

[ν · jk] = rΠ(u, ϕ) on J × Π,

uk(0) = u0
k on Ω,

(1.4b)

with the currents
jk = µk

(
∇uk + (−1)kuk∇ϕ

)
. (1.4c)

Let us also repeat that Ω ⊂ R3 is a bounded domain, ν its unit outer normal at ∂Ω and the latter is
decomposed into a Dirichlet part D and a Neumann/Robin part Γ := ∂Ω \ D. We will require Ω to
satisfy Assumption 2.3 and to have some additional but in general very mild properties, specified in
Section 4.1 below.

The parameters in the Poisson equation are the dielectric permittivity ε : Ω → R3×3 and the so-
called doping profile d. The latter comes from impurities induced in the materials or even very small
layers of different, reaction-enhancing material in the device Ω, see [43] or [14]. As such we will
allow it to be located only on two-dimensional surfaces in Ω; see our mathematical requirement on
d in Assumption 4.8 below. Moreover, in the boundary conditions, εΓ : Γ → [0,∞) represents the
capacity of the part of the corresponding device surface, ϕD and ϕΓ are the voltages applied at the
contacts of the device, thus they may depend on time. As above, we always write u for the pair of
densities (u1, u2).

Although we are aware of the fact that, from a physical point of view, the Dirichlet data ϕD in (1.4a)
and Uk in (1.4b) is—at least in case of a voltage driven regime—an essential part of the model, we will
focus on the case where it is zero. This is in order to make the most fundamental things in the analysis
visible, for the (standard) treatment of non-zero data see [32] and [13].

The current-continuity equations feature the fluxes (1.4c) with the mobility tensors µk : Ω→ R3×3 for
electrons and holes, and the recombination terms rΩ, rΓ and rΠ. Here rΩ models recombination in the
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bulk and the normal fluxes across the exterior boundary Γ are balanced with surface recombination rΓ

taking place on Γ. For the physical significance of interfacial recombination induced by rΠ in modern
devices we refer to e.g. [60] or [59, Ch. 3].

The bulk recombination term rΩ in (1.4b) can consist of rather general functions of the electrostatic po-
tential ϕ, of the currents jk, and of the vector of electron/hole densities u. It describes the production,
or destruction, depending on the sign, of electrons and holes. Below, we collect some of the most rel-
evant examples, covering non-radiative recombination like the Shockley-Read-Hall recombination due
to phonon transition, Auger recombination (three particle transition), and Avalanche generation. See
e.g. [19, 34, 53] and the references cited there for more information. The most familiar recombination
mechanisms are the following two:

� Shockley-Read-Hall recombination (photon transition):

rΩ
SRH(u) :=

u1u2 − n2
i

τ2(u1 + n1) + τ1(u2 + n2)
, (4.1)

where ni is the intrinsic carrier density, n1, n2 are reference densities, and τ1, τ2 are the life-
times of electrons and holes, respectively.

� Auger recombination (three particle transitions):

rΩ
Auger(u) =

(
u1u2 − n2

i

)(
cAuger

1 u1 + cAuger
2 u2

)
, (4.2)

where cAuger
1 and cAuger

2 are the Auger capture coefficients of electrons and holes, respectively,
in the semiconductor material.

All occurring constants are parameters of the semiconductor material.

Both recombination mechanisms mentioned above depend on the carrier densities u only. This is
not the case for the Avalanche generation term which depends also on the gradients of the physical
quantities:

� An analytical expression for Avalanche generation (impact ionization), valid at least in the ma-
terial cases of Silicon or Germanium, is

rΩ
Ava(u, ϕ) = c2|j2| exp

( −a2|j2|
|∇ϕ · j2|

)
+ c1|j1| exp

( −a1|j1|
|∇ϕ · j1|

)
. (4.3)

Again, the parameters a1, a2 > 0 and c1, c2 are material-dependent. We refer to [53, p. 111/112]
and references; in particular Tables 4.2-3/4.2-4, and see also [36, Ch. 17, p. 54/55].

We give more functional-analytic meaning to the recombination terms in the next section, where we
collect the various assumptions on the data in (1.4).

4.1 Assumptions

In this section, we introduce some mathematical terminology and state mathematical prerequisites for
the analysis of the van Roosbroeck system (1.4). All assumptions in this section are supposed to be
valid from now on.
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4.1.1 Assumptions on the geometry

We begin with the following geometric requirements on the domain Ω occupied by the device. Fig. 1
shows a typical example of a semiconductor device.

Figure 1: Scheme of a ridge waveguide quantum well laser (detail 3.2µm × 1.5µm × 4µm). The device has
two material layers, the material interface is the darkly shaded plane. The top and bottom of the structure are
subject to Dirichlet boundary conditions for the eletrostatic potentialϕ, the remaining boundary carries Neumann
boundary conditions (lightly shaded; the frontal area is kept transparent). A triple quantum well structure induced

by different material layers is indicated in the lower part, corresponding to the doping d.

Assumption 4.1 (Geometry, extended). The set Ω ⊂ R3 is a bounded domain and satisfies the
thickness condition: There exist constants 0 < c ≤ C < 1 such that

c ≤ |Br(x) ∩ Ω|
|Br(x)|

≤ C (x ∈ ∂Ω, r ∈ (0, 1]). (4.4)

Moreover, the following additional properties hold true for the boundary ∂Ω:

1 D ⊆ ∂Ω is a closed (d− 1)-set withH2(D) > 0. The relative boundary ∂D of D in ∂Ω is a
(d− 2)-set.

2 There are Lipschitz coordinate charts available around ∂Ω \D, that is, for every x ∈ ∂Ω \D,
there is an open neighborhood U of x and a bi-Lipschitz mapping φx : U → (−1, 1)d such that
φx(x) = 0 and φx(U ∩ Ω) = (−1, 0)× (−1, 1)d−1.

3 Π ⊂ Ω is a Lipschitz surface, not necessarily connected, which forms a (d− 1)-set.

Remark 4.2. We emphasize the condition C < 1 in the thickness condition (4.4) in the foregoing
assumption. This requirement makes the thickness condition strictly stronger than the interior thick-
ness condition for ∂Ω which is equivalent Ω being d-regular as mentioned in Remark 2.2. In fact,
the thickness condition (4.4) implies that both Ω and Ωc are d-regular ([6, Ex. 2.4]). In particular,
Assumption 4.1 always implies Assumption 2.3.

Assumption 4.1 defines the general geometric framework for this section which however is restricted
implicitly by Assumption 4.3 below. We are convinced that this setting is sufficiently broad to cover
(almost) all relevant semiconductor geometries, in particular in view of the arrangement of D and Γ.
Please see also the more elaborate Remark 4.4 on this topic below.

The second-order (elliptic) differential operators occurring in (1.4) will of course be considered in their
weak form introduced in Definition 2.15 with the Robin boundary form realized as in Definition 2.20.
We pose the following assumptions on their data:
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Assumption 4.3. We have ε, µ1, µ2 ∈ C(c•, c•) and εΓ ∈ L∞(Γ;H2) and all these functions are
real. Moreover, the following additional properties hold true:

(i) There is a common integrability exponent q ∈ (3, 4) such that

−∇ · ε∇+ tr∗Γ εΓ trΓ ∈ Liso

(
W 1,q
D (Ω)→ W−1,q

D (Ω)
)

(4.5)

and

−∇ · µk∇ ∈ Liso

(
W 1,q
D (Ω)→ W−1,q

D (Ω)
)

(k = 1, 2). (4.6)

(ii) There is ϑ ∈ (0, 1− 3
q
) such that εij ∈M(Hϑ,q(Ω)) and (µ1)ij, (µ2)ij ∈M(Hϑ,q(Ω)).

See also Definitions 2.14 and 3.6 for the C(c•, c•) and multiplier notions. Note moreover that due to
the assumption q ∈ (3, 4), we have 1 − 3

q
< 1

q
= 1

q
∧ 1

q′
. Finally, we point out that while we pose

quite similar assumptions on ε and µ1, µ2, the assumptions are used in a quite different way. For
−∇ · ε∇+ tr∗Γ εΓ trΓ, they enable us to use the extrapolated elliptic regularity result in Theorem 3.9.
For −∇ · µk∇, the isomorphism assumption (4.6) will allow to determine the domains of certain
fractional powers of these operators which are of interest for classical parabolic theory for semilinear
equations such as (1.4b), see Lemma 4.16 below. On the other hand, the multiplier assumption on µk
is used to deal with the drift-structure induced by the fluxes jk as defined in (1.4c).

Whenever we refer to the integrability q from now on, a fixed number from Assumption 4.3 is meant.

Remark 4.4. (i) Properties (4.5) and (4.6) remain true for all q̃ ∈ [2, q) by the Lax-Milgram lemma
and interpolation (Proposition 2.11). In particular, the set of indices q ≥ 2 such that (4.5)
and (4.6) holds true always forms an interval. Thus it is sufficient to know that each of the
operators (4.5) and (4.6) is an isomorphism for some q > 3 in order to find a common q. Let us
moreover note that in the presence of mixed boundary conditions one cannot expect q ≥ 4 in
Assumption 4.3 (i) whenD and Γ meet due to the counterexample by Shamir [55, Introduction].

(ii) Assumption 4.3 (i) is fulfilled by very general classes of layered structures and additionally, if D
and its complement Γ do not meet in a too wild manner, for the most relevant model settings.
(See [24] for the latter.) A global framework has recently been established in [12]. However,
Assumption 4.3 (i) is indeed a restriction on the class of admissible coefficient functions ε and
µk. For instance, it is typically not satisfied if three or more different materials meet at one edge.

(iii) Note that it is typically not restrictive to assume that all three differential operators in (4.5)
and (4.6) provide topological isomorphisms at once if one of them does, since this property
mainly depends on the (possibly) discontinuous coefficient functions versus the geometry of
D. This is determined by the material properties of the device Ω, i.e., the coefficient functions
µ1, µ2, ε will often exhibit similar discontinuities and degeneracy.

(iv) The multiplier assumption in Assumption 4.3 (ii) is a very broad one and certainly fulfilled in the
context of realistic semiconductor structures. Recall that, as seen in Remark 3.8, the multiplier
assumptions on µ1, µ2 and ε hold in fact for all differentiability orders τ ∈ [0, ϑ].

4.1.2 Assumptions on recombination terms

We next give the assumptions for the recombination terms rΩ, rΠ, rΓ in (1.4b). For convenience, we
introduce

W1,q
D (Ω) := W 1,q

D (Ω)×W 1,q
D (Ω).
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Note that by locally Lipschitzian we mean that the corresponding function is Lipschitz continuous on
bounded sets.

Assumption 4.5. All reaction terms rΩ, rΠ, rΓ map real functions to again real ones. Moreover:

(i) The bulk reaction term rΩ is a locally Lipschitzian mapping

rΩ : W1,q
D (Ω)×W 1,q

D (Ω) 3 (u, ϕ) 7→ rΩ(u, ϕ) ∈ L
q
2 (Ω).

(ii) The reaction term rΓ on Γ is a locally Lipschitzian mapping

rΓ : W1,q
D (Ω)×W 1,q

D (Ω) 3 (u, ϕ) 7→ rΓ(u, ϕ) ∈ L4(Γ;σ).

(iii) The interfacial reaction term rΠ on Π satisfies the same assumption as rΓ does, mutatis mu-
tandis.

The choice of integrability 4 on Γ and Π, respectively, is connected to q < 4 in Assumption 4.3. This
can be seen in Lemma 4.13 below.

It is easy to see that the recombination terms rΩ
SRH and rΩ

Auger introduced in (4.1) and (4.2) satisfy
Assumption 4.5. On the other hand, validating the same for the Avalanche generation term, depending
on the electric field ϕ and the currents jk, is nontrivial, but we indeed find:

Lemma 4.6. The Avalanche recombination term rΩ
Ava defined in (4.3) satisfies Assumption 4.5.

Proof. The lemma is proved in [13, Ch. 3.4]. More precisely, the current densitites

W1,q
D (Ω)×W 1,q

D (Ω) 3 (u, ϕ) 7→ jk = µk
(
∇uk + (−1)kuk∇ϕ

)
∈ Lq(Ω)

are locally Lipschitz continuous via the estimate∥∥jk(u, ϕ)− jk(v, ψ)
∥∥
Lq(Ω)

≤ ‖µk‖L∞(Ω)

[
‖∇ψ‖Lq(Ω)

∥∥uk − vk∥∥L∞(Ω)

+
∥∥∇uk −∇vk∥∥Lq(Ω)

+ ‖uk‖L∞(Ω)

∥∥∇ϕ−∇ψ∥∥
Lq(Ω)

]
and the embedding W 1,q

D (Ω) ↪→ L∞(Ω) due to q > d = 3. It remains to connect this with [13,
Lem. 3.9] where∥∥rΩ

Ava(u, ϕ)− rΩ
Ava(v, ψ)

∥∥
L
q
2 (Ω)

. ‖∇ϕ‖Lq(Ω)

(∥∥j1(u, ϕ)− j1(v, ψ)
∥∥
Lq(Ω)

+
∥∥j2(u, ϕ)− j2(v, ψ)

∥∥
Lq(Ω)

)
+
(
‖j1(v, ψ)‖Lq(Ω) + ‖j2(v, ψ)‖Lq(Ω)

) ∥∥∇ϕ−∇ψ∥∥
Lq(Ω)

is shown.

Remark 4.7. It is imperative to compare the very last estimate in the foregoing proof to the Lipschitz
estimate for the quadratic gradient function∥∥|∇v1|2 − |∇v2|2

∥∥
L
q
2 (Ω)
≤
(
‖∇v1‖Lq(Ω) + ‖∇v2‖Lq(Ω)

)
‖∇v1 −∇v2‖Lq(Ω),

which is of very similar structure. This is the connection to the quadratic gradient nonlinearity v 7→
|∇v|2 which was mentioned in the introduction.
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4.1.3 Assumptions on auxiliary data

Lastly, we give the assumptions on the doping d. It permits dopings which live in the bulk and, pos-
sibly, on 2-dimensional surfaces, see Lemma 4.13 below. We comment on the actual requirement in
Remark 4.12 below.

Assumption 4.8. The doping d belongs to the space H
− 3
q
,q

D (Ω).

4.2 Existence and uniqueness for the abstract semilinear equation

It was already explained in the introduction that we intend to solve the van Roosbroeck system (1.4)
by eliminating the electrostatic potential ϕ in (1.4b) and (1.4c) as a function of the densities u, thereby
considering (1.4b) as a semilinear parabolic equation in the densities. Having this in mind, we give a
brief discussion on the question which Banach space X = X ⊕X will be adequate to consider this
parabolic equation in, based on the structural- and regularity properties of the unknowns u, ϕ and the
data such as d.

� In view of the jump condition on the surface Π on the fluxes jk in (1.4b), it cannot be expected
that div jk is a function. This excludes spaces of type Lp(Ω). In addition, the space X should
be large enough to include distributional objects, so that the the inhomogeneous Neumann
datum rΓ in the current-continuity equations (1.4b) and the surface recombination term rΠ can
be included in the right-hand side of the current continuity equations.

� For our analysis, we require an adequate parabolic theory for the divergence operators on X.
Due to the non-smooth geometry, the mixed boundary conditions and discontinuous coefficient
functions, this is nontrivial. The minimum needed is that the operators∇·µk∇ generate analytic
semigroups on X .

� For the handling of the squared gradient nonlinearity or other functions of gradients in the
Avalanche and other recombination terms, it is imperative to have ∇uk(t) in Lq(Ω) in ev-
ery time point t at ones disposal in order to apply standard semilinear parabolic theory, see
e.g. [28, Ch. 3.3] or [35, Ch. 7]. Hence, the Banach space X needs to be such that an inter-
polation space between the domain of ∇ · µk∇ in X and X itself embeds continuously into
W 1,q(Ω). But this excludes spaces of type X = W−1,q

D (Ω) since the domain of ∇ · µk∇
there is at bestW 1,q

D (Ω) (Assumption 4.3 (i)). With this strategy, at the same time, the spaceX
needs to be sufficiently large for the embedding Lq/2(Ω) ↪→ X to hold to include the pointwise
quadratic gradient.

We will choose X as an interpolation space between W−1,q
D (Ω) and Lq(Ω). This will yield a frame-

work in which the requirements listed above are indeed satisfied, see Lemmas 4.13, 4.15 and 4.16
below.

To this end, we first quote the nonsymmetric interpolation result which will allow us to identify the
designated (interpolation) space X with a space from the Bessel scale. This proposition is the only
point where the strengthened geometric assumptions in Assumption 4.1 compared to Assumption 2.3
are needed. The primal interpolation result is quoted from [6], and the dual scale is obtained in the
same manner as done for proof of Corollary 2.12.
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Proposition 4.9 (Interpolation [6, Thm. 1.1]). Let p ∈ (1,∞) and θ ∈ (0, 1), and let E ⊂ Ω be a
(d− 1)-set. Then [

W 1,p
E (Ω), Lp(Ω)

]
θ

=

H
1−θ,p
E (Ω) if θ < 1− 1

p

H1−θ,p(Ω) if θ > 1− 1
p

and accordingly

[
W−1,p
E (Ω), Lp(Ω)

]
θ

=
([
W 1,p′

E (Ω), Lp
′
(Ω)
]
θ

)?
=

H
θ−1,p
E (Ω) if θ < 1

p

Hθ−1,p(Ω) if θ > 1
p
.

Moreover, let us reiterate the following immediate consequence of Assumption 4.3 and Theorem 3.9,
where ϑ is the number from Assumption 4.3 (ii):

Lemma 4.10. There is a number s̄ ∈ (0, ϑ] such that the operator −∇ · ε∇ + tr∗Γ εΓ trΓ is a
topological isomorphism between H1+s,q

D (Ω) and Hs−1,q
D (Ω) for all s ∈ [0, s̄).

Finally, we define the Banach space X in which we intend to investigate the parabolic equation:

Definition 4.11. Let s̄ be the number from Lemma 4.10. We fix τ ∈ (0, s̄) and define

X :=
[
Lq(Ω),W−1,q

D (Ω)
]

1−τ,q = Hτ−1,q
D (Ω) and X := X ⊕X.

The identity of the interpolation space and Hτ−1,q
D (Ω) follows from Proposition 4.9.

Remark 4.12. Due to the assumptions on ϑ, we have τ ∈ (0, 1 − 3
q
). In particular, τ − 1 < −3/q,

thus H−3/q,q(Ω) ↪→ Hτ−1,q
D (Ω) = X , and so d ∈ X by Assumption 4.8.

It remains to verify that X or X satisfy the requirements we established above. The first lemma joins
Remark 4.12 in showing that X is sufficiently large for our means.

Lemma 4.13. There holds L
q
2 (Ω) ↪→ X . Moreover, the adjoint trace mappings tr∗Γ : L4(Γ;H2) →

X and tr∗Π : L4(Π;H2)→ X give rise to continuous embeddings.

Proof. The first embedding follows from taking the adjoint of the Sobolev embedding H3/q,q′

D (Ω) ↪→
L

q
q−2 (Ω) and the observation in Remark 4.12.

Continuity of the adjoint trace is proven in [13, Lem. 4.4] by showing that

trΓ : H
3
q
,q′

D (Ω)→ L
4
3 (Γ;H2) and trΠ : H

3
q
,q′

D (Ω)→ L
4
3 (Π;H2) (4.7)

are continuous, and then taking adjoints. We give a quick additional proof of (4.7) based on the trace
theorem from Corollary 2.19: The condition q ∈ (3, 4) implies that 1

q′
< 3

q
, hence we can find

s ∈ ( 1
q′
, 3
q
) so that H3/q,q′(Ω) ↪→ W s,q′(Ω). Now Corollary 2.19 gives the result because it says that

trΓ maps W s,q′(Ω) continuously into Lq
′
(Γ) when s > 1

q′
; it remains only to observe that q′ > 4

3
.

The reasoning for trΠ is completely analogous because Corollary 2.19 is valid for (d−1)-regular sets
E ⊂ Ω.

Lemma 4.13 puts us in the position to establish the functional-analytic setting for the van Roosbroeck
system (1.4). Recall also Lemma 4.10.
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Definition 4.14 (Solution concept). Define the mapping v 7→ ϕ(v) by

v 7→ ϕ := (−∇ · ε∇+ tr∗Γ εΓ trΓ)−1 (d− v1 + v2

)
(4.8)

and set
r(v) := rΩ

(
v, ϕ(v)

)
+ tr∗Γ r

Γ
(
v, ϕ(v)

)
+ tr∗Π r

Π
(
v, ϕ(v)

)
.

Then we say that a function u = (u1, u2) : [0, T •) → X is a solution to the van Roosbroeck sys-
tem (1.4), if u(0) = u0 and

u′k(t)−∇ · µk∇uk(t) = (−1)k+1∇ · uk(t)µk∇ϕ(u(t)) + r(u(t)) in X (k = 1, 2)

for all t ∈ (0, T•), where T• ∈ (0, T ].

Before we prove existence and uniqueness of a solution in the sense of Definition 4.14, we further
collect some results about the elliptic operators −∇ · µk∇. In the second part, we make use of the
co-restriction of −∇ · µk∇ : W 1,q

D (Ω) → W−1,q
D (Ω) to Lq(Ω), considered as a closed operator in

that space, and analogously for X .

Lemma 4.15. (i) The square root (−∇ · µk∇)−1/2 provides a topological isomorphism between
W−1,q
D (Ω) and Lq(Ω).

(ii) The operators∇·µk∇ are generators of analytic semigroups and their negatives admit bounded
imaginary powers on Lq(Ω) space, on W−1,q

D (Ω), and also on X .

Proof. (i) is [15, Thms. 1.2/1.6], see also [2, Thm. 5.1]. (ii): The proof for both properties works in the
same way: First, the property is established on Lq(Ω), then the square root isomorphism from (i) is
used to transfer the property to W−1,q

D (Ω), and the X case is finally obtained by interpolation.

For the generator property onLq(Ω), we refer to [18, Thm. 3.1] and carry over the equivalent resolvent
estimates ([44, Thm. 1.45]) to W−1,q

D (Ω). Interpolation is then easy.

Regarding bounded imaginary powers, we refer to [18, Cor. 3.4] for the Lq(Ω) case. The transfer to
W−1,q
D (Ω) is provided by [11, Prop. 2.11]. Finally, interpolation works due to [23, Cor. 7.1.17].

We finally determine the domain of a particular fractional power of−∇ ·µk∇ to be W 1,q
D (Ω) which is

one of the cornerstones in the treatment of equations with nonlinear gradient terms. Here, domX(−∇·
µk∇) denotes the domain of the corestriction of −∇ · µk∇ to X = Hτ−1,q

D (Ω) ⊂ W−1,q
D (Ω).

Lemma 4.16. One has[
domX(−∇ · µk∇), X

]
τ
2

= domX

(
(−∇ · µk∇)1− τ

2

)
= W 1,q

D (Ω). (4.9)

Proof. The first equality in (4.9) follows from [57, Ch. 1.15.3] due to the bounded imaginary powers
property of −∇ · µk∇ provided by Lemma 4.15. Moreover, without loss of generality reversing the
interpolation order, we have

X =
[
W−1,q
D (Ω), Lq(Ω)

]
τ

=
[
W−1,q
D (Ω), domW−1,q

D (Ω)

(
(−∇ · µk∇)1/2

)]
τ

= domW−1,q
D (Ω)

(
(−∇ · µk∇)τ/2

)
.

Now use Assumption 4.3 and apply (−∇ · µk∇)−1 ∈ Liso(W−1,q
D (Ω) → W 1,q

D (Ω)) to obtain the
second equality in (4.9).
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We are not able to formulate and prove the main result.

Theorem 4.17 (Local-in-time wellposedness). Suppose that u0 = (u0
1, u

0
2) ∈ W1,q

D (Ω). Then the
van Roosbroeck system (1.4) admits a unique classical local-in-time solution u in the sense of Defini-
tion 4.14. That is, there is T• ∈ (0, T ] such that

u ∈ C1− τ
2

(
[0, T•];X

)
∩ C

(
[0, T•];W

1,q
D (Ω)

)
∩ C1

(
(0, T•];X

)
.

The mapping u0 7→ u is Lipschitz continuous from a neighbourhood of u0 inW1,q
D (Ω) toC([0, T•];X).

Moreover, if u0 is real, then u is real on the interval of existence.

Proof. With the preparationary work done, we can rely on standard semilinear parabolic theory as
established in [28, Ch. 3.3], [45, Ch. 6.3] or [35, Ch. 7] to obtain the local-in-time solution with the
announced regularity. Indeed, we already know that each of the operators ∇ · µk∇ generates a
semigroup which is analytic on X . Clearly, the diagonal operator matrix A induced by ∇ · µk∇ then
also generates an analytic semigroup on X. It remains to establish that the right-hand sides in the
reduced problem as defined in Definition 4.14 are locally Lipschitz continuous on the X-domain of a
true fractional power Aα of A. In view Lemma 4.16, we focus on α = 1 − τ

2
and on obtaining the

Lipschitz property on W1,q
D (Ω). This is also compatible with the assumed initial value regularity. (Here,

note that domXA is dense in W1,q
D (Ω) due to the interpolation identity (4.9).)

For the reaction terms rΩ, rΓ, rΠ, this is by Assumption 4.5 and Lemma 4.6. We only need to consider
the drift-diffusion terms. It is clear that

W1,q
D (Ω) 3 v 7→ ϕ(v) = (−∇ · ε∇+ tr∗Γ εΓ trΓ)−1 (d− v1 + v2

)
∈ H1+τ,q

D (Ω) (4.10)

as defined in (4.8) is Lipschitz continuous, recall Lemma 4.10 and Remark 4.12. Thus, quite similar to
the estimate in the proof of Lemma 4.6, we obtain for v, w ∈W1,q

D (Ω):∥∥∇ · ukµk∇ϕ(w)−∇ · vkµk∇ϕ(v)
∥∥
X

=
∥∥∇ · wkµk∇(ϕ(w)− ϕ(v)

)
−∇ ·

(
vk − wk

)
µk∇ϕ(v)

∥∥
X

(4.11)

and of course we split the latter with the triangle inequality. From there, we rely on (4.10) and multiplier
properties of µk and wk. This is because if ω ∈ M(Hs,q(Ω)) and ψ ∈ H1+s,q

D (Ω) for some s ∈
(0, 1

q
), then using Lemma 3.5 and estimating as in the proof of Lemma 3.7, we find∥∥∇ · ω∇ψ∥∥

H1−s,q
D (Ω)

≤ ‖ω‖M(Hs,q(Ω))‖ψ‖H1+s,q
D (Ω), (4.12)

and H1+s,q
D (Ω) is the biggest space for ψ we can determine for which such an estimate works. We

had in fact assumed that µk is a multiplier on Hτ,q
D (Ω) in Assumption 4.3 (ii). For wk, we observe that

W 1,q
D (Ω) ↪→ C1−3/q(Ω) and τ < 1− 3/q by assumption, see Remark 4.12. Hence C1−3/q(Ω) ↪→
M(Hτ,q(Ω)) as noted in Remark 3.8 and uk ∈ W 1,q

D (Ω) is also a multiplier on Hτ,q(Ω). Thus,
via (4.12)∥∥∇ · wkµk∇(ϕ(w)− ϕ(v)

)∥∥
X
≤ ‖wk‖M(Hτ,q(Ω))‖µk‖M(Hτ,q(Ω))

∥∥ϕ(w)− ϕ(v)
∥∥
H1+τ,q
D (Ω)

. ‖wk‖W 1,q
D (Ω)

∥∥ϕ(w)− ϕ(v)
∥∥
H1+τ,q
D (Ω)

(4.13)

In a similar fashion, the second term is estimated by∥∥∇ · (vk − wk)µk∇ϕ(v)
∥∥
X
≤ ‖µk‖M(Hτ,q(Ω))‖ϕ(v)‖H1+τ,q

D (Ω)

∥∥wk − vk∥∥M(Hτ,q(Ω))

. ‖ϕ(v)‖H1+τ,q
D (Ω)

∥∥wk − vk∥∥W 1,q
D (Ω)

(4.14)
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Estimating (4.11) further using (4.13) and (4.14) and using Lipschitz continuity of v 7→ ϕ(v), we obtain
the desired local Lipschitz continuity on W1,q

D (Ω). Hence standard semilinear theory as in the works
mentioned at the beginning of the proof shows that a solution u to the semiconductor equations in the
sense of Definition 4.14 with the announced exists locally in time.

Finally, let us show that this solution u is indeed a real one. In fact, this is implied by the following facts:

(i) The semigroups generated by∇·µk∇ are real ones, that is, they transform elements from the
real part of W−1,q

D (Ω) into real functions. (See [44, Ch. 2.2/4.2].) Clearly, this transfers toA on
X.

(ii) Since the initial values u0
1 and u0

2 were supposed to be real, the fixed point procedure used to
construct a solution in the classical proof in [45, Thm. 6.3.1] can in fact be done in the real part
of X.

This completes the proof.

Remark 4.18. (i) Let us point out that the Lipschitz estimate in the proof of the main Theorem 4.17
only works so smoothly using (4.12) because we in fact know that (4.10) holds with theH1+τ,q

D (Ω)
image space, which in turn is a consequence of extrapolated elliptic regularity as established in
Theorem 3.9, see Lemma 4.10. It was already mentioned in the foregoing proof thatH1+τ,q

D (Ω)
is exactly the largest space for which an estimate of the form (4.12) can work with ω = wkµk.
Note here that wk is not fixed and does not necessarily admit a strictly positive lower bound.

(ii) The presented real world example is one among many others which can be treated the same
way. We focused here—in contrast to [13]—on the case where the chemical potential and the
densities in the semiconductor model are related by Boltzmann statistics, i.e., where their re-
lating function is the exponential (or logarithm, depending on the point of view). This has the
consequence that the resulting evolution equation for the densities is a semilinear one. In the
general case of Fermi-Dirac statistics, the corresponding evolution equation will be a quasilinear
one. However, such a quasilinear equation can also be treated in a quite similar manner to the
above. One would use Prüss’ pioneering theorem ([47]) as the abstract tool, based on the fact
that the operators −∇ · µk∇ in fact even satisfy maximal parabolic regularity on the spaces
X = Hτ−1,q

D (Ω), see [2, Ch. 11] and [25, Lemma 5.3]. The analysis above shows that exactly
the extrapolation result Theorem 3.9 allows to eliminate the electrostatic potential implicitly, in a
very much simpler way as done before, compare [13,32].

(iii) It is well known that the solutions of nonlinear parabolic equations possibly cease to exist after
finite time. This is even the case if the nonlinearity only depends on the unknown itself instead
of its gradient, see e.g. the classical paper [4]. Of course, this is even more so the case if
the nonlinearity contains gradient dependent terms; we refer to [50, Ch. IV] and references
therein. Therefore the question of global existence for the solution in the general context of
Theorem 4.17 seems out of reach. For related arguments from physics, see [36, p. 55].

(iv) It is possible to relax the requirements on the initial data when working in function spaces with
temporal weights, see [49]. Since our impetus was to demonstrate the power of the extrapolated
regularity result for elliptic operators in a real-world problem, this is out of scope here. See
however [35, Thm. 7.1.6].
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