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Abstract The last decade has witnessed an unprecedented growth in avail-
ability of data having spatio-temporal characteristics. Given the scale and rich-
ness of such data, finding spatio-temporal patterns that demonstrate signifi-
cantly different behavior from their neighbors could be of interest for various
application scenarios such as – weather modeling, analyzing spread of disease
outbreaks, monitoring traffic congestions, and so on. In this paper, we propose
an automated approach of exploring and discovering such anomalous patterns
irrespective of the underlying domain from which the data is recovered. Our
approach differs significantly from traditional methods of spatial outlier de-
tection, and employs two phases – i) discovering homogeneous regions, and ii)
evaluating these regions as anomalies based on their statistical difference from
a generalized neighborhood. We evaluate the quality of our approach and dis-
tinguish it from existing techniques via an extensive experimental evaluation.

1 Introduction

The growth in availability of geo-location sensing hardware and network con-
nectivity has made it easier than ever to deploy sensors to monitor and aggre-
gate information spanning large geographic regions over long periods of time.
Interest in climate modeling and weather prediction has prompted deployment
of hardware to sense temperature, pressure and humidity at very fine granular-
ity. Urban planning and traffic management have sparked interest in monitor-
ing flows in water supply and vehicular traffic to improve water management
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Fig. 1: Weather Anomalies Fig. 2: Twitter Anomalies

and schedule road works respectively. Regional disease incidence data may be
analyzed across space and time to model and predict the spread of epidemics.
In short, there has been tremendous growth in data having spatio-temporal
characteristics. Given the scale and richness of such data, determining anoma-
lous patterns is an interesting and important problem.

1.1 Motivating Examples:

We illustrate the notion of anomalous patterns with real-world examples.
Weather Anomalies: Figure 1 represents a snapshot of the world map with

temperature data at a specific time instance1. The red and yellow regions
represent the hot and cold extremes, whereas dark blue is used to color the
oceans where no temperatures are recorded2. One of the marked areas in the
figure is the Taklamakan desert3 in the North Western China region. This
region corresponds to a warm area of land encircled by mountains on three
sides that are significantly colder at the time of the snapshot, and hence, is
an obvious candidate for an anomalous region. Some other anomalies that
are marked in the figure represent elevated cold regions in the Americas with
warmer plains around them.

Twitter Anomalies: Figure 2 plots the relative frequencies of the words
beer and church in tweets4 originating from North America on July 4, 2012,
the extremes represented by blue and red respectively. As may be expected,
church peaks in the Bible belt5. However, some interesting anomalies can be
observed wherein church tweets dominates a specific marked region in Cali-
fornia, although the tweets in its neighbouring regions predominantly mention
beer. Similar patterns can also be observed in the other marked regions of the
mid-west.

1 http://climate.geog.udel.edu/~climate/html_pages/download.html#ghcn_T_P2
2 In this paper, we extensively use color-based figures to illustrate the concepts of anoma-

lies. Hence, we request the reader to refer to the electronic version or a colored printout of
the paper for better readability

3 http://en.wikipedia.org/wiki/Taklamakan_Desert
4 http://www.guardian.co.uk/news/datablog/2012/jul/04/

us-fourth-july-twitter-beer-church
5 http://en.wikipedia.org/wiki/Bible_Belt
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Fig. 3: Homogeneity Example

The above examples illustrate that finding such regions that demonstrate
significantly different behavior from its neighbors could be of interest for vari-
ous application scenarios. In this paper, we propose an automated approach of
discovering such anomalous regions irrespective of the underlying domain from
which the data is recovered. Such anomalies may be verified or filtered using
domain expertise later; for example, domain knowledge that Taklamakan is a
desert helps in explaining the reason for this anomaly.

1.2 Characteristics of Spatio-Temporal Anomalies:

Given large-scale data with spatial, temporal as well as other parameters (e.g.,
temperature, humidity, etc. associated with weather data), the goal of this
work is to determine spatio-temporal anomalous regions. Formally, we define
a spatio-temporal anomaly as a region which is – “homogeneous i.e., the
values of data parameters being analyzed are consistent within the region, and
statistically different from a local generalized neighborhood i.e., the
data values within the region are significantly different from the ones in its
neighborhood”. Let us analyze both aspects of this definition more clearly.

Homogeneity: Consider Figure 3 that represents uni-variate spatial data
(e.g., a single value such as temperature) that has been collected over points in
a space, with the darkness of a point being directly proportional to the value
of the reading. The black circular region in Figure 3(a) is clearly anomalous
due to having abnormally high readings compared to the surroundings. Our
homogeneity criterion fails for the circular region in Figure 3(b) due to the
area having two (white and black) neighboring regions of contrasting readings.
Intuitively, it may be argued that, analogous to the black region, the white re-
gion has significantly lower value as compared to its black and gray neighbors;
hence, the two individual regions may be identified as separate homogeneous
anomalies. In fact, some of the existing techniques for spatial outlier detec-
tion [21] would identify both these regions as anomalous as they differ from
their neighbors.

In contrast, Figure 3(c) represents a case with a more or less uniform
distribution of high and low values like the pattern in a checkerboard. Since the
high and low values are mixed up, there are no sizable component homogeneous
regions within the circular area. In contrast to existing techniques ([7,35])
(which would classify each individual cell in the checkerboard as anomalous
since it differs from its surroundings), we exclude regions such as those in
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Figure 3(c) from being considered as candidates for anomalous regions due to
the following reasons:

1. Improbable Occurrences: We believe that uniformly scattered varying
values such as the checkerboard pattern would occur in small regions. This
is especially valid in the case of atmospheric data over regions in a geo-space
and/or time. Furthermore, vast expanses of such regions are statistically im-
probable, and the ones observed following this pattern, would most likely be
generated due to the possibility of noisy reading in difficult terrains. Such areas
would be of little interest in the context of anomaly detection.

2. Assumptions from Statistical Measures: Statistical tools such as SaTScan [22]
and its variants, use the assumption that data in the region in question is gen-
erated by a unimodal process (e.g., Poisson), and the notion of homogeneity
is consistent with this assumption. Additionally, under the spatial smoothness
assumption, homogeneity may be used as a proxy for spatial coherence to limit
the search space for anomalies.

3. Preference to Concise Representations: Anomalous homogeneous regions
can be easily described using a concise description on the value-space. In con-
trast, non-uniform regions are difficult to describe intuitively. For example,
Figure 3(c) would be represented by a description such as (temp > 0.8∨temp <
0.2), whereas a homogeneous region (Figure 3(a)) would be easier to express
using a single range (e.g., (temp > 0.75)).

Statistical Difference from a Local Generalized Neighborhood:
An anomaly literally means something out of the common. We interpret this
notion as being statistically different from a local and generalized neighborhood.
Existing works on spatial anomaly detection ([22,31,27,28]) typically classify
a region as an anomaly if its analyzed parameters vary significantly from global
parameters.

However, such an approach has significant drawbacks. For instance, a pa-
rameter like temperature is expected to increase gradually while moving in-
ward from the periphery of a tropical desert, and high temperatures in the mid-
dle of the desert cannot be termed as anomalous despite being much higher
than the average. On the other hand, high temperatures surrounded by a
significantly colder regions is an interesting and uncommon occurrence, and
would potentially need further inspection (e.g., hot springs embedded amongst
regions of cold valleys). To the best of our knowledge, previous works have fo-
cused on global divergences and thus, are different from finding locally divergent
anomalies.

Be that as it may, we do not classify every region which differs from its local
neighborhood as anomalous. This is in stark contrast to some outlier-detection
techniques ([21,7,35]) as well as image-segmentation techniques [13] that clas-
sify every homogeneous region as anomalous if it differs from its immediate
neighbors. Instead we propose the notion of a generalized neighborhood. To
illustrate this notion clearly, consider the circular region in Figure 4(a); its
values are relatively higher compared to the left side (and relatively lower
than the right side). The ring around the circle bounded by the larger dot-
ted circle forms its neighborhood region. Existing spatial-outlier detection as
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Fig. 4: Generalized Neighborhood Example: (a)Transitional Region,
(b)Anomaly

well as image segmentation techniques would consider the circular region as
anomalous since it cannot expand to the left or to the right without violating
the homogeneity condition. However, we propose that this region may not be
considered anomalous since it simply represents an extended transition region
of intermediate values between the low values from the left to the high values
in the right.

On the other hand, Figure 4(b) is clearly anomalous since its left and right
neighborhoods contain low and intermediate values respectively, both con-
trasting well with the high values in the central circle. To re-emphasize, while
the circles in Figure 4(a) and (b) contrast well with their local neighborhood
separately, the one in (a) does not contrast well with its generalized neighbor-
hood since any measure of central tendency on the distribution of values in
the neighborhood (comprising low and high values) would be quite close to
the values within the circle.

1.3 Outline & Contributions:

The anomaly detection approach, proposed in this paper, comprises of two
phases – i) discover homogeneous regions, and ii) evaluate such regions on
their statistical difference from the generalized neighborhood. For phase one, we
run a variant of agglomerative clustering ([24,10]) to generate homogeneous
clusters (note that this approach can generate non-convex clusters as well). In
the second phase, we filter out those clusters that are not sufficiently different
from their generalized neighborhood using a statistical test, whereas those that
survive are deemed to be anomalous regions (or anomalies).

The main contributions of this paper are:

– We introduce the novel problem of discovering spatio-temporal anomalies
as homogeneous regions that are statistically different from their local gen-
eralized neighborhood. To the best of our knowledge, all previous works
employ global statistics comparisons to ascertain anomalies.

– We present a two-phase approach for discovering anomalies and establish
through a user study that our technique outperforms the previous methods
in identifying intuitive anomalies more accurately.
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The rest of the paper is organized as follows: In Section 2, we survey the
related work. Section 3 formally defines the problem, Section 4 explains our
approach for the same, and Section 5 details the results of our experimen-
tal evaluation along with a brief analysis of these results. Finally, Section 6
concludes the paper with directions for future work.

2 Related Work

Overview of Related Work: Our problem of anomaly detection can be
seen as a specialization of the general problem of identifying data with di-
vergent behavior. The high-level goal of characterizing data with respect to
behavioral differences has been addressed in several different tasks ranging
from outlier detection to clustering. An overview of techniques that can be
used to find data with divergent behavior appears in Figure 5. Techniques can
be broadly classified as to whether they seek to estimate divergent behavior
at the individual data object level or at the level of groups of data. Outlier
detection techniques operate at the object level, wherein they quantify each
data object w.r.t their difference from (most usually) the local neighborhood.
Among the techniques that seek to identify groups of data objects, there are
two types of approaches; (1) finding data groups that are divergent from global
behavior (i.e., behavior estimated at the level of the whole dataset), and (2)
partitioning the whole dataset into groups such that the groups are divergent
from each other. Statistical approaches such as scan statistics and mining ap-
proaches such as spatial event detection are of the first kind, whereas clustering
and image segmentation approaches fall into the second category. We address
the highlighted problem of finding groups of data that are divergent from the
neighborhood (the generalized local neighborhood, in particular). As indicated
by the double-edged arrow in the figure, grouping techniques such as clustering
and image segmentation are related to our problem since ensuring divergence
between groups automatically ensures some divergence from the neighborhood
due to the neighborhood itself being part of another group(s). We now detail
the differences of our work from the various groups of techniques in separate
sub-sections herein.

Outlier Detection Approaches: Outlier detection is the problem of
quantifying, for any object/observation, the inconsistency (i.e., outlierness)
between itself and the remainder of the data; the objects with the highest out-
lierness are then deemed to be outliers. A recent work [34] surveys the different
outlier detection techniques along with those that treat spatial attributes spe-
cially. Spatial outlier detection has been extensively studied in the geospatial
and geosciences community. However, as pointed out in Section 1, outlier detec-
tion techniques ([21,7,35]) perform a single point/observation level estimation,
and hence, differ from the basic definition of an anomalous region as proposed
in this paper. For instance, given a spatial grid, these techniques will consider
a grid cell as an outlier if its values are divergent from its immediate neighbors.
Hence, these methods will end up typically classifying all the individual cells in
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Fig. 5: Taxonomy of Approaches for Finding Divergent Data

the checkerboard pattern (in Figure 3(c)) as outliers; which, as argued in Sec-
tion 1 differs from our definition of an anomalous region. Furthermore, none of
these works adopt the notion of a generalized neighborhood, which is a major
distinguishing component of our work. In addition, since these techniques only
consider individual grid cells ([21,7]) or individual graph edges [35] as candi-
dates for outliers, the final set of outliers detected are neither homogeneous
nor arbitrary-shaped.

Statistical Approaches for Identifying Globally Divergent Groups
of Data: The problem of finding globally divergent regions has been exten-
sively studied in the statistics community, where sampling regular regions
such as circles followed by a likelihood ratio test to assess divergence [22] has
been a popular approach. Spatial scan statistics have been refined to identify
arbitrary-shaped regions in methods such as ULS Scan [31] whereas index-
based [27] and simulated annealing based region growing approaches [9] have
also been proposed towards the same problem. In [39], authors argue that al-
lowing for unconstrained arbitrary regions can sometimes be bad, and provide
a method to restrict the shape to avoid peculiar regions where faraway spaces
are brought together into the same region. Additionally, new types of statis-
tical tests such as the bayesian spatial scan statistic [28] have been proposed
and shown to help find globally divergent regions faster. However, as pointed
out in Section 1 and to the best of our knowledge, previous work on finding
spatial events has only focused on global divergences and are thus different
from our problem of finding locally divergent anomalies.

Mining Approaches for Identifying Globally Divergent Groups of
Data: The mining community has also addressed the problem of identifying
globally divergent behavior in the context of detecting spatial events i.e., those
areas that differ from average behavior of the entire space under consideration.
With the average behavior learnt from across the dataset (i.e., global behavior)
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Table 1: Related Work Summary

Technique Homogeneity Generalized Arbitrary-
Local shaped

Neighborhood
Spatial Outlier Detection 6 6 6

(e.g., [35], [21])
Spatial Scan Statistic 6 6 6

[22]
ULS Scan[31], 6 6 4
FlexiScan[39]
Spatial Event 6 6 4

Detection (e.g., [14], [11])
HAC-A 4 6 4

(Ref. Sec. 2)
Image Segmentation 4 6 4

(e.g., [2])

in a pre-processing phase, the spatial event detection problem could be seen as
searching for those areas where the local behavior is divergent from the global
(i.e. globally divergent regions). This could be done by hierarchically drilling
down towards globally divergent areas in a top-down fashion [14], or by means
of a bottom-up approach where seed objects whose neighborhoods display
divergent behavior are aggregated to form globally divergent areas [11]. Once
the global behavior is learnt, a candidate region may be scored by assessing
its behavior, and comparing against the learnt global behavior.

Clustering: Among the most popular techniques to group data into ho-
mogeneous clusters (that are mutually divergent) are clustering techniques [18]
that seek to minimize the intra-cluster distance. However, general clustering
techniques usually do not differentiate between spatial and non-spatial (e.g.,
temperature) attributes; thus, application of clustering to a dataset of sensors
could group sensors with very divergent readings together if they are very
close in space. In particular, the uniform treatment makes it impossible to
identify clusters that are spatially connected while being homogeneous on the
non-spatial attributes (since the difference in criteria entails a requirement of
differential treatment).Though techniques such as ST-DBSCAN [3] propose
to treat spatial and non-spatial attributes differentially, the clusters in the
output are not necessarily contiguous in space since spatial proximity can still
offset for non-spatial homogeneity. An adaptation of hierarchical agglomerative
clustering (we call it HAC-A) would merge the pair of adjacent clusters that
are closest on the readings attribute and discover homogeneous and arbitrary
shaped regions. However, they may not necessarily differ from the generalized
local neighborhood since clusters consider only homogeneity and are oblivious
to the contrast with the local neighborhood. Spatio-temporal clustering [20],
the field relating to clustering as applied to observations that have spatial and
temporal attributes, have mostly focused on moving object data such as tra-
jectories where sequencies of spatio-temporal points are considered as single
objects to be clustered. Additionally, there have been many special-purpose
algorithms that seek to identify specific patterns; for example, cyclone tra-
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jectories could be detected [38] as sequences of low-pressure spatio-temporal
points that are in temporal sequence and coherent with extrinsic data such
as windspeed. Another work deals with clustering cellular towers [32] using
just the load information (i.e., number of calls passing through it), where each
cellular tower has a set of features, each indicating the load factor during a
specific time window.

Image Segmentation: Image segmentation techniques (e.g., blob detec-
tion), widely studied in the computer vision community, employ histograms ([29,
5]), graph partitioning ([36,16]) and region growing ([33,12]) to identify regions
with homogeneous coloring. These methods are more relevant to our problem
than clustering since the color attribute could be conveniently replaced by
other parameters (like temperature, tweets, etc.). However, like clustering,
they too do not use any generalized neighborhood comparison in prioritizing
regions.

Summary of Related Work: To summarize the discussion, we present
a comparison of some techniques techniques in literature with respect to our
three criteria for anomaly detection in Table 1. While HAC-A and image seg-
mentation techniques make use of two of our three criteria, they do not exploit
the generalized local neighborhood. Thus, these could be potential replace-
ments to the first-phase of discovering homogeneous regions, in our approach,
as outlined in Section 1.3. Nevertheless, we will compare our technique against
several of these approaches in the experimental analysis.

3 Problem formulation

Let S = {C1, C2, ..., Cx×y×t} be a spatio-temporal gridded cube over the
spatial (x,y) and temporal (t) dimensions. We use the single suffix notation
(e.g., Ci) instead of representing the cubes as-is (e.g., C(i,j,k)) for simplicity.
Let A = {A1, A2, ..., Aq} be a set of attributes over which spatio-temporal
anomalies will be defined. In the context of weather data, these attributes could
be temperature, air-pressure, humidity, air-density and so on. Every Ci ∈ S
then represents a vector of the form – {v1i , v2i , ..., vqi }, wherein vki represents
a value in the domain of attribute Ak ∈ A. For instance, consider a sample
8 X 8 grid6 shown in Figure 6 defined over a single attribute of temperature
such that each cell represents a specific attribute value associated with the
cell region. In the figure, white cells represent temperatures below 10 degrees
whereas the gray ones are above 25 degrees.

Now, consider a set SA: {C1, C2, C3, ..., Cs}, such that SA ⊂ S. We classify
SA as a spatio-temporal anomaly if it satisfies the:

1. Spatio-Temporal Connectedness Condition: SA is a spatio-temporally con-
nected region; i.e., when a graph is constructed from SA where cells are
nodes, and edges are induced between all pairs of neighboring cells in SA, we

6 For sake of clarity, we illustrate a spatial grid; however, the formulation is extendible to
the temporal dimension.
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Fig. 6: Example: Problem Definition

require that any pair of nodes {Ci, Cj} ∈ SA should be reachable through
a sequence of edges.

2. Homogeneity Condition: For the individual distribution of values for each
distinct attribute across all elements in SA, i.e., {v1, v2, . . . , vs}, we require
that a dispersion measure Dispersion({v1, . . . , vs}) evaluate to not more
than a threshold τ . Among various options for quantifying dispersion (e.g.,
Gini co-efficient [6], Quartile co-efficient [4] and reciprocal of entropy), we
choose the Gini co-efficient in our method.

3. Neighborhood Heterogeneity Condition: We define a generalized neighbor-
hood region for SA as comprising of all cubes from the space S that have
at least one cube from SA at a spatio-temporal distance not more than ρ:

NSA
= {s|s ∈ S : ∃s′ ∈ SA, dist(s, s

′) ≤ ρ}

Where dist(., .) is measured by a popular distance metric such as Cheby-
shev distance7. Informally, NSA

defines a region of width ρ enveloping the
region defined by SA. Our neighborhood heterogeneity condition requires that
the values in the cubes within SA be sufficiently different from those in NSA

,
denoted as {v′1, . . . , v′|NSA

|}. Specifically, we prefer that the value of Stat({v1, . . . , vs},
{v′1, . . . , v′|NSA

|}) be maximized where Stat(., .) is any measure (such as Likeli-

hood Ratio Test (LRT) [26], Chi-squared Test and Paired T-Test [25]) for es-
timating statistical divergence between distributions. In this paper, we choose
to use the LRT test.

For the spatial grid in Figure 6, the set {C13, C19, C20, C21, C28, C29,
C37, C38} represents a anomaly (SA). The set of cells are connected as may
be seen from the figure, thus satisfying the connectedness condition. These
cells all form high-temperature cells (gray color), and are hence homogeneous
too. The gray region is surrounded by white cells of low temperature, that
form NSA

; the neighborhood heterogeneity condition would also be met for

7 http://en.wikipedia.org/wiki/Chebyshev_distance



Detecting Localized Homogeneous Anomalies over Spatio-Temporal Data 11

Alg. 1 Anomaly detection
Input. Grid G with input values
Input. gini indexing threshold τ
Input. LRT statistic threshold γ
Output. Set of anomalies A

/* Cluster Formation Phase */
1. Clusters← {}
2. Unclustered← {c|c ∈ G}
3. while |Unclustered| > 0 do
4. c = next cell from Unclustered

acc to chosen ordering
5. C ← {c} // cluster initialization
6. while true do
7. c′ ← arg minc∈neighbor(C)(gini(C ∪ {c}))
8. if (gini(C ∪ {c′}) ≤ τ)
9. C ← C ∪ {c′}
10. else
11. Clusters = Clusters ∪ C
12. Unclustered = Unclustered− C
13. break
14. end if
15. end while
16. end while
/* Anomaly Detection Phase */
17. A = {C|C ∈ Clusters ∧ LRT (C) > γ}
18. return A

this region since all the cells within it are high temperature cells, and those
outside are all low-temperature, ensuring high statistical divergence.

It must be noted that so far we have defined the notion of a spatio-temporal
anomaly only in the context of a gridded cube. However, this formulation can
be intuitively extended to any dataset where the neighborhood relation is
well-defined. For example, road networks can be modeled by considering roads
incident on the same intersection, as being neighbors.

4 The Anomaly Detection Approach

Given a spatio-temporal region with well-defined neighbors and well-defined
parameter values within each region, our algorithm (Algorithm 1) detects
anomalies using a two-step process.

4.1 Cluster formation

We start by marking all cells in the grid as unclustered (Line 2 in Algorithm 1).
From these unclustered cells, we pick an arbitrary cell (Line 4) and try to grow
it to form a homogeneous cluster. Towards this, at any step of the merging
process, the cluster is compared to each neighboring cell (that is adjacent to
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at least one cell in the cluster), and the one whose merger would result in
the least dispersion value for the cluster is chosen and added to the current
cluster (Line 7). However, the merger is affected iff the merged cluster has a
dispersion value within τ (Line 9). When no more mergers can be performed
to grow the cluster, we include it in the list of candidate clusters (Line 11), and
mark the component cells as clustered (Line 12). Another unclustered cell is
then chosen as a seed, and this process is repeated until all cells are clustered.
The seeds may be chosen according to some pre-determined ordering of cells
(e.g., Z-order, or row-major order).

The dispersion of a set of cells is computed as the dispersion in the dis-
tribution of the readings (e.g., temperature, pressure, or any sensor reading)
within those cells; in particular, the spatial or temporal attributes are not con-
sidered in computing dispersion. Toward that we use the Gini coefficient [6];
Gini co-efficient is convenient since it yields a normalized dispersion value
wherein 0 implies perfect equality (minimal dispersion), and 1 indicates maxi-
mal inequality (high dispersion). The Gini index computation can be extended
to multi-dimensional parameter vectors [15], which makes it suitable for our
purpose. For our experiments, in which each location had a single parameter
value, we use the following formula for calculating the Gini index [8] –

gini(X1, . . . , XN ) = N+1
N−1 −

2
N(N−1)u (ΣN

i=1 PiXi)

where N is number of data points in the cluster, u is the mean of the
distribution and Pi is the rank of the data point after sorting the points in the
population.

4.2 Anomaly Detection:

Once the clusters are formed, the second stage of our algorithm involves iden-
tifying which of these clusters are in fact anomalous. Toward that, we employ
the Likelihood Ratio Test (LRT) statistic [26]. LRT is a standard significance
test8 used to compare two nested models (or in this case, two distributions for
their similarity) and is represented by D as:

D = −2 ln
(

likelihood for null model
likelihood for alternative model

)
Following the procedure explained in [30], we assume that each cluster has

an underlying Poisson distribution P (λr), where λr is derived from the mean of
the parameter values present in the cluster. A similar distribution is defined for
the neighborhood region as P (λn). We then compute the log-likelihood ratio,
testing whether λr and λn are similar (null hypothesis) or differ significantly
(alternative hypothesis). The test statistic value is then compared against the
χ2 value corresponding to a desired statistical significance [17].

8 http://en.wikipedia.org/wiki/Statistical_model#Model_comparison
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Fig. 7: Figure (a): June 1981 Grid Snapshot, (b): Phase One Clusters, (c):
Phase Two Anomalies

For each cluster identified through the earlier step, we compute the neigh-
borhood region from the input grid by choosing appropriate width ρ as ex-
plained in Section 3. We then use LRT to figure out whether the distribu-
tions across the two samples are similar using the strategy explained earlier.
If the LRT statistic value is above a threshold, γ, we identify the cluster as an
anomaly (Line 17), and the final list of anomalies is then output in Line 18.

4.3 Discussion and Analysis

Complexity: A brute-force method to figure out the optimal clustering over
arbitrary shapes in a grid would be exponential in the size of the grid [9]. Our
greedy strategy grows clusters by expanding into the neighbors based on a
homogeneity condition. Let m be the number of neighbors for any grid cell; a
cluster consisting of p cells would then have at most p∗m neighbors to expand
into. At any iteration, there are p∗m Gini-index computations to find the clos-
est neighbor, each computation being in O(p log p). The number of iterations
is bounded by n, since each iteration accounts for exactly one cell. Therefore,
the overall complexity of our approach is roughly O(n m p2 log p). Clearly,
if the grid is partitioned into extremely small clusters (i.e., small p), our algo-
rithm would run with quasilinear complexity. Though the number of neighbors
m is exponential in the number of spatio-temporal dimensions considered, in
real-world application scenarios, it would be a fairly small number.

Thresholds: The threshold value chosen for Gini-based clustering can
impact the cluster formation. More formally, the clusters generated using a
higher Gini threshold are expected to be larger than those obtained using
smaller thresholds. This is so since more heterogeneity can be tolerated under
a larger threshold, and consequently the stopping condition is reached much
later than with the case of a smaller threshold. Similarly, the threshold (z-
value) chosen for LRT arbitrates labeling of a cluster as an anomaly. Choosing
a higher threshold for LRT would result in fewer anomalies.

5 Experimental Evaluation

In this section, we present the experimental evaluation of our approach for
determining spatio-temporal anomalies over two real-world datasets.
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5.1 Experimental Setup:

For empirical evaluation, we used two datasets. The first is a Climate Dataset9

which represents the entire globe divided in a 720 x 360 grid. We refer to this
as Dataset1. The cell values represent the temperature for a given temporal
snapshot. For spatial anomaly detection, we select a grid representing a spe-
cific temporal instance (e.g., Figure 7a for June 1981). For spatio-temporal
anomalies, we select the grid values for the month of June over 12 years (1981-
1992). Since no temperatures are reported for oceans, for each grid cell, only
terrestrial neighbors were considered.

The second dataset pertains to ocean-bed topography in the region of In-
dian Ocean10. We refer to this dataset as Dataset2. This dataset is a shelf
bathymetry for the Indian Ocean region (20◦ E to 112◦ E, 38◦ S to 32◦ N)
and is derived by digitizing the depth contours and sounding depths less than
200 m from the hydrographic charts published by the National Hydrographic
Office, India. The depths are recorded at 5 arcminute intervals, resulting in a
1104 x 840 sized grid. The data generation details are described in [37]. This
is a single snapshot dataset, and we used it for our spatial experiments.

Since the Gini co-efficient that we use requires non-negative values, we add
an offset to all temperature/depth readings in these datasets such that all
readings become non-negative. Unless mentioned otherwise, we use a value of
0.01 for the Gini indexing threshold τ and 3.84 for the LRT threshold; this
LRT threshold corresponds to a statistical significance of 95%.

User Study: Apart from illustrative examples showing the working of the
anomaly detection techniques, we also report user study results in our experi-
mental evaluation. We conducted two user studies, both of which were directed
at eliciting information from humans on the anomalousness of the anomalies
identified by the different approaches. We created a web-survey for the study,
and circulated it among the employees of our organization (i.e., IBM India
Research Lab) through a broadcast email. In each of the two survey question-
naires, users were presented with a visual representation of the anomalies and
asked to rate the quality of each anomaly on a 10-point scale. At the interest of
keeping the instructions simple, we just asked the users to quantify the anoma-
lous nature by comparing the candidate anomaly with its neighborhood. In
particular, we did not inform the participants about the generalized neighbor-
hood and hence, users could legitimately even rate transitional regions (e.g.,
Figure 4(a)) as anomalies. We do not have the identities of the users who took
the survey; however, the survey audience (i.e., to whom the email was sent)
were mostly researchers with either a masters or doctoral degree in computer
science or electrical engineering.

9 http://climate.geog.udel.edu/~climate/html_pages/download.html#ghcn_T_P2
10 http://www.nio.org/index/option/com_subcategory/task/show/title/

Sea-floorData/tid/2/sid/18/thid/113
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Technique Dataset1 Dataset2
Mean Median Mean Median

Our Method 5.94 6.21 8.05 8
Local SaTScan 3.00 3.00 2.85 3

HAC-A 1.66 1.47 2.25 2
HC 2.46 2.29 5.14 5.5

Table 2: Comparison with Baselines on Dataset1 and Dataset2
Group Anomaly Average T-Test

Ranks Score Stat
G1 1-7 5.925 0.003 (vs. G2)
G2 41-47 5.218 0.195 (vs. G3)
G3 81-87 4.922 -

Table 3: Quality assessment of anomalies by group with t-test statistic value
for significance of the results on Dataset1

Group High Medium Low
G1 24 6 6
G2 5 21 10
G3 7 9 20

Table 4: The number of users who agreed upon a particular ranking for each
group of anomalies on Dataset1

Fig. 8: The Top-1 Anomaly on Dataset1 from (a) Local SaTScan, (b) HAC-A,
(c) HC, (d) Proposed Method and (e) Output from Blob Detection

Fig. 9: The Top-1 Anomaly on Dataset2 from (a) Local SaTScan, (b) HAC-A,
(c) HC, (d) Proposed Method and (e) Output from Blob Detection

5.2 Spatial Anomaly Detection:

The output at the end of each (of the two) phases is shown to illustrate the
working of our algorithm. Figure 7b shows the homogeneous regions (i.e.,
clusters) discovered at the end of the cluster formation phase. Unlike Figure 7a,
no specific color-coding scheme is employed apart from ensuring that adjacent
clusters are assigned different colors. Since the total number of clusters is
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extremely large, two unrelated clusters may be represented by a single color.
Figure 7c shows the filtered list of clusters at the end of the second phase,
and represent the final list of anomalies that satisfy the LRT threshold. Please
note that the colors are not indicative of the actual temperature, but similar
color over a contiguous region indicates a cluster. However, similar color over
two disjoint regions indicates two separate clusters independent of each other.

Comparison with Baselines: We evaluated our approach against four
different approaches11 on both the datasets: (a) Local SaTScan, (b) HAC-A,
(c) Homogeneous Clusters (HC) and (d) Image Segmentation. Local SaTScan
is identical to the approach described in [22] except that we apply LRT test
to compare the sampled circular region against the generalized local neigh-
borhood (defined in Section 3) instead of a global neighborhood. HAC-A,
(outlined in Section 2), is the HAC variant that restricts pairwise mergers to
only adjacent clusters. The output clusters are then ranked using a sum of
size and (1 − gini) where gini denotes the gini index within the cluster; this
intuitively favors large and homogeneous clusters. HC represents phase one
of our approach where the output clusters are ranked, by favoring large and
homogeneous clusters. For Image Segmentation, we used a region detection
technique [1]. Unlike other approaches, the input and output are both images;
thus, instead of comparing ranked list of anomalies, we limit our comparison
to a visual analysis of the output.

We conducted a user study among 5 users to compare the results of our
approach against the baselines. We collected the top-7 anomalies from each
technique (i.e., Local SaTScan, HAC-A, HC and ours), and asked users to rate
them on a 10 point scale (1 indicating definitely not anomalous, and 10 being
perfect anomaly). Table 2 shows the results of our comparison; our technique
is seen to achieve a mean score of 6 in the first dataset and 8 in the second
(as much as twice the score of the second best technique). The top anomaly
from the Local SaTScan, HAC-A, HC and our methods over Dataset1 are
shown in Figures 8a,8b,8c and 8d respectively. Figure 8e illustrates the image
segmentation results, where each large colored component represents a single
region. It may be judged that the results are unimpressive as they hardly seem
to be anomalous regions, with large continents (e.g., the entire North America,
and North-central Asia) being put together into a single region. Thus, our
analyses are seen to confirm that our technique is able to detect anomalous
regions better than existing ones. The top anomaly from the Local SaTScan,
HAC-A, HC and our methods over Dataset2 are shown in Figures 9a,9b,9c
and 9d respectively. Figure 9e illustrates the image segmentation results using
the same blob detection technique.

11 We do not include outlier detection techniques in our comparative analysis since it is
not clear as to how outlier detection techniques that estimate divergent behavior at each
data object level may be fairly compared with techniques that discover groups of objects
that exhibit divergent behavior.
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Fig. 10: Spatio-Temporal Anomalies: Over Three Successive Snapshots on
Dataset1

Quality Study: In addition to the above analysis, we performed a larger
study with 36 users for Dataset1

12. Given the shortcomings of using just phase
one (as seen by the relatively poor ratings for HC in Table 2), we intended
to use this study to evaluate the accuracy of (the LRT test for the) second
phase of our approach. We took the ranked output from our technique, and
selected 1-7, 41-47 and 81-87 ranked anomalies (total 21 candidates); we will
refer to these as top (G1), average (G2), and low (G3) ranked anomalies.The
participants were requested to rank based on the degree of anomalousness
(with 1 and 10 signifying not an anomaly and perfect anomaly respectively),
as in the previous study; the results are summarized in Table 3.

It can be seen that G1 (top-7 anomalies) received the highest mean score.
To verify whether the results were significant, we analyzed them using the
t-test statistic13. Lower values of the t-test statistic are desirable since they
indicate that the scores being better due to chance are lower; the last column
in Table 3 lists the values of the t-test statistic illustrating that the better
scores achieved by G1 over G2 are statistically significant too. Furthermore,
although the scores for G2 anomalies do not appear to be significantly better
than the scores for G3 anomalies, they are at least as good as latter. This
confirms that the LRT test was able to rank anomalies in sync with the user
perception. The highest average score for an individual anomaly (rank 3 from
G1) is approximately 8.5. This indicates that our approach not only ranks the
anomalies appropriately, but it also detects significant anomalies.

Additionally, to assess the reliability of agreement among the surveyors, we
calculated the Fleiss’ kappa coefficient (κ) [19]. For every user, we calculated
the average scores for G1, G2 and G3 to categorize them in a relative ranking

12 It must be noted that conducting user surveys is a difficult task. Hence, we conducted
the user survey on Dataset1 only and not on on Dataset2
13 http://en.wikipedia.org/wiki/Student’s_t-test
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of high, medium and low. For example, if the average score of G1 is better
than G2 and G3, and that of G2 is better than G3, it implies that G1 has
high, G2 has medium, and G3 has low ranking. For every group, we quantified
the number of users who agreed upon each of these rankings. The resultant
matrix is shown in Table 4, and the κ value, bounded by 1 in case of complete
inter-annotator agreement, evaluates to 0.149, which translates to slight inter
annotator-agreement [23]. Further, we excluded the ratings of 6 annotators
who largely contradicted the overall ratings, since these could be erroneous
or due to a misunderstanding of the kind of anomalies we were looking for.
After removing these, the κ value evaluates to 0.421, translating to a moderate
agreement.

DataSize Gini Threshold
0.0001 0.001 0.01

1000 (1k) 0.215 0.590 1.256
5000 (5k) 1.132 1.696 7.997
10000 (10k) 1.710 3.107 12.845
100000 (100k) 7.896 17.24 98.131
1000000 (1 mln) 293.6 425.1 1392.3

Table 5: Scalability Tests: Time in Seconds

Scalability Study: In order to assess the scalability of our technique,
we analyzed the runtimes of our method. We varied the data size (i.e., the
number of grid cells) from 1000 to 1 million, by taking parts of, or piecing
together consecutive snapshots of the climate dataset to form a squarish grid.
The runtimes are tabulated in Table 5 for varying levels of Gini thresholds (for
the first phase). The approach is seen to take in the order of a few seconds to
a few minutes. It may be noted that the runtimes are not very critical since
anomaly detection is expected to be an offline task to filter regions to feed to
human agents who may want to analyze them further.

Stability Study: In the first phase of our approach, i.e., cluster formation,
we choose cluster seeds in no particular order. Thus, it is presumable that a
different choice of cluster seeds could lead to a different clustering of cells at
the end of the first phase. However, what we are more concerned about, is
the stability of the top anomalies (i.e., output from the second phase) with
respect to variations in the choice of seeds. Towards analyzing this, we made a
row-major ordering of the cells in the grid, and called Collections.shuffle14 ten
separate times, leading to ten different orderings. We then ran the technique 10
times by using each of the 10 orderings separately, and collected the list of the
top-k anomalies from each. In particular, in the first phase, after each cluster
is formed, the next cell from the input ordering that is yet unclustered is used
as the seed for the next cluster. If the technique were completely insensitive
to the ordering, any two runs would have one-to-one correspondence between
the anomalies at any rank. However, in realistic scenarios, we do not expect

14 http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html#shuffle(java.util.List)
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a perfect match, but, expect that a top-ranked anomaly (we use top-ranked
to mean ranked within k) from one run has a good match with a top-ranked
anomaly from the other run. In particular, for a given value of k, we quantify
this notion as follows:

val(i, j, k) =

1

k

k∑
x=1

max{J(xth anomaly from run i, yth anomaly from run j)|1 ≤ y ≤ k}

where J(., .) denotes the Jaccard similarity between the anomalies supplied
to it. Informally, the above computation pairs each of the top-ranked anoma-
lies from the ith run with the best matching one from among the top-ranked
anomalies in the jth run. Then, the average of the similarity of the top-ranked
anomalies of the ith run with its paired anomaly (from the jth run) is com-
puted. For each value of k, we aggregate val(., ., k) over all the 90 pairs by
simply averaging them:

aggrval(k) =
1

90

∑
1≤i≤10

∑
1≤j≤10,i6=j

val(i, j, k)

Thus, aggrval(k) computes the average match between an anomaly in the
top-k of a run with its best matching pair in the top-k of another run, where the
runs use different orderings of cells. Figure 11 plots the trends of aggrval(k)
against varying values of k from 1 to 20. For very low values of k, it is less
likely that an anomaly from one run can find a good match in the other one
(since only very few anomalies are considered); however, even at k=1 when
only the best anomaly is considered, it is seen that a high average overlap
is recorded between the various runs (aggrval(1) = 0.93). This is seen to
improve upto 0.98 at k=3 beyond which the correlation between runs starts
to decline. This could be due to the fact that as k increases, the anomalies are
not that distinctive and there is more probability of being replaced by some
other anomaly in the top-k list leading to a lower score. Given the very high
overlap between the top anomalies, our technique may be considered to be
stable with respect to choices of seeds.

5.3 Spatio-Temporal Anomaly Detection

As outlined in Section 4, our approach is generalizable to the temporal dimen-
sion. Toward that, we selected, from Dataset1, the monthly snapshot of June
over a range of 12 years (viz., 1981-1992). This enables meaningful compari-
son across years without being hampered by seasonal temperature variations.
We presume it is much easier to visualize and understand a spatio-temporal
anomaly when it is represented as a spatial anomaly that spans for a given
time interval, rather than one that shrinks and grows in space with varying
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Fig. 11: Stability Study: aggrval(k) (Y-Axis) vs. k (X-Axis)

time. Accordingly, we constrain the cluster formation in the first phase so that
temporal expansions always expand the whole cluster; for example, in the first
temporal expansion of a spatial rectangular cluster, expansion on the temporal
dimension is constrained so that the cross-section of the temporally extended
cluster is the rectangle itself. This also means that we would only discover
spatio-temporal anomalies that have not moved in space with the passage of
time; identification of anomalies that have grown/shrunk/move with time is
not addressed in this work.

Figure 10 shows the anomalies obtained across 3 snapshots under this
setting. The top row shows temporally consecutive snapshots of the data,
whereas the bottom shows the spatio-temporal anomalies. We highlight two
large anomalies among the top-ranked ones; blue ovals in the North American
region which persist in the first two snapshots, and green circles in South-West
China persisting across all the three snapshots. The corresponding regions in
the top row are also highlighted with similar colors. The contrasting nature of
these regions with their respective neighborhoods corroborates our results.

6 Conclusion & Future Work

In this paper we presented an automated domain-independent method for
detecting homogeneous spatio-temporal anomalies that differ in behavior from
their local generalized neighbors. In contrast to existing works that analyze
spatial and temporal anomalies in isolation, we focused on detecting spatio-
temporal anomalies within a single setting. Toward that, we proposed a two-
step approach involving clustering and statistical dispersion and divergence
tests.The experimental evaluation reveals that our approach performs better
than existing state-of-the-art approaches.

We would like to point out that there are a few limitations of our method.
For growing the clusters temporally, we require that consecutive snapshots
have similar values. However, it may happen that a region is anomalous spa-
tially over a time period, but have different values over time. For example,
there may be a region that is always hotter compared to its neighbors, but
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the actual temperature varies over time. Our existing method will not be able
to extend such an anomaly over the time period on which it holds. In our
experiments, we got around this problem by considering periodic snapshots
that correspond to similar time periods(e.g., snapshot for the month of June
for a series of years). There are two possible ways to address this problem and
extend our method to a general temporal setting involving snapshots from a
contiguous period (e.g., every month of a year). One approach is to normalize
the grid values at each snapshot, so that they become comparable across time.
An alternative strategy could be to inspect each snapshot independently, and
then merge the anomalies across neighboring snapshots if they exhibit similar
deviation from their spatial neighborhood and have the same shape across the
snapshots. In this strategy, the values are never compared across time, only
the shape of the anomaly is compared. We will explore these alternatives as
part of the future work.

Furthermore, our experimentation was performed primarily on gridded
weather data. Analyzing the generic nature of the problem and the appli-
cability of our proposal to different domains renders as an interesting piece of
work for further study. Specifically, detecting spatio-temporal anomalies in the
context of traffic congestion monitoring, cellular network data analysis, dis-
ease outbreak detection and other such problem scenarios seems an interesting
thread for future work. Further, developing efficient algorithms for detecting
spatio-temporal anomalies in real time is an interesting problem to address.
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