244 research outputs found

    Evaluation of SIP Signalling and QoS for VoIP over OLSR MANET Routing Protocol

    Get PDF
    Abstract: This paper evaluates the SIP based VoIP applications over the Optimized Link State Routing protocol (OLSR) as a proactive routing protocol for Mobile Ad Hoc Networks (MANET) using Static, Uniform, and Random mobility models. The evaluation considered PCM, LQS, IPTelephony, and GSM voice codecs to study the SIP signaling performance and the voice Quality of Service (QoS) for VoIP calls over OLSR MANET. The simulation efforts performed in OPNET Modeler 17.1. The results show that VoIP over OLSR MANET has good performance over Static and Uniform mobility models while it has variable performance with Random models. SIP signaling has large delays compared with the voice signaling which reduce the VoIP performance and increases the call's duration. In addition, GSM and LQS based VoIP calls have an acceptable level of QoS while PCM and IP-Telephony based VoIP calls have a low level of QoS over different types of mobility models. Furthermore, the location and the mobility of SIP server affect the number of hops and the SIP signaling performance between the different parties of the VoIP call

    Resource-efficient strategies for mobile ad-hoc networking

    Get PDF
    The ubiquity and widespread availability of wireless mobile devices with ever increasing inter-connectivity (e. g. by means of Bluetooth, WiFi or UWB) have led to new and emerging next generation mobile communication paradigms, such as the Mobile Ad-hoc NETworks (MANETs). MANETs are differentiated from traditional mobile systems by their unique properties, e. g. unpredictable nodal location, unstable topology and multi-hop packet relay. The success of on-going research in communications involving MANETs has encouraged their applications in areas with stringent performance requirements such as the e-healthcare, e. g. to connect them with existing systems to deliver e-healthcare services anytime anywhere. However, given that the capacity of mobile devices is restricted by their resource constraints (e. g. computing power, energy supply and bandwidth), a fundamental challenge in MANETs is how to realize the crucial performance/Quality of Service (QoS) expectations of communications in a network of high dynamism without overusing the limited resources. A variety of networking technologies (e. g. routing, mobility estimation and connectivity prediction) have been developed to overcome the topological instability and unpredictability and to enable communications in MANETs with satisfactory performance or QoS. However, these technologies often feature a high consumption of power and/or bandwidth, which makes them unsuitable for resource constrained handheld or embedded mobile devices. In particular, existing strategies of routing and mobility characterization are shown to achieve fairly good performance but at the expense of excessive traffic overhead or energy consumption. For instance, existing hybrid routing protocols in dense MANETs are based in two-dimensional organizations that produce heavy proactive traffic. In sparse MANETs, existing packet delivery strategy often replicates too many copies of a packet for a QoS target. In addition, existing tools for measuring nodal mobility are based on either the GPS or GPS-free positioning systems, which incur intensive communications/computations that are costly for battery-powered terminals. There is a need to develop economical networking strategies (in terms of resource utilization) in delivering the desired performance/soft QoS targets. The main goal of this project is to develop new networking strategies (in particular, for routing and mobility characterization) that are efficient in terms of resource consumptions while being effective in realizing performance expectations for communication services (e. g. in the scenario of e-healthcare emergency) with critical QoS requirements in resource-constrained MANETs. The main contributions of the thesis are threefold: (1) In order to tackle the inefficient bandwidth utilization of hybrid service/routing discovery in dense MANETs, a novel "track-based" scheme is developed. The scheme deploys a one-dimensional track-like structure for hybrid routing and service discovery. In comparison with existing hybrid routing/service discovery protocols that are based on two-dimensional structures, the track-based scheme is more efficient in terms of traffic overhead (e. g. about 60% less in low mobility scenarios as shown in Fig. 3.4). Due to the way "provocative tracks" are established, the scheme has also the capability to adapt to the network traffic and mobility for a better performance. (2) To minimize the resource utilization of packet delivery in sparse MANETs where wireless links are intermittently connected, a store-and-forward based scheme, "adaptive multicopy routing", was developed for packet delivery in sparse mobile ad-hoc networks. Instead of relying on the source to control the delivery overhead as in the conventional multi-copy protocols, the scheme allows each intermediate node to independently decide whether to forward a packet according to the soft QoS target and local network conditions. Therefore, the scheme can adapt to varying networking situations that cannot be anticipated in conventional source-defined strategies and deliver packets for a specific QoS targets using minimum traffic overhead. ii (3) The important issue of mobility measurement that imposes heavy communication/computation burdens on a mobile is addressed with a set of resource-efficient "GPS-free" soluti ons, which provide mobility characterization with minimal resource utilization for ranging and signalling by making use of the information of the time-varying ranges between neighbouring mobile nodes (or groups of mobile nodes). The range-based solutions for mobility characterization consist of a new mobility metric for network-wide performance measurement, two velocity estimators for approximating the inter-node relative speeds, and a new scheme for characterizing the nodal mobility. The new metric and its variants are capable of capturing the mobility of a network as well as predicting the performance. The velocity estimators are used to measure the speed and orientation of a mobile relative to its neighbours, given the presence of a departing node. Based on the velocity estimators, the new scheme for mobility characterization is capable of characterizing the mobility of a node that are associated with topological stability, i. e. the node's speeds, orientations relative to its neighbouring nodes and its past epoch time. iiiBIOPATTERN EU Network of Excellence (EU Contract 508803

    Hybrid Genetic Relational Search for Inductive Learning

    Get PDF
    An important characteristic of all natural systems is the ability to acquire knowledge through experience and to adapt to new situations. Learning is the single unifying theme of all natural systems. One of the basic ways of gaining knowledge is through examples of some concepts.For instance, we may learn how to distinguish a dog from other creatures after that we have seen a number of creatures, and after that someone (a teacher, or supervisor) told us which creatures are dogs and which are not. This way of learning is called supervised learning. Inductive Concept Learning (ICL) constitutes a central topic in machine learning. The problem can be formulated in the following manner: given a description language used to express possible hypotheses, a background knowledge, a set of positive examples, and a set of negative examples, one has to find a hypothesis which covers all positive examples and none of the negative ones. This is a supervised way of learning, since a supervisor has already classified the examples of the concept into positive and negative examples. The so learned concept can be used to classify previously unseen examples. In general deriving general conclusions from specific observation is called induction. Thus in ICL, concepts are induced because obtained from the observation of a limited set of training examples. The process can be seen as a search process. Starting from an initial hypothesis, what is done is searching the space of the possible hypotheses for one that fits the given set of examples. A representation language has to be chosen in order to represent concepts, examples and the background knowledge. This is an important choice, because this may limit the kind of concept we can learn. With a representation language that has a low expressive power we may not be able to represent some problem domain, because too complex for the language adopted. On the other side, a too expressive language may give us the possibility to represent all problem domains. However this solution may also give us too much freedom, in the sense that we can build concepts in too many different ways, and this could lead to the impossibility of finding the right concept. We are interested in learning concepts expressed in a fragment of first--order logic (FOL). This subject is known as Inductive Logic Programming (ILP), where the knowledge to be learn is expressed by Horn clauses, which are used in programming languages based on logic programming like Prolog. Learning systems that use a representation based on first--order logic have been successfully applied to relevant real life problems, e.g., learning a specific property related to carcinogenicity. Learning first--order hypotheses is a hard task, due to the huge search space one has to deal with. The approach used by the majority of ILP systems tries to overcome this problem by using specific search strategies, like the top-down and the inverse resolution mechanism. However, the greedy selection strategies adopted for reducing the computational effort, render techniques based on this approach often incapable of escaping from local optima. An alternative approach is offered by genetic algorithms (GAs). GAs have proved to be successful in solving comparatively hard optimization problems, as well as problems like ICL. GAs represents a good approach when the problems to solve are characterized by a high number of variables, when there is interaction among variables, when there are mixed types of variables, e.g., numerical and nominal, and when the search space presents many local optima. Moreover it is easy to hybridize GAs with other techniques that are known to be good for solving some classes of problems. Another appealing feature of GAs is represented by their intrinsic parallelism, and their use of exploration operators, which give them the possibility of escaping from local optima. However this latter characteristic of GAs is also responsible for their rather poor performance on learning tasks which are easy to tackle by algorithms that use specific search strategies. These observations suggest that the two approaches above described, i.e., standard ILP strategies and GAs, are applicable to partly complementary classes of learning problems. More important, they indicate that a system incorporating features from both approaches could profit from the different benefits of the approaches. This motivates the aim of this thesis, which is to develop a system based on GAs for ILP that incorporates search strategies used in successful ILP systems. Our approach is inspired by memetic algorithms, a population based search method for combinatorial optimization problems. In evolutionary computation memetic algorithms are GAs in which individuals can be refined during their lifetime.Eiben, A.E. [Promotor]Marchiori, E. [Copromotor

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin
    corecore