
Hybrid Genetic Relational Search
for Inductive Learning

Federico Divina

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15452084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This research was supported by the Netherlands Organisation for
Scientific Research (NWO) under project number 612-052-001.

SIKS Dissertation Series No. 2004-16. The research reported in this thesis has
been carried out under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems.

VRIJE UNIVERSITEIT

Hybrid Genetic Relational Search
for Inductive Learning

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. T. Sminia,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de faculteit der Exacte Wetenschappen
op dinsdag 26 oktober 2004 om 13.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Federico Divina

geboren te Borgo Valsugana, Italië

promotor: prof.dr. A.E. Eiben
copromotor: dr. E. Marchiori

Contents

1 Introduction 1
1.1 Inductive Concept Learning . 1
1.2 Motivations . 2
1.3 Objectives of the Thesis . 3
1.4 Overview of the Thesis . 4
1.5 Notation . 5

2 Inductive Logic Programming 7
2.1 Representation Language . 7

2.1.1 Propositional Representation 8
2.1.2 First–Order Logic Representation 8

2.2 ILP . 10
2.2.1 Ordering the Hypothesis Space 14

2.3 Two Popular ILP Systems . 16
2.3.1 FOIL . 16
2.3.2 Progol . 18

2.4 Conclusions . 19

3 Evolutionary Computation 21
3.1 Introduction to Evolutionary Computation 22
3.2 Four Paradigms of EC . 24
3.3 Various Components of EC . 26

3.3.1 Representation Language and Encoding 26
3.3.2 Evaluation of Individuals 26
3.3.3 Selection . 27
3.3.4 Variation Operators . 29

3.4 Biases on the Search Space . 30
3.5 Diversity, Species and Niches . 31
3.6 Hybrid EC: Memetic Algorithms 33
3.7 Conclusions . 35

4 EC applied to ILP 37
4.1 REGAL . 38
4.2 G-NET . 41

i

ii CONTENTS

4.3 DOGMA . 42
4.4 SIA01 . 43
4.5 GLPS . 45
4.6 Discussion . 47
4.7 Conclusions . 50

5 Evolutionary Concept Learner 53
5.1 Motivations . 53
5.2 The Learning Algorithm . 55
5.3 Stochastic Search Biases . 58
5.4 Fitness Function and Encoding 59
5.5 Selection Operator . 59

5.5.1 Why the Two Variants of the US Selection Operator? . . 59
5.5.2 WUS Selection Operator 60
5.5.3 EWUS Selection Operator 60
5.5.4 Discussion on Selection 61

5.6 Clause Construction . 64
5.7 Mutation and Optimization . 65
5.8 Hypothesis Extraction . 68
5.9 Conclusions . 72

6 Treating Numerical Values 75
6.1 Weak Point of Univariate Discretization 76
6.2 ECL-LUD . 77

6.2.1 Operators . 78
6.2.2 Incorporation of the Method into ECL 80

6.3 Boundary Points . 82
6.4 Fayyad & Irani’s Discretization 82
6.5 ECL-LSDc and ECL-LSDf . 84

6.5.1 Incorporation of the Method into ECL 85
6.6 Related Work . 86
6.7 Conclusions . 87

7 Experimental Evaluation 89
7.1 Experimental Settings . 90
7.2 Experiments on Incorporating Greediness in ECL 91
7.3 Experiments on Background Knowledge Selection 97
7.4 Experiments on the Selection Operators 101
7.5 Experiments on Solution Extraction 105
7.6 Experiments on Discretization Methods 108

7.6.1 Artificially Generated Dataset 108
7.6.2 Propositional Datasets . 110
7.6.3 Relational Datasets . 115

7.7 Comparison with Other Systems 117
7.7.1 Propositional Datasets . 117
7.7.2 Relational Datasets . 121

CONTENTS iii

7.8 Conclusions . 122

8 Parallelization of ECL 125
8.1 Island Model . 126
8.2 Parallelizing ECL . 127

8.2.1 Migrating Individuals . 130
8.3 Experiments . 131
8.4 Conclusions . 134

9 Two Case Studies 135
9.1 Analysis of Doctor–Patient Relationship 136

9.1.1 The Dataset . 137
9.1.2 Analysis of the Data . 138
9.1.3 Conclusion for the First Case 146

9.2 Detecting Traffic Problems . 147
9.2.1 The Dataset . 147
9.2.2 Analysis of the Data . 149
9.2.3 Conclusion for the Second Case 155

10 Conclusions 157
10.1 Future Work . 160

iv CONTENTS

Chapter 1

Introduction

1.1 Inductive Concept Learning

An important characteristic of all natural systems is the ability to acquire knowl-
edge through experience and to adapt to new situations. Learning is the single
unifying theme of all natural systems. One of the basic ways of gaining knowl-
edge is through examples of some concepts. For instance, we may learn how
to distinguish a dog from other creatures after that we have seen a number of
creatures, and after that someone (a teacher, or supervisor) told us which crea-
tures are dogs and which are not. This way of learning is called supervised
learning.

Inductive Concept Learning (ICL) (Mitchell, 1982) constitutes a central topic
in machine learning. The problem can be formulated in the following man-
ner: given a description language used to express possible hypotheses, a back-
ground knowledge, a set of positive examples, and a set of negative examples,
one has to find a hypothesis which covers all positive examples and none of
the negative ones (cf. (Kubat et al., 1998; Mitchell, 1997)). This is a supervised
way of learning, since a supervisor has already classified the examples of the
concept into positive and negative examples. The so learned concept can be
used to classify previously unseen examples.

In general deriving general conclusions from specific observation is called
induction. Thus in ICL, concepts are induced because obtained from the obser-
vation of a limited set of training examples. The process can be seen as a search
process (Mitchell, 1982). Starting from an initial hypothesis, what is done is
searching the space of the possible hypotheses for one that fits the given set of
examples.

A representation language has to be chosen in order to represent concepts,
examples and the background knowledge. This is an important choice, because
this may limit the kind of concept we can learn. With a representation language
that has a low expressive power we may not be able to represent some problem
domain, because too complex for the language adopted. On the other side, a

1

2 CHAPTER 1. INTRODUCTION

too expressive language may give us the possibility to represent all problem
domains. However this solution may also give us too much freedom, in the
sense that we can build concepts in too many different ways, and this could
lead to the impossibility of finding the right concept.

1.2 Motivations

We are interested in learning concepts expressed in a fragment of first–order
logic (FOL). This subject is known as Inductive Logic Programming (ILP), where
the knowledge to be learn is expressed by Horn clauses, which are used in pro-
gramming languages based on logic programming like Prolog.

Learning systems that use a representation based on first–order logic have
been successfully applied to relevant real life problems, e.g., learning a specific
property related to carcinogenicity.

Learning first–order hypotheses is a hard task, due to the huge search space
one has to deal with. The approach used by the majority of ILP systems tries
to overcome this problem by using specific search strategies, like the top-down
and the inverse resolution mechanism (see chapter 2). However, the greedy
selection strategies adopted for reducing the computational effort, render tech-
niques based on this approach often incapable of escaping from local optima.

An alternative approach is offered by genetic algorithms (GAs). GAs have
proved to be successful in solving comparatively hard optimization problems,
as well as problems like ICL. GAs represents a good approach when the prob-
lems to solve are characterized by a high number of variables, when there is
interaction among variables, when there are mixed types of variables, e.g., nu-
merical and nominal, and when the search space presents many local optima.
Moreover it is easy to hybridize GAs with other techniques that are known to
be good for solving some classes of problems.

Another appealing feature of GAs is represented by their intrinsic paral-
lelism, and their use of exploration operators, which give them the possibility
of escaping from local optima. However this latter characteristic of GAs is also
responsible for their rather poor performance on learning tasks which are easy
to tackle by algorithms that use specific search strategies.

These observations suggest that the two approaches above described, i.e.,
standard ILP strategies and GAs, are applicable to partly complementary classes
of learning problems. More important, they indicate that a system incorporat-
ing features from both approaches could profit from the different benefits of
the approaches.

This motivates the aim of this thesis, which is to develop a system based on
GAs for ILP that incorporates search strategies used in successful ILP systems.
Our approach is inspired by memetic algorithms (Moscato, 1989), a popula-
tion based search method for combinatorial optimization problems. In evolu-
tionary computation memetic algorithms are GAs in which individuals can be
refined during their lifetime.

1.3. OBJECTIVES OF THE THESIS 3

1.3 Objectives of the Thesis

E
F
F
E
C
T
I
V
E
N
E
S
S

1 Optimization

2 Encoding

3 Genetic Operators

4 Diversity

5 Numerical Attributes

� Evolutionary
Algorithm

Learner

�

E
F
F
I
C
I
E
N
C
Y

6

Background
Knowledge
Sampling

7 Parallelization

Figure 1.1: Components of an evolutionary learning system.

As already stated in the previous section, the aim of this thesis is to design
a ILP system that incorporates standard ILP strategies and GAs techniques.
The issues of efficiency and effectiveness are central in our research. These
issues are addressed along the dimensions illustrated in figure 1.1, and briefly
explained in the sequel.

The main features of the system for achieving effectiveness and efficiency
are illustrated in figure 1.1 and explained in the following. First we will address
the features regarding the effectiveness of the system and then those regarding
the efficiency.

Effectiveness

1. Incorporate into a GA an optimization phase based on ILP opera-
tors for optimizing individuals of the current population. This helps
to guide the GA search towards regions of the search space contain-
ing good individuals (exploitation).

2. Develop a representation close to the Prolog syntax. This choice
is motivated by the fact that such a representation makes the ap-
plication of relational operators used in ILP and the evaluation of
individuals easier.

3. Develop genetic operators that bias the search toward better hy-
potheses. Standard GA operators act blindly, that is they do not
incorporate knowledge information about the problem. The oper-
ators we introduce act greedily. They take into consideration various
possibilities, and choose the one yielding the best improvement in
terms of fitness.

4 CHAPTER 1. INTRODUCTION

4. Develop techniques for promoting diversity in the population and
good coverage of positive examples. When learning concepts with
a GA based system, it is fundamental that the population be diverse
and that as many examples as possible be covered. We want to as-
sure that these two aspects are met by the population evolved by
our system.

5. Introduce methods for handling numerical attributes. Many learn-
ing problems use data containing numerical attributes. Numerical
attributes affect the efficiency of the learning process and the accu-
racy of the learned theory.

Efficiency

6. Develop techniques for reducing the computational cost (in terms
of time) of the learning process. More precisely, employing mech-
anisms for controlling the computational cost of fitness evaluation
and the computational cost of the genetic search.

7. Exploit the natural parallelism of the GAs. We want to parallelize
the system in order to reduce to the computational effort for carrying
out the process.

Points 1,2,3,4 and 6 are discussed in chapter 5. We address point 5 in chapter
6, while chapter 8 regards point 7.

1.4 Overview of the Thesis

The thesis is structured in the following way. In chapter 2 we give a brief intro-
duction to inductive logic programming. We begin by explaining the limits of
a propositional representation, used for representing concepts, examples and
background knowledge, and why in some cases a first–order representation is
needed. We then present the basic concepts of inductive logic programming.
We end the chapter by giving two examples of standard algorithms for induc-
tive logic programming.

In chapter 3, the basic notions of evolutionary computation are given. We
begin by individuating four paradigms in which evolutionary computation can
be divided, and by giving some history of the field. We then discuss various as-
pects of evolutionary computation when applied to ICL. The reasons for which
the entire hypothesis space can not be considered and some method for limit-
ing the portion of the hypothesis space to consider are then presented. The
concepts of diversity, species and niches are then given. The chapter ends with
an explanation on how evolutionary computation and other heuristics can be
combined in order to obtain better results.

Chapter 4 gives an overview of state of the art ILP algorithms based on
evolutionary computation. Five systems are briefly presented. The first three

1.5. NOTATION 5

presented systems adopt the same encoding, while the other two adopt dif-
ferent solutions for representing candidate solutions. A description of all the
genetic operators that are used by the systems is given.

In chapter 5 we describe in detail the system subject of this thesis. All the
basic features are presented and discussed in this chapter. We start by giving a
general explanation of the system. Then we present one by one all the compo-
nents, starting from the particular biases adopted for limiting the search space,
and ending with the way in which a final solution is extracted.

The way in which the system handles numerical values is the subject of
chapter 6. We propose three alternative ways in which this can be done. In
this chapter a standard way for dealing with numerical values is also briefly
introduced.

A number of experiments for testing the various components of the intro-
duced system and for comparing the performance of the system with other
systems are presented in chapter 7. With these experiments we have evaluated
the effectiveness of some solutions adopted by the system.

In chapter 8 a simple parallelization of the system is described, and some
experiments are conducted for evaluating the effectiveness of the paralleliza-
tion.

Two case studies are presented in chapter 9. The first study does not re-
quire a first–order representation. This case regards the analysis of a medical
dataset. Two problems are extracted from this dataset. The first problem is to
extract rules for individuating whether a patient is satisfied by his or her rela-
tion with his or her doctor. The second problem consists in extracting rules for
individuating psychiatric patients and non–psychiatric patients. If such rules
can be found, this may mean that in psychiatry the doctor–patient relation is
perceived in a different way. The second case study requires a first–order rep-
resentation, and regards the acquisition of knowledge for individuating traffic
problems on a road network.

Finally, in chapter 10 we give some conclusions for this thesis.

1.5 Notation

The following notation is adopted in this thesis:
�

denotes a set of examples;
� denotes a single example;
���

denotes a set of positive examples;
���

denotes a set of negative examples;
� denotes an individual of the population;
	

denotes a clause;

denotes the empty clause;

6 CHAPTER 1. INTRODUCTION

�
denotes a literal;

�
denotes a predicate;

denotes a term;

�����������������
denote variables. We follow Prolog notation, so in general terms

starting with a capital letter denote variables, while terms starting with a
lower case letter denote constants;

�
denotes a substitution;

� ����������� �
denotes a query;

!
denotes an hypothesis;

"$# denotes the set of positive examples covered by % , where % can be either � ,!
or
	

;

& # denotes the set of negative examples covered by % , where % can be either � ,!
or
	

;
	('*),+ �.- denotes the set of individuals covering the example � ;
	('*)0/2143 " /$5 & /76 denotes the number " / of positive and & / of negative exam-

ples covered by an individual � ;
8:9

denotes the background knowledge;
;�+ % - denotes the fitness of % , where % can be either

!
,
	

or � ;

Chapter 2

Inductive Logic Programming

Learning from examples in FOL, also known as Inductive Logic Programming
(ILP) (Muggleton and Raedt, 1994), constitutes a central topic in Machine Learn-
ing, with relevant applications to problems in complex domains like natural
language and molecular computational biology (Muggleton, 1999).

Learning can be viewed as a search problem in the space of all possible hy-
potheses (Mitchell, 1982). Given a FOL description language used to express
possible hypotheses, a background knowledge, a set of positive examples, and
a set of negative examples, one has to find a hypothesis which covers all pos-
itive examples and none of the negative ones (cf. (Kubat et al., 1998; Mitchell,
1997)).

This problem is NP-hard even if the language to represent hypotheses is
propositional logic. When FOL hypotheses are used, the complexity of search-
ing is combined with the complexity of evaluating hypotheses (Giordana and
Saitta, 2000).

In this chapter we give a brief introduction to ILP. In section 2.1, we start by
motivating the choice of first–order logic for describing a learning problem.

Section 2.2 gives an introduction to ILP. In particular we first give some ba-
sic definitions of FOL, which are needed in the following of this thesis. We
then address the problem of verifying if a given hypothesis covers an exam-
ple. The way in which the space of all possible hypotheses can be ordered is
then discussed. The ordering presented is exploited by many systems for ILP.
In section 2.3 we give two examples of systems that can solve ILP problems.
Section 2.4 concludes this chapter by summarizing the treated arguments.

2.1 Representation Language

When we want to solve a problem with a computer, the first thing that should
be done is to translate the problem into computational terms. In our case this
means to choose a representation language and an encoding.

7

8 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

The choice of a representation language for representing hypotheses may
vary from a fragment of propositional calculus to second–order logic. While
the former has a low expressive power, the latter is rather complex, and for
this reason is seldom used. In this chapter we only address the representation
language issue, while we will address the encoding issue in chapter 3.

Car Price Conditions Age Power (cc) Color Buy
1 low average average <>=@?0?0? Blue Yes
2 high bad new AB=@C0?0? Black No
3 low average old =�?D?0?FEG=D=�?D? Red No
4 average good new =@H0?0?FEG=@I0?D? White Yes
5 high good new =*HJ?D?KEL=�ID?0? Black Yes

Table 2.1: Features of a second hand car.

2.1.1 Propositional Representation

We talk about propositional representation, when a problem can be represented
by a fixed number of attributes, each of which represents a specific feature of
the problem. Let us illustrate this case through an example. Suppose we want
to buy a second hand car. If we are not experts in cars, we may take into con-
sideration only a limited number of features, for example the price, the general
condition, the age, the power of the engine and the color of the car. We may
decide whether to buy a car or not basing our decision only on these features.
Each car that we see represents an example of our problem, which is to learn
the concept of when to buy a car. Each example is described by five attributes,
which identify the features we consider. We could go to visit some second hand
cars dealers, and collect a number of examples. We can organize the data we
have collected like in table 2.1. In this case we have checked five cars. The first
car had a low price, average conditions, it was of average age, had a low power
and was blue, and we thought the car was a good deal. The other four cars are
described in the same way. So each object is described by a limited and fixed
number of attributes. We can then infer a rule for buying a car. An example of
such a rule could be if conditions(good or average) and age(new or average) then buy
the car.

2.1.2 First–Order Logic Representation

The motivation for using first–order logic is that for some problems, e.g molec-
ular biology (Muggleton, 1999) and natural language, propositional logic can
not represent adequately the data structures.

As an example, consider the molecule represented in figure 2.1. A molecule
consists of several atoms, each of which is described by some properties, e.g.,
the molecular weight of the atom, or the charge of the atom. In addition to

2.1. REPRESENTATION LANGUAGE 9

Figure 2.1: A molecule consists of a non-fixed number of connected atoms.
Each atom is described by its own set of properties.

properties relative to a single atom, there are relations among atoms. A first
kind of relation is represented by links between two atoms. If two atoms are
linked to each other we say that there is a bond between them. Atoms can
be associated in more than one bond, and there are different types of bonds.
Another example of relation among atoms are structures that can exist inside a
molecule. A structure can be seen as a relation that involves all the atoms that
belong to a particular structure present in the molecule. For example, from the
molecule represented in the figure, it is evident that some atoms form a “ring”
structure.

If we want to represent such a molecule with propositional logic, we first
have to fix a maximum number of attributes, which describe the properties
of atoms. Not all the atoms in the molecule possess the same properties. It
follows that many of these attributes will not have any value, because they de-
scribe properties that are not relative to all the atoms. Then for every relation
among atoms there should be an attribute for every possible tuple of the re-
lation. The number of attributes for a relation explodes and is polynomial in
the number of available objects. Another problem is that for representing the
molecule, one should also fix an order of its atoms. Without an ordering there
is an exponential number of equivalent representations of a structure. These
problems prohibit an efficient attribute–value representation.

Instead, with first–order logic, we do not have to fix a maximum number
of attributes, nor having an attribute for each possible tuple of a relation. Each
atom can be described only by the properties relative to it. Relations can be
represented by n–ary predicates, whose arguments are the atoms involved in
the relation, and possibly the relation type. For example, a bound between two
atoms M � , MON could be represented as P ' &RQ + M �*� MSN � P '*T &RQ VU ",�*- .

10 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

2.2 ILP

When the language used to express examples, background knowledge and
hypotheses is (a fragment of) first–order logic, ICL is called Inductive Logic
Programming. ILP can be placed in the intersection between machine learn-
ing or data mining and logic programming (Muggleton and Raedt, 1994). ILP
shares with the former fields the aim of finding patterns in the data and to
develop tools and techniques to induce hypotheses from observations (exam-
ples). These patterns can be used to build predictive models or to get some
insight of the data. ILP shares with logic programming the use of FOL for the
representation of hypotheses and data. Intuitively we can then define the aim
of ILP in the following manner:

Definition 2.1 Given are: a set of positive examples
�W�

, a set of negative ex-
amples

�X�
and background knowledge

8W9
of the concept to be learned, ex-

pressed in FOL. Then the aim of ILP is to find a hypothesis
!

such that
!

covers all ��Y �:� and none of the �ZY �X� .
!

is a logic program.

The basic components of FOL are called terms. Terms can be constants,
variables or functions. A constant is a name that denotes some particular
object in some domain. For example “4” is a constant that denotes the number
four in the domain of natural numbers. A variable is a name that can denote
any object of a domain. A function symbol denotes a function of arity n taking n
arguments from a domain and returning one object of the domain. For example
if f is an arbitrary function symbol of arity n and

 � ��������� �
are terms of the

same domain, then
;�+ � ��������� � - is a term indicating a function. In addition to

terms we have predicate symbols. A predicate symbol stands for the name of a
relationship between objects. Each predicate symbol has an associated arity.

Definition 2.2 Let
�

be a predicate symbol of arity n and
 � ��������� �

terms. Then� + �.��������� � - and [� + �J��������� � - are literals.
 �.�������\� �

are called the arguments
of the literal.

Literals can be positives or negatives. For example,
� + M � P - is a positive

literal, which is true if
� + M � P - is true, while [� + M � P - is a negative literal, which

is true if
� + M � P - is false. We refer to a positive literal also as an atom.

In this thesis, we consider hypotheses which are logic programs. A logic
program is defined in the following way:

Definition 2.3 A logic program is a finite set of Horn clauses.

Definition 2.4 A Horn clause is a clause of the form] � �^�@�������������
, where]

is an atom and
� � �������\��� �

are literals.

In the sequel we consider clauses containing only atoms in the body (so no
negation). We say that the part to the left of the arrow is the head of the clause,
while the part on the right of the arrow is the body of the clause. Moreover

2.2. ILP 11

if the arguments of a clause literals are all ground terms we say that the clause
is a ground clause. If a clause consists of only the head it is called fact. A fact
can be ground , e.g.,

� + M � P - � , or not ground, e.g.,
� + ���`_ - � . The first fact states

that the object M is in some relation, identified by the predicate symbol
�

, with
another object P , while the second fact states that every object of the domain
is in relation with the object

_
, and we can express this as a � + � + ���`_ -b- . The

symbol a is called universal quantifier, and the combination a � is read for
every object X. In this thesis,

�:�
,
�X�

and
8:9

are sets of ground facts.
A clause has two interpretations, a declarative interpretation (universally

quantified FOL implication), which defines the meaning of the clause, and a
procedural one, which defines how to solve the clause.

Example 2.1 The declarative interpretation of the clause " + ����� - �dc + �e��� - �
f + � � M - is:

a ���`� �g� + c + ����� - � f + ��� M -ihj" + ����� -b-
and its procedural interpretation is:

in order to solve " + ����� - solve c + ����� - and f + � � M - .
Example 2.2 The following is a logic program:

= �7k`lDlnm�o,p +b3 6 �`� �`� - �
H �7k`lDlnm�o,p +b3 �Gq �sr 6 ����� 3 �Gq �tr 6 - � k`lDlnm�o,p + �sr@������� r - �

This logic program is formed by two clauses. Clause 1 is a fact.
k�l0lum\ovp +b3 �Gq � r 6 �

��� 3 �Gq � r 6 - is the head of the clause 2, while
k�l0lum\ovp + � r �`� �g� r - is its body.

k`lDlnm�o,p
is the only predicate symbol of this logic program.

���`� ��� r ��� r
are variables.

During the learning process we will often need to check whether or not an
induced clause covers an example. In the same way, at the end of the learning
process we have to check if a whole logic program covers an example. To this
aim the programming language Prolog is used. Prolog is an implementation of
the logic programming paradigm. In the following we will see how this can be
done, but first we have to introduce some more notions of FOL. The first notion
we need is the notion of substitution. A substitution is used for instantiating a
variable to a particular term of the domain.

Definition 2.5 A substitution
�w1yx � � 5 � �������\�b� � 5 �,z

is a finite mapping from
variables to terms that assign to each variable

�w{
a term

 {
,
 {}|1 �X{

, =�~L� ~ & .

Example 2.3
� � 1jx � 5 M �`� 5 P z , � N 1�x � 5 '*� �b� 5 � z

are examples of substitu-
tions.

Applying a substitution
�

to a term

, denoted as

 �
, is the result of the

simultaneous replacement of each occurrence of a variable in

appearing also
in
�

with the correspondent term.

12 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

Example 2.4 Let
 1�;�+ ����� - and

�>1�x � 5 � �`� 5 � z
, then

 �>1�;�+ � ��� - . If
the replacement were not simultaneous we would obtain the wrong result;�+ ����� - .

Having two literals, it is sometimes possible to render them equal with an
application of a substitution. If such a substitution exists, it is called unifier . In
general there can be many unifiers, and among them a most general one can
be identified.

Definition 2.6 Let
� �

,
� N be two substitutions. Then we say that

� �
is more

general than
� N , � �F� � N , if there exists a substitution

�.�
such that

� � �.�K1�� N .
Definition 2.7 Let

�}�
and

� N be two literals,
�

a substitution. We say that
�

is
a unifier for

�}�
and

� N iff
��� ��1 � N � . We also say that

�}�
and

� N are unifiable
via

�
.
�

is the most general unifier (mgu) if
�

is more general of all the other
unifiers of

���
and

� N .
Example 2.5 Let

�}�
and

� N be " + ��� P - and " + M � P - respectively. Then
�W1Bx � 5 M z

is a unifier for
�}�

and
� N . Moreover

�
is the mgu for

�}�
and

� N .
We can question a logic program through the use of queries:

Definition 2.8 A query to a logic program is a clause of the form � �^�������b���
where

� {
, =(~G��~ & , are literals.

A query � � + ����� - can be interpreted as the inquiry � ��������� + ���`� - � ?
When we pose a query to a logic program, a resolution procedure, called SLD
(Selection rule driven Linear resolution for Definite clauses) is applied in order
to verify if the query is satisfied by the logic program. The SLD resolution
uses the procedural interpretation of the clauses forming the logic program for
looking if the query has a successful derivation. If such a derivation exists then
the answer will be “yes” otherwise the query fails and the answer will be “no”.
A SLD derivation is a sequence of SLD derivation steps. If we pose a query� ���.���������`� �

to a logic program
� �

, then a derivation step will consist of the
following operations:

1. select an atom
��{

, =Z~���~ & , in the query;

2. select a clause
	

in
� �

such that its head can be unified with
��{

;

3. select the mgu for the query and the head of
	

;

4. replace
� {

in the query with the body of the clause, and apply mgu to the
resulting query;

In steps 1 and 2, the order in which atoms in the query have to be solved
(selection rule) and the order in which clauses of the logic program are used
in the derivation need to be specified in order to render the resolution deter-
ministic. If the derivation ends with the empty clause, denoted by

, then it

2.2. ILP 13

is a successful derivation. If the derivation ends with a query in which the se-
lected atom is not unifiable with any clause in the logic program, then it is a
derivation of failure. A derivation can be also infinite.

In general, if
� �

is a logic program from which a query
	

can be derived
in zero or more resolution steps, then we denote this by

� �B� 	
.

An important property of resolution is that only logical consequences can
be derived. This results is known as soundness of resolution. In general, a for-
mula � logically implies another formula � whenever any model for � is also
a model for � , which we denote by � q 1 � . A model for a formula is an inter-
pretation of the logical language under consideration that makes the formula
true. For Horn clauses, we can restrict our attention to so–called least Her-
brand models. Every Herbrand model � for a logic program

� �
determines

a set of ground facts that are true in � . The least Herbrand model of a logic
program

� �
, denoted as ���n� is the unique set that contains exactly all ground

atoms that are true in all Herbrand models for
���

. Thus
� �

logically implies
a ground atom] (

����q 1] - iff � �n� contains] .
Once we have defined a selection rule, the totality of SLD derivations for a

given query and logic program can be represented by a SLD tree. Each branch
of a SLD tree is a SLD derivation via the selection rule. The nodes of the tree
are queries with a selected literal. Each node in the tree has exactly one son for
each clause that unifies with the selected literal of the query contained in the
node.

In Prolog the procedural aspect is implemented using a depth–first search
strategy through the clauses defined by a logic program, and by choosing al-
ways the first unresolved literal in the query. Prolog builds all possible deriva-
tions for the query until it finds a successful one, or until all possible deriva-
tions have been tried. In the latter case the query fails.

Example 2.6 Suppose that
���

is the following simple logic program:

= ���\kJ���um\� +�� �u� - � luk.��m�ou� +�� �u� - ����kJ ¡m +�� - �
H �¢luk.�`m\o$� + �V£.�¤�@¥�¦� � - �
I �¢luk.�`m\o$� +¨§ kD©`ª«�@m�¬*m - �u�¢luk.�`m\o$� + m�¬*mD�*¥\¦� � - �
C �®�Xk. ¯m + �°£J� - �± �®�Xk. ¯m + ¥\¦� � - �²O�®�Xk. ¯m +³§ k0©�ª - �´ ���\m��Xk. ¡m + m�¬.m - �

and we pose the query � �\k.�µ�nm�� +�� �@¥�¦� � - � to
� �

. Then the first and only suc-
cessful derivation found by Prolog is:

�\k.�µ�nm�� +�� �*¥\¦� � - ¶�·`¸ ¹ �E hº" M c �@& + ��� P��V»�» - � � MO» � + � -�¶b¼g¸ ¹ NE h � MO» � + '*� - ¶¾½\¸ ¹
�

E h

where the selected literal in each step of the derivation is underlined, the se-
lected clause is shown like

_ {
, =�~¿�À~ ´

, and
� � 1Áx � 5 P��V»Â» z , � N 1Áx � 5 '*� z

,

14 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

�.�K1Ãx z
.
� � � N �.�K1Äx � 5 '*� ��� 5 P��V»�» z is the computed answer substitution. In this

case
; M bÅ � c + ��� P��V»�» - � � � N �*��1�; M bÅ � c + '*� � P��V»Â» - is the computed instance of the

query. Note that if we exchange the second and the fourth clause then the first
derivation found by Prolog for the query will be of failure.

In the same way, we can verify that also the ground query � �\kJ���um\� + �V£.�¤�*¥\¦� � - �
has a successful derivation (

� �GÆ x � �\k.�µ�nm�� + �°£J�¤�@¥�¦� � - � z �
) , while the query� �\k.�µ�nm�� + m�¬*mD�@¥�¦� � - � fails. Finally, if we want to know who is the father of who
we pose the query � �\k.�µ�nm�� +�� �u� - � . The computed answer substitutions will
be
x*��5 �°£J�¤�u� 5 ¥\¦� � z

and
x*��5g§ k0©�ªv�$� 5 m\¬.m z

.

We now have all the instruments for verifying the conditions given in defi-
nition 2.1. We can invoke Prolog every time we need to check if a logic program
covers an example by posing queries. If Prolog finds a successful derivation for
the query than the example is covered, otherwise it is not. Here we exploit the
completeness of the resolution, that says that if

���
is a logic program and] a

ground fact, then
����q 1]�� ;«; � �ÇÆ x �] z �
 .

Example 2.7 If
	

is the first clause of the logic program shown in example 2.6,
and

8W9
is formed by the other facts of the same logic program, then we have

seen that the example
�\k.�µ�nm�� + �°£J�¤�@¥�¦� � - is covered by

	
, because Prolog found

a successful derivation for the query � �\k.�µ�nm�� + �°£J�¤�@¥�¦� � - � posed to the logic
program formed by the union of

	
and

8:9
. In the same way, we know that

	
does not cover � N 1 �\kJ���um\� + �V£.�¤�*m\¬.m - .

The two main advantages of ILP are:

1. the use of a FOL representation;

2. easy incorporation of a background knowledge of the domain;

The first point is important because, as we have seen, many domains can
only be expressed in first–order logic and not in propositional logic.

The second point is important because the use of domain knowledge is es-
sential for achieving intelligent behavior. FOL offers an elegant formalism to
represent knowledge and hence to incorporate it in the induction task. The
background knowledge is a knowledge common to several examples.

2.2.1 Ordering the Hypothesis Space

The ILP problem can be seen as the problem of searching a hypothesis space
for a hypothesis that matches the conditions mentioned in definition 2.1. How-
ever, a drawback of a first–order logic representation is that the hypothesis
space associated to this representation is usually much larger than the search
space associated with a propositional representation. This is because the num-
ber of first–order logic candidate solutions is much higher than the number of
propositional logic candidate solutions. For this reason the hypothesis space
is typically limited by a set of inductive biases, as we will see in sections 2.3.1

2.2. ILP 15

and 2.3.2 and in chapter 3. Another aspect that is used is an implicit order-
ing of the hypothesis space. In fact, the search space can be structured with a
general-to-specific ordering of hypotheses.

Definition 2.9 A hypothesis
!w�

is more general than a hypothesis
! N , and

! N
is more specific than

!s�
, if all the examples covered by

! N are also covered by!s�
.

Example 2.8 Let
!s�

be
�\k.�µ�nm�� +�� �$� - � lnkJ��m�ou� +�� �u� - � � MO» � + � - . and

! N be�\kJ���um\� +�� ���°£J� - � luk.��m�ou� +�� ���V£.� - ����kJ ¡m +�� - �v!s� is more general than
! N , be-

cause it will cover more examples than
! N . In particular

!w�
will cover all the

examples covered by
! N . In fact

! N covers only examples for which the second
argument is equal to

 '*�
.

Example 2.9 Let
!w�

be " + ����� - , ! N be " + M ��� - and
! �

be " + M � P - , then we have
that

!s�
is more general than

! N and
! �

and that
! N is more general that

! �
.

We can imagine the hypothesis space structured in this way. For example, if
we have only the predicate symbol " of arity two, the two variables

�
and�

and the two constant M and P , as in the example 2.9 our hypothesis space,
consisting of just one atom, can be viewed in figure 2.2 as a lattice with the
general to specific ordering.

G

S
È

" + ����� -ÉÉÉÉÉÉÉÉÉÉ Ê" + M �`� -

È
Ë Ë Ë Ë Ë Ë«Ì

ÍÍÍÍÍÍ Î" + ��� M -ÍÍÍÍÍ Î
Ï Ï Ï Ï Ï Ï Ï Ï«Ð

È" + � �`� -ÉÉÉÉÉÉÉÉÉÉÉ Ê
Ï Ï Ï Ï Ï Ï Ï Ï Ï«Ð

Ë Ë Ë Ë Ë Ë«Ì" + P �`� -Ë Ë Ë Ë Ë«Ì
ÑÑÑ Ò

Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó«Ô" + ��� P -

È
ÉÉÉÉÉÉÉÉÉÉÉÉÉ Ê" + M � M - " + M � P - " + P � M - " + P � P -

Figure 2.2: Hypothesis space for a simple language. The general to specific
order is indicated by the arrow on the right of the tree structure. In the figure
an arrow from a literal to another literal means “more general”. For instance" + ���`� -thj" + M ��� - means that " + ���`� - is more general than " + M �`� - .

Many systems for ILP exploit this ordering of hypotheses in the operators
they use for moving in the search space and for deciding the direction in which
the search is performed. The operators vary from system to system, depend-
ing on the approach used, the problem to solve, the ideas of the authors and
so on. An operator basically receives a hypothesis, changes it in some ways
and returns the changed hypothesis. Some systems start the search from a spe-
cific hypothesis, which is then generalized during the learning process. This
approach is called bottom-up. Alternatively a top-down approach can be used.

16 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

In this case the learning process starts with a general hypothesis which is then
specialized to fit the training examples.

An operator used in many ILP systems, is the inverse resolution. To give
a flavor of how this operator works, we will describe it for the propositional
form, while for details about the inverse resolution in FOL the reader can refer
to (Muggleton, 1995). What is done in this method is inverting the resolution
rule. Given rules

	 �
and

	 N , the resolution operator constructs a clause
	

which is derived from
	 �

and
	 N . For example, if

	 �
is Õ £.¦�o Õ £.Ö7��×�Øg�°kJÙ.¦�o Õ �u£.�Xm

and
	 N is [Ø��Vk.Ù.¦�o Õ �n£J��m}×�Øg��ÖupJÙ then

	
will be Õ £J¦�o Õ £JÖ7�R×�Øg��Öup.Ù . The inverse

resolution operator then produces
	 N starting from

	 �
and

	
.

The inverse resolution operator is not deterministic. This means that in
general there are multiple choices for

	 N . A way for limiting the number of
choices is to restrict the representation language to Horn clauses and to use
inverse entailment. The idea behind inverse entailment is to change the entail-
ment constraint

8:9ÛÚ�!Üq1 � into the equivalent form
8W9jÚ [� q 1 [! . The

previous constraint says that from the background knowledge and the nega-
tion of the classification of an example, the negation of a hypothesis explaining
the example can be derived. Thus, from the modified constraint one can use
a process similar to deduction to derive a hypothesis

!
. This operator will be

used by the system described in section 2.3.2.
Other examples of operators used for moving in the hypothesis space are

represented by the operators used by evolutionary systems. We will see exam-
ples of evolutionary operators in chapter 3.

2.3 Two Popular ILP Systems

To conclude this chapter, in the next two sections we briefly describe two well
known systems for solving ILP problems: FOIL (Quinlan, 1990) and Progol
(Muggleton, 1995; Muggleton, 1996). We have chosen to present FOIL because
it represents probably the most popular system for ILP, and Progol because of
its application to a number of real life ILP problems.

2.3.1 FOIL

FOIL searches the hypothesis space using a top-down search approach and
adopts an AQ-like sequential covering algorithm (Michalski et al., 1986). The
system first induces a consistent clause and stores it. All the positive examples
covered by the learned clause are removed from the training set, and the pro-
cess is repeated until all positive examples are covered. When a clause needs to
be induced, the system employs a hill climbing strategy (for an explanation of
hill climbing the reader can refer to e.g., (Russel and Norvig, 1995)). FOIL starts
with the most general clause, consisting of a clause with an empty body and
head equals to the target predicate. All the arguments of the head are distinct
variables. In this way this initial clause classifies all examples as positive. The

2.3. TWO POPULAR ILP SYSTEMS 17

clause is then specialized by adding literals to its body. Several literals are con-
sidered for this purpose. The literal yielding the best improvement is added to
the body. If the clause covers some negative examples then another literal is
added. This process is called hill climbing because it proceeds with small steps
toward a local best hypothesis. In figure 2.3 a scheme of the algorithm adopted

ALGORITHM
+ ��Ý(Þ � -

1 Initialize the clause
2 while the clause covers negative examples
3 do Find a “good” literal to be added to the clause body;
4 Remove all examples covered by the clause;
5 Add the clause to the emerging concept definition;
6 If there are any uncovered positive examples then go to 1;

Figure 2.3: The scheme of the algorithm adopted by FOIL.

by FOIL is presented. In steps 2 and 3 the hill climbing phase is performed.
The representation language of FOIL is a restricted form of FOL, that omits

disjunctive descriptions, and function symbols. Negated literals are allowed in
the body of clauses, where the negation is interpreted in a limited way (nega-
tion by failure).

The evaluation function used by FOIL to estimate the utility of adding a
new literal is based on the number of positive and negative examples covered
before and after adding the new literal. More precisely, let

	
be the clause to

which a new literal
�

has to be added and
	�ß

the clause created by adding
�

to	
. The information gain function used is then the following:

à\o��\£ Õ kJ¦�o 1>á _�â + » '@ã ä�åSæä�åSæ � � åSæ Eç» '@ã ä åä å � � å -

where "$è � "$è æ � &Rè � &Rè æ is the number of the positive and negative examples
covered by

	
and

	Zß
, respectively,

á _
is the number of positive examples cov-

ered by
	

that are still covered after adding
�

to
	

.
The add operator considers literals of the following form:

é � + �w�*��� N �����������sê - and [� + �w�J�b� N �������\�b�sê - , where
� {

’s are variables of
the clause or new variables;

é ��{ 1 �Wë or
�X{�|1 �Wë

, for variables of the clause;

é � { 1 _
and

� { |1 _
, where

� {
is a variable in the clause and

_
is an

appropriate constant;

é � { ~ � ë , � { A � ë , � { ~) and
� { A) , where

� {
and

� ë
are clause vari-

ables that can assume numeric values and v is a threshold value chosen
by FOIL.

18 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

There is a constraint on literals that can be introduced in a clause: at least
one variable appearing in the literal to be added must be already present in
the clause. Another restriction adopted by FOIL, is motivated by the Occam’s
razor principle (Blumer et al., 1987). When a clause becomes longer (according
to some metric) than the total number of the positive examples that the clause
explains, that clause is not considered as a potential part of the hypothesis any
more. There is also another bias on the hypothesis space, and it is the upper
bound represented by the most general clause initially generated. In fact all
the clauses that are generated are more specific than the initial one.

2.3.2 Progol

Progol uses inverse entailment to generate one most specific clause that, to-
gether with the background knowledge, entails the observed data. This clause
is to bound a top-down search through the hypothesis space with the con-
straint that only clauses more general than the initial bound are considered.

ALGORITHM
+ � c '@ãO' » -

1 If
� 1®ì

return
8:9

;
2 Let e be a selected example in

�
;

3 Construct a most specific clause í for � using inverse entailment;
4 Construct a “good” clause

	
from í ;

5 Add
	

to
8:9

;
6 Remove from

�
all the examples that are now covered;

7 Go to 1;

Figure 2.4: Covering algorithm adopted by Progol. The emerging hypotheses
are added to the background knowledge and the algorithm is repeated until all
the positive examples are covered.

Progol uses a sequential covering algorithm, illustrated in figure 2.4, to
carry out its learning task. For each positive example � that is not yet covered,
it first searches for a most specific clause, here denoted by í , which covers �
(line 3). For doing this it applies i times the inverse entailment, where i is a
parameter specified by the user. In line 4 a]Zî strategy is adopted for finding a
good clause starting from the most general clause. According to this strategy,
a number of clauses are constructed starting from the initial clause. The clause
that is considered to be the best is then chosen and the process is repeated.

Progol uses
�
-subsumption for ordering the hypothesis space. A clause

	 �
� E subsumes a clause

	 N iff there exists a substitution
�

such that the set of
literals of

	 � �
is contained in the set of literals of

	 N (
	 � �eï2	 N), (

	 �
is more

general than
	 N , written also

	 �ç� 	 N). The refinement operator maintains
the relationship

 � 	 � í for every considered clause
	

. Thus the search
is limited to the bounded sub-lattice

 � 	 � í . Since
	 � í , there exists

a substitution
�

such that
	��Äï í . So for each

�
in
	

, there exists a literal

2.4. CONCLUSIONS 19

� ß
in í such that

� �ð1 � ß
. The refinement operator has to keep track of

�
and a list of those literals

� ß
in í that have a corresponding literal

�
in
	

.
Any clause

	
that subsumes í corresponds to a subset of literals in í with

substitutions applied. Among all the refinements the one that is considered the
best is chosen, according to an evaluation function, and the process is repeated.

The evaluation function used to measure the goodness of a candidate clause	
is:

;�+�	 - 1 " è E + & è�ñ » ã Å èòñ Å è -
where » ã Å è is the length of

	
, defined as the number of literals in

	
minus 1,

and
Å è is the expected number of further atoms that have to be added to the

body of the clause.
Å è is calculated by inspecting the output variables in the

clause and determining whether they have been defined. The output variables
are given by a user supplied model.

A first bias on the hypothesis space is represented by the upper bound

and by the lower bound í . A second constraint is the use of the head and
body mode declarations together with other settings to build the most specific
clause. With a mode declaration, the user specifies for each atom used the
modality in which an argument can be used. So for example it can be specified
that a particular argument is an input variable, or an output variable, or again
a particular constant. Progol imposes a restriction upon the placement of input
variables. Every input variable in any atom has to be either an input variable in
the head of the clause or an output variable in some atom that appeared before
in the clause. This imposes a quasi-order on the body atoms and ensures that
the clause is logically consistent in its use of input and output variables.

2.4 Conclusions

This chapter provided an brief introduction to ILP. We have first seen how for
some classes of problems a propositional representation is not adequate. This
motivates the use of first–order logic for representing data. In chapter 9 another
example of problem for which a first–order representation is needed is given.

ILP can be seen as a search problem through a hypothesis space, where
structures are represented in first–order logic. The objective of the search is to
find a hypothesis that covers all the positive examples and none of the negative
ones. We have seen how Prolog can be used for checking whether a given
hypothesis covers an example or not.

A first–order representation has a great expression power, but this implies
that the hypothesis space to search is huge. A strategy for overcoming this is to
consider the general-to-specific ordering of the hypothesis space. In this way
the hypothesis space can be structured using the concept of generality given
in definition 2.9. This ordering allows to search through the hypothesis space
in a more efficient way, by means of specialization and generalization opera-
tors. The description of two standard ILP algorithms that take advantage of the
general-to-specific ordering of the hypothesis space concluded this chapter.

20 CHAPTER 2. INDUCTIVE LOGIC PROGRAMMING

Algorithm Quality function Language Operators
FOL without Add literals

FOIL Information function symbols with at least
Gain and disjunctive one variable

description already in clause

Progol "$è , &Rè , » ã Å è ,
Å è
 � 	 � í Inverse entailment

Refinement operator

Table 2.2: Summary of features of FOIL and Progol. In table " è and & è are the
number of positive and negative examples covered by

	
, respectively. » ã Å è

is the length of
	

and
Å è is an estimate of how many literals still need to be

added to
	

.

In table 2.2, we summarize the main features of the two algorithms. In
particular we summarize the features that are considered when assessing the
quality of a candidate clause, the language adopted by the two systems and
the operators used.

For assessing the quality of a candidate clause, FOIL uses the information
gain obtained when a new literal is added to the body of the clause. The literal
yielding the best gain is added to the body of the clause. Progol uses a similar
strategy. Once the refinement operator has generated a number of candidate
solutions the one with higher quality function is chosen and further refined.
The quality function used by Progol uses information regarding the coverage
of the candidate solution, its length and an estimate of how many refinement
steps have to be performed in order to obtain a final clause.

The language adopted by FOIL is a restricted form of first–order logic,
where function symbols and disjunctive descriptions are not allowed. The lan-
guage adopted by Progol vary from clause to clause, and is determined by the
most specific clause built with the inverse entailment operator.

Both systems adopt a greedy search strategy for finding good candidate
solutions. This gives the systems a good exploitation power, i.e., they are
very good at fine-tuning candidate solution, but have rather poor exploration
power. This may prevent the systems to escape from local optima.

Chapter 3

Evolutionary Computation

Evolutionary Computation (EC) is a population–based stochastic iterative op-
timization technique based on the Darwinian concepts of evolution described
in the “The origin of species” (Darwin, 1859). Inspired by these principles, like
survival of the fittest and selective pressure, EC tackles difficult problems by
evolving approximate solutions of an optimization problem inside a computer.
An algorithm based on EC is called an evolutionary algorithm (EA). EC has
been applied to find solutions of problems in a variety of domains, e.g., plan-
ning (Goldberg and Robert, 1985; Fogel, 1988; Jakob et al., 1992), design (Bent-
ley and Corne, 2001; Bentley, 1999; Divina et al., 2003a), scheduling (Davis,
1985; Yamada and Nakano, 1992; Corne et al., 1994), simulation and identi-
fication (Roosen and Meyer, 1992; Gehlhaar et al., 1995; Tanaka et al., 1993),
control (KrishnaKumar and Goldberg, 1990; Spencer, 1993) and classification
(Holland, 1987; Fogel, 1993; Keijzer, 2002).

In this chapter we give some basic notions and principles of EC. The chapter
is structured as follows. In section 3.1 we illustrate EC by means of a simple
example. In section 3.2 the four paradigms in which EC is usually divided are
explained. In section 3.3 we discuss the various components of EC applied
to the ICL problem. We start by discussing the representation language and
encoding that can be used. We then address the problem of how to evaluate
the goodness of an individual, and which aspects of an individual are usually
taken into account when assessing the goodness of an individual. Variations
operators are then discussed, and some examples are given. In section 3.4 we
see how and why the portion of the hypotheses space searched can be limited
by means of inductive biases. Section 3.5 addresses the notions of species and
niches formation, and the problem of maintaining diversity in the population
evolved by an EC system. In section 3.6 we briefly motivate and present the
concept of hybrid EC. Section 3.7 presents a summary of the discussed aspects.
For a more detailed introduction to EC the reader can refer to (Bäck et al., 2000a;
Yao, 2002; Eiben and Smith, 2003a).

21

22 CHAPTER 3. EVOLUTIONARY COMPUTATION

3.1 Introduction to Evolutionary Computation

Given an optimization problem, all EAs typically start from a set, called pop-
ulation, of random (candidate) solutions. These solutions are evolved by the
repeated selection and variations of more fit solutions, following the principle
of the survival of the fittest. We refer to the elements of the population as indi-
viduals or as chromosomes. So each individual encodes a candidate solution.
Solutions can be encoded in many different ways. A typical example is repre-
sented by binary string encoding, where each bit of the string has a particular
meaning.

óGôõGö1 óGôõGö2

óGôõGö3 óGôõGö4

óGôõGö1 óGôõGö2

óGôõGö3 óGôõGö4

÷ ÷ ÷ ÷ ÷ ÷

ÑÑÑÑÑÑ

Figure 3.1: Two candidate solutions for the problem of example 3.1.

Example 3.1 Suppose we have a graph made of four nodes, and that each node
can be connected to each other. We consider the problem of connecting the
nodes in an optimal way, according to some criterion. Two candidate solutions
are given in figure 3.1. We could encode these solutions in binary strings in the
following way: we fix an order for the possible connections, and associate a bit
in the binary string to each possible connection. If a bit relative to a connection
is set to 1 then the connection is present in the graph. In total we need 6 bits for
representing candidate solutions. We may then consider the following order
for connections: (1-2),(1-3),(1-4),(2-3),(2-4),(3-4). The solution depicted on the
left hand side of figure 3.1 is then encoded by the string 110011, while 001111
is the binary string relative to the solution proposed on the right hand side of
figure 3.1.

The binary strings of example 3.1 represent the genotype of the individuals
with phenotype represented by the two graphs of figure 3.1. In general, with
the term phenotype we refer to an object forming a possible solution within
the original context, while its encoding is called genotype. To each genotype
must correspond at most one phenotype, so that the chosen encoding can be
inverted, so that genotypes can be decoded.

Individuals are typically selected according to the quality of the solution
they represent. To measure the quality of a solution, a fitness function is as-
signed to each individual of the population. Hence, the better the fitness of
an individual, the more possibilities the individual has of being selected for

3.1. INTRODUCTION TO EVOLUTIONARY COMPUTATION 23

reproduction and the more parts of its genetic material will be passed on to the
next generations of individuals.

Example 3.2 The fitness for individuals of example 3.1 could be a measure of
how well the connection criterion is met by individuals.

The selected individuals are modified by means of some variation opera-
tors, described in section 3.3.4. From the reproduction phase, new offspring
are generated. Offspring compete with the old individuals for a place in the
next generation. Typically offspring replace some of the worst individuals in
the population, based on the fitness. Another replacement strategy is to use
the concept of age, so older individuals are replaced by new individuals.

ø
th generation

ù
ú ú
úú
ú

úú úú

ù
ú
ú

ù
ú
ù ù ù

ú úú

û Variations û

ú
úú
ú

úú ú

ü ønýÿþ��
th generation

ù� �
ù�� ù

�
ù ù ù

ú ú�
Figure 3.2: In the � th generation selected individuals are represented by black
circles. Offspring are inserted in the next generation replacing bad individuals.
Offspring are represented by � .

A graphical representation of an evolutionary step is given in figure 3.2.
The oval on the left hand side represents the old population at the � th genera-
tion, while the right hand side oval represents the new population. Individuals
in the � th generation are represented by circles, where black circles represent
individuals that have been selected for reproduction. These individuals mate
by means of some genetic variations and produce offspring, represented in the
figure by � . In the

+ � ñ = - th generation the created offspring have replaced some
of the old individuals. The process is iterated until a stopping criterion is met.
Examples of stopping criteria are setting a maximum number of generations or
iterating the process until a good enough individual is generated.

For generating new individuals typically two kind of operators are used:
crossover and mutation. In simple terms crossover swaps some genetic mate-
rial between two or more individuals, while mutation changes a small part of
the genetic material of an individual to a new random value.

Example 3.3 Suppose two individuals from the problem presented in example
3.1 are selected, and let these individuals be those represented in figure 3.1

� � 1 =0=�? q ?u=0=� N 1 ?0?n= q =D=0=
Then an application of crossover may generate the two new individuals:

24 CHAPTER 3. EVOLUTIONARY COMPUTATION

óGôõGö1 óGôõGö2

óGôõGö3 óGôõGö4

ÑÑÑÑÑÑ

óGôõGö1 óGôõGö2

óGôõGö3 óGôõGö4

÷ ÷ ÷ ÷ ÷ ÷

Figure 3.3: The two offspring obtained by an application of one-point crossover
to the individuals of example 3.1.

� ß � 1 =D=�? q =0=D=� ßN 1 ?D?n= q ?n=D=
� ß � encodes the situation depicted on the left hand side of figure 3.3, and � ßN
encodes the situation shown on the right hand side of figure 3.3.

In the above example a so called one-point crossover has been used for
creating two new individuals, from two selected individuals, called parents.
The operator selects a point inside the two strings, denoted by

q
in the example,

and produces the offspring by exchanging the substrings of the parents. We
will see other examples of crossover in section 3.3.4.

The combined application of selection and variation generally leads to im-
proving fitness values throughout generations (Eiben and Smith, 2003b). Evo-
lution is often seen as the process of adaptation to an environment. So fitness
can be seen as how the environmental requirements are matched. The better
the fitness of an individual the better the individual matches these require-
ments, and this increases viability, which means that the individual will have
more chances to reproduce. So at each generation the population will become
more and more adapted to the environment. If we are solving a problem with
EC, this means that the population will get closer and closer to the solution.

3.2 Four Paradigms of EC

Four main paradigms of EC can be identified (Eiben and Smith, 2003a):

Evolution Strategies (ES) was introduced in (Rechenberg, 1973). ES typically
use an individual representation consisting of a vector of real numbers.
ES originally relied most on mutation as main exploratory search opera-
tor, but nowadays ES use also crossover.

Evolutionary Programming (EP) was first introduced in (Fogel et al., 1966).
EP was originally introduced for developing finite state automata for
solving specific problems. Nowadays EP is often used to evolve indi-
viduals consisting of real-valued vectors. EP does not use crossover.

3.2. FOUR PARADIGMS OF EC 25

Genetic Algorithms (GAs) were introduced by John Holland in (Holland,
1975). GAs typically rely on crossover for exploring the search space.
Mutation is considered as a minor operator, and is applied with very low
probability. The classic representation used in GAs is a binary string one,
however nowadays other kind of representations, such as real-valued
strings, are also adopted.

Genetic Programming (GP) was introduced in (Koza, 1992). GP is often de-
scribed as a variant of GAs. In GP individuals represent some sort of
computer programs, consisting not only of data structures, but also of
functions applied to those data structures. Individuals typically are tree
structures.

Within each paradigm several different algorithms exist, with different fea-
tures. For this reason the distinction between paradigms is not always so
straightforward. More and more methods developed for a particular paradigm
are also adopted by other ones.

ALGORITHM
+ �Z]ðEç� � -

1 initialize population;
2 evaluate each individual in population;
3 repeat
4 select parents;
5 recombine pairs of parents
6 mutate the resulting offspring;
7 evaluate offspring;
8 insert offspring in the population;
9 until (stopping criteria)

10 Extract solution from population;

Figure 3.4: A general scheme of a GA or a GP.

A general scheme of a GA or GP is shown in figure 3.4. In the scheme, the
first operation done is the initialization of the population. This can be done at
random or with some different strategies. Then each individual of the popula-
tion needs to be evaluated. Individuals are then evolved (the repeat statement).
In step 4 a number of individuals are selected from the population. Selected in-
dividuals are allowed to generate offspring. Offspring are generated with the
application of crossover and mutation in steps 5 and 6. Both crossover and
mutation are applied with a given probability, called crossover and mutation
rate respectively. They are then evaluated and inserted in the population. The
process is iterated over a number of generations, until a stopping criterion is
met.

26 CHAPTER 3. EVOLUTIONARY COMPUTATION

3.3 Various Components of EC

In the following we address various aspects of EC when used for ICL. In par-
ticular we discuss the representation of individuals, how to assess the quality
of individuals and the operators that can be used for selecting individuals and
moving in the search space.

3.3.1 Representation Language and Encoding

In chapter 2, we have seen how important the choice of a representation lan-
guage is. Once we have a representation language, we need to decide how to
encode candidate solutions. An individual can encode a single rule or a set of
rules, e.g., a logic program. Whatever the representation used, rules need then
to be encoded into individuals. At this aim, various solutions can be adopted,
e.g binary strings, real-valued strings, tree structures, high level encoding, etc.
In chapters 4 and 5 we will see different solutions adopted for encoding rules.

3.3.2 Evaluation of Individuals

In simple terms what characterizes a hypothesis (candidate solution) as good
is how well it performs on the training examples and a prediction of how well
its behavior will be on unseen examples. For instance, a hypothesis covering
several positive examples and no negative examples could be considered as
a good hypothesis. A fitness function is used to measure the goodness of a
hypothesis. Several properties can be used for defining a fitness function, like:
completeness, consistency and simplicity.

Definition 3.1 Let
!

be an hypothesis.
!

is said to be complete iff
!

covers all
the positive examples.

Definition 3.2 Let
!

be an hypothesis.
!

is said to be consistent iff
!

does not
cover any negative examples.

Completeness and consistency are two properties that almost all evolutionary
inductive learning systems incorporate in the fitness function.

inconsistent region �
������������ concept to learn��� � �

incomplete hypothesis�
A B

CE

D

Figure 3.5: Illustration of incompleteness and inconsistency.

3.3. VARIOUS COMPONENTS OF EC 27

Example 3.4 An illustration of both an incomplete and an inconsistent hypoth-
esis is given in figure 3.5. The concept to be found is represented by the area
identified by the points] 8 		�

. The oval in the figure represents an incomplete
but consistent hypothesis, since it fails to cover all the region identified by the
target concept, but it does not cover any portion of the region that does not be-
long to the target concept. Instead, the rectangle] 8 	 � represents a complete
but inconsistent hypothesis, since it covers all the region relative to the target
concept, but it also covers some portion of the region that does not belong to
the target concept.

Simplicity is a concept often used following the Occam’s razor principle,
which advocates to prefer the simplest hypothesis that fits the data. One ra-
tionale explanation for this is that there are fewer short hypotheses than long
ones, and so it is less likely that one will find a short hypothesis that coinciden-
tally fits the data. There are many ways for defining simplicity, e.g.,:

Short rules. Prefer shorter rules over longer ones. The length of a rule depends
on the representation used, and so the same rule could be considered
short by a learner and long by another one.

MDL. This is a more general concept, since it uses a notion of length that does
not depend on the particular representation used. According to the Min-
imal Description Length (MDL) principle (Rissanen, 1989) the best model
for describing some data, is the one that minimizes the sum of the length
of the model and the length of the data given to the model. Here by
length we mean the number of bits needed for encoding a model or the
data.

Information gain. Information gain (Quinlan, 1986) is a measure of how a
change in a hypothesis affects its classification of the examples. This
principle when incorporated in the search strategy of a method like in
decision trees, biases the search toward shorter rules.

3.3.3 Selection

At each generation, a number of individuals are selected in order to reproduce
and generate in this way a new generation. Individuals can be selected in many
different ways. Selection is a stochastic process: fitter individuals have higher
chances of being selected, but also weak individuals have a chance to become
a parent. Examples of selection mechanisms are ranking selection, tournament
selection and roulette wheel selection. For more details on selection mecha-
nisms the reader can refer to (Bäck et al., 2000a; Bäck et al., 2000b; Goldberg
and Deb, 1991; Blickle and Thiele, 1995).

Ranking selection was proposed in (Baker, 1985). Every individual of the
population is given a rank between 0 (less fit) and 1 (most fit). The higher the
rank of an individual the higher the probability the individual is selected. In
tournament selection n individuals are randomly selected from the population

28 CHAPTER 3. EVOLUTIONARY COMPUTATION

and the fittest is selected. The parameter n determines the tournament size. A
common value for n is 2.

ROULETTE WHEEL SELECTION
+ Þ &RQ �) � Q T MO» á -

1
á ��
 � = number of Þ &RQ �) � Q T MO» á

2
á � _ ' c = array of dimension

á ��
 �
3

 ' ; � &R� á@áF1� r {����{���� ; � &R� á*áD+ � { -
4

á � _ ' c � 1�� {�� � � r¾r�� / ·������� � {�� � � r¾r
5 for

+ ��A>= - Ú + � ~ á ��
 �.-
6 do

á � _ ' c { 1®á � _ ' c { � � ñ � {�� � � r¾r � /"! ������ � {�� � � r¾r
7 � 1 � ñ =
8 c M &RQ '*�Û1

random number between 0 and 1
9 return � { such that

á � _ ' c { � � < c M &RQ '*� ~ á � _ ' c {

Figure 3.6: Algorithm implementing the roulette wheel selection mechanism.
Each entry

á � _ ' c { of the
á � _ ' c array is associated to the relative individual � { .

Also in the roulette wheel mechanism n individuals are randomly selected
from the population. A roulette wheel is built, where the sector associated to
each of the n selected individuals is proportional to the fitness of the individ-
ual. Individuals with higher fitnesses have more probability of being selected,
having wider sectors associated to them. The roulette wheel selection mech-
anism can be implemented by the algorithm shown in figure 3.6. First the
sum of all the fitnesses of the individuals is computed. Then a vector,

á � _ ' c ,
is constructed, which represents the sectors of the roulette wheel. A random
number is generated, the individual whose sector is the one individuated by
the random number is selected. In chapter 4 and in chapter 5 we will see some
examples of application of the roulette wheel selection.

Example 3.5 Suppose that three individuals � � , � N and � � are randomly se-
lected from the population. Let the fitnesses of the three individuals be the
ones shown in figure 3.7. The array

á � _ ' c is then equal to 0.6 0.9 1.0
where 0.6, 0.9 and 1.0 are the upper bounds that delimit each sector. Each en-
try

á � _ ' c { is associated to � { , =e~ ��~ I . A random number between 0 and
1 is generated and an individual is selected. It can be seen that � � has more
chances of being selected, since its sector is wider. The array can be seen as
the roulette wheel shown in figure 3.7, where the dimension of the sectors is
equal to the dimension of the sectors

á � _ ' c { . The random seed can be seen as
the ball used in a roulette wheel. The roulette wheel is spun and the individual
associated to the sector where the ball has stopped is selected.

3.3. VARIOUS COMPONENTS OF EC 29

; � &R� á*áS+ � � - 1 ? � ±
; � &R� á*áS+ � N - 1 ? � I
; � &R� á*áS+ � � - 1 ? � =

Ñ Ñ# #� �
� �
� N

Figure 3.7: An example of roulette wheel for three individuals, � � , � N and � � .

3.3.4 Variation Operators

From selected individuals, offspring are generated, by means of the applica-
tion of some variation operators to the parents. The most common variation
operators are crossover, or recombination, and mutation.

Crossover operators take two or more individuals as an input, and return
two or more offspring. Offspring are obtained by swapping some parts of the
parents. The choice of what parts of each parent are combined, and how these
parts are combined depend on random drawings. The principle behind cross-
over is that by mating two individuals with different but desirable features, an
offspring that combines both of these features can be created.

Mutation operators receive a single individual. A small part of the individ-
ual is changed, and the new mutated individual is returned. Mutation has the
role of guaranteeing that the search space is connected.

In the following we will see an example of classical mutation operator. In
chapter 5 other mutation operators are introduced. Variation operators can
be divided into two classes: standard GA operators and GP operators. The
first class of operators, GA operators, act on bit strings. We have already seen
an example of crossover, called one-point, in example 3.3. Other examples
of crossover operators are the two-point crossover, where two points inside
the parents are used, and the uniform crossover, which combines bits sampled
uniformly from the two parents.

Example 3.6 An example of two-point crossover is the following: given the
two parents

� � 1 =0=D= q =0=D=0=0=D=0=D= q =0=0=� N 1 ?0?D? q ?0?D?0?0?D?0?D? q ?0?0?
two points are randomly selected inside the strings. The points are denoted byq
. With the application of the two-point crossover we obtain the two offspring:

� ß � 1 =0=D= q ?0?D?0?0?D?0?D? q =0=0=� ßN 1 ?0?D? q =0=D=0=0=D=0=D= q ?0?0?
Example 3.7 An example of uniform crossover is the following: given the two
parents

� � 1 = q = q = q = q = q = q = q = q = q = q = q = q = q =� N 1 ? q ? q ? q ? q ? q ? q ? q ? q ? q ? q ? q ? q ? q ?

30 CHAPTER 3. EVOLUTIONARY COMPUTATION

an application of a uniform crossover may produce the following two off-
spring:

� ß � 1 ? q = q = q = q ? q = q ? q = q = q ? q ? q ? q ? q =� ßN 1 = q ? q ? q ? q = q ? q = q ? q ? q = q = q = q = q ?
Example 3.8 An example of a classical mutation operator is the following: given
the individual

� 1 =0=0=D= ?0?D?0?0?D?n=D=0=0=
a mutation operator can change the fourth bit and the resulting individual is:

� ß,1 =0=D=�? ?D?0?0?D?0?u=0=0=D=
The second class of operators, GP operators, act on tree structures. A cross-

over operator will then create offspring by exchanging subtrees of the parents.

Example 3.9 If the two selected individuals are those shown on the left of the
arrow in figure 3.8 then a crossover may produce the two offspring shown on
the right of the arrow.$

$ % % %&&& Ñ('
' ')))+* * *

$ % % %&&& $÷'
' û

$
$ % % %&&& Ñ('

'
$ % % %&&& $÷'

' '))),* **
Figure 3.8: Example of GP crossover. The dark part of the two parents are
swapped.

Example 3.10 If a selected individual is the one shown on the left of the ar-
row in figure 3.9, then an application of a GP style mutation may produce the
individual shown on the right of the arrow.

3.4 Biases on the Search Space

If we want to assure that a solution is found, it is obvious that the unknown
target concept must be contained in the portion of the hypothesis space that
is searched. Using a hypothesis space capable of representing every learnable
concept could seem the solution, but this would lead to a very large search
space. To illustrate this, consider a learner that uses examples described by
a set of attributes. In general, in this setting, an unbiased hypothesis space

3.5. DIVERSITY, SPECIES AND NICHES 31$
$ % % %&&& Ñ '

' ')))+* * * û

$
$ % % %&&& Ñ '

'
Figure 3.9: Example of GP mutation. The dark part of the left tree has been
mutated by deleting one leaf.

contains H.- /0- possible concepts, where
q � q

is the cardinality of the example
set. For instance, if a set of attributes can describe 90 different examples of the
concept to be learned, then there are H21 � distinct target concepts that a learner
might be called upon to learn. This is a huge space to search, and for this
reason some biases have to be used in order to limit the search to a portion of
the hypothesis space.

To limit the size of the search space two main kind of biases are used (Fre-
itas, 2002):

Search bias. This bias determines how an algorithm prefers one hypothesis
over others.

Example 3.11 The fitness function is a search bias, because it biases the
algorithm towards fitter hypotheses.

Language bias. This kind of bias imposes a constraint on what kind of hy-
potheses can be represented by the algorithm. The hypothesis space is
limited to the resulting set of representable hypotheses.

Example 3.12 If the language used for representing candidate hypothe-
sis is a restricted form of FOL, where only constants and variables are
allowed to appear in a clause, then clauses of the form:

" + ���`� - � f + M � ;�+ � -b- � +�;�+ � - �g� - �

where
;

is a function symbol, are not part of the language.

3.5 Diversity, Species and Niches

A typical feature of a successful natural system is the presence of different
species that can survive in different niches of the environment. The more
species can survive in a system, the more successful the system is. Each species
can exploit different resources of the system and cooperate or compete with
other species. In the same way, within a population maintained by an EA, dif-
ferent species can survive in different niches. A species can be determined in

32 CHAPTER 3. EVOLUTIONARY COMPUTATION

different ways, as we will see in the following. However the idea of a species
in EC is similar to the idea of species in nature: a species differs from another
one for some particular features specific of that species.

A motivation for maintaining different species in the population is that in
this way computational resources are exploited more effectively by avoiding
useless replications and redundancies. Moreover maintaining diversity in the
population allows to have individuals spread across the hypothesis space, so
that all the areas of the hypothesis space can be searched, and there are no over-
crowded regions. This can be seen also as having individuals spread across
several niches in the fitness landscape. Problems in which diversity in the
population needs to be assured are common in ICL. This because it is often
important to assure that the population does not converge to a single super–
individual, which covers many examples. Moreover it is important to assure
that there are no overcrowded areas in the hypothesis space, but that all the
promising regions are explored.

Different methods for achieving species and niches formations, as well as
for maintaining diversity in the population, have been proposed. Among these
crowding (De Jong, 1975) and sharing function (Goldberg and Richardson,
1987) are two popular methods.

Crowding is a variant of a simple GA with respect to the replacement of
older individuals. Instead of substituting the worst individuals in the popu-
lation, new generated individuals will replace the individuals that are most
similar to them, according to a similarity measure. In this way subpopulations
are likely to grow, because similar individuals compete with each other.

With sharing function, the fitness of an individual is reduced depending
on the number of existing individuals similar to it. In this way the selection
probability is modified, with the goal of inhibiting the excessive growth of the
genetic pressure of a subpopulation.

The function used for determining the similarity between individuals can
act on a genotypic level or on a phenotypic level. At a genotypic level only
the structure of the encoding is considered. An example of a function that can
be used for determining the similarity between two individuals encoded by
bit strings at a genotypic level is the Hamming distance. The Hamming dis-
tance is given by the number of 1s resulting by XORing the two bit strings.
The Hamming distance can be interpreted as the number of bits which need
to be changed to turn one string into the other. At a phenotypic level the
distance between two individuals is given by their distance in their seman-
tic domain. Sharing function is a computationally expensive method, since it
requires to compute the distance between each pair of individuals of the pop-
ulation. We will see other examples of mechanisms for promoting diversity, as
well as species and niches formation in EC applied to ICL in chapter 4.

3.6. HYBRID EC: MEMETIC ALGORITHMS 33

3.6 Hybrid EC: Memetic Algorithms

Memetic algorithms (MAs) (Moscato, 1989) combine evolutionary-based me-
thods with other techniques that are known to be good for solving a particular
class of problems. These techniques usually consist of one or more phases of
local search, or of the use of problem-specific information in the operators used
in the evolutionary method, as we will see in the following.

The choice for the introduction of MAs is motivated by the fact that EAs
are good at exploring the hypothesis space, but are less good at exploitation.
This means that EAs can rapidly find good solutions, but they are not as good
at “fine-tuning” these solutions to (near) optimality. This is partially due to
the stochastic nature of the variations operators adopted in EAs. Moreover in
many problems to which EAs are applied, there is a good amount of knowl-
edge and of user experience available. In such cases, benefits can often be
obtained when this information is used inside an EA, in the form of special-
ist operators and/or good solutions, provided that the search is not biased too
much that the generation of new solutions is prevented. In these cases the com-
bination of an evolutionary and heuristic method, performs often better than
either of the original methods alone.

Initial Population
Known Solutions
Constructive Heuristics
Selective Initialization
Local Search

�

È
Mating Pool

È
Crossover � Use of problem-specific

information in operator

Offspring � Local search

È
Mutation � Use of problem-specific

information in operator

Offspring � Local search� Modified selection operators

�

S
e
l
e
c
t
i
o
n

Figure 3.10: Evolutionary phases where knowledge or other operators can be
used within the evolutionary cycle.

Figure 3.10 shows in which phases of the evolutionary process knowledge
and information about the problem can be incorporated. The first place where
knowledge can be incorporated is the initialization of the population. EAs typ-
ically initialize the population to random candidate solutions. The initial pop-
ulation could be instead initialized to some known good solutions. These so-
lutions could be known beforehand or be the results of some heuristics. Local

34 CHAPTER 3. EVOLUTIONARY COMPUTATION

search can be also applied to randomly generated solutions, so that the initial
population consists of a set of points that are locally optimal with respect to the
operator used in the local search. Local search can be described as an iterative
process of examining the set of points in the neighborhood of the current solu-
tion, and replacing it with a better neighbor, if one exist. Another way , called
selective initialization, is to generate a large set of random solutions and then
select a subset of these solutions.

Initializing the population to non-random solutions can have interesting
benefits. Using existing solutions can prevent wasting of computational efforts
needed to reach already known solutions. Another advantage is that an initial
population of non-random solutions can bias the search towards regions of the
search space containing good solutions, increasing in this way the effectiveness
of the search.

“Intelligent” crossover and mutation operator can be used instead of clas-
sical evolutionary variation operators. The “intelligent” operators can exploit
problem- or instance-specific information in order to produce better offspring.
An example of “intelligent” operator is the mutation operator proposed in
(Divina et al., 2003a). A GA is used for evolving a set of Postscript instructions
(a set of folds), that when sent to a printer, printed on a sheet of paper (and
folded according to the instructions), result in a ”flying form” capable of stay-
ing in the air for the maximum amount of time possible. A mutation operator
used in that GA exchanges the order of the folds, exploiting the information
on how single folds are encoded into the genotype. The operator exploits in
this way some knowledge about the problem. Other examples of “intelligent”
operators are given in chapter 5.

The most common use of hybridization within EAs, is the application of
one or more phases of local search acting on the offspring created by mutation
or crossover. In this way there is the chance that if variation operators generate
a solution that is close to the optimum, this solution can be improved in such a
way that the optimum can be reached.

Information about the problem can be used also in the selection operator.
This can promote diversity in the population, avoiding in this way the prema-
ture convergence around some suboptimal point of the search space. Prema-
ture convergence of the population is a problem that afflicts many MAs. This is
due to the application of local search. If the local search phase continues until
each point has been moved to a local optimum, then this leads to an inevitable
loss of diversity within the population. An example of selection operator that
incorporates knowledge about the problem is given in chapter 5.

A last point, not listed in the figure, where knowledge about the problem
can be easily incorporated, is in the decoding of individuals. Here knowledge
can be applied in order to perform an intelligent decoding, producing better
phenotypes.

3.7. CONCLUSIONS 35

3.7 Conclusions

The aim of this chapter was to provide the reader with the basic notions of
evolutionary computation, and in particular to provide the notions on various
aspects of EC when used for ICL.

EAs work by the repeated application of selection, recombination and mu-
tation of fit individuals. What distinguishes EAs from local search algorithms,
is the fact that EAs do not operate only on one candidate solution. Instead EAs
operate on a number of candidate solutions, called population, at the same
time. The use of a population determines a nonuniform probability distribu-
tion function. This function governs the generation of new candidate solutions
starting from a given population. The probability distribution function reflects
possible interactions among candidate solutions.

Maintaining a population not only gives the possibility to EAs of escaping
from local optima, it also gives the possibility to cope with large and discon-
tinuous search spaces. This is important for ILP, where the hypothesis space to
search is huge and where noise in the data can be present.

36 CHAPTER 3. EVOLUTIONARY COMPUTATION

Chapter 4

EC applied to ILP

Evolutionary computation has proved to be successful in solving compara-
tively hard optimization problems, as well as problems like ICL (Goldberg,
1989; De Jong et al., 1993). Moreover GAs, GP and ES have some features that
render them an attractive alternative to greedy rule induction algorithms for
tackling ILP problems. First, GAs, GP and ES have the capability of escaping
from local optima, while greedy algorithms may not show this ability. Sec-
ondly, these methods have an intrinsic parallelism and can therefore exploit
parallel machines much more easily than classical search algorithms. Finally
these methods tend to cope better than greedy rule induction algorithms when
there is interaction among arguments (Freitas, 2002).

Depending on the representation used, two major approaches can be in-
dividuated: the Pittsburgh and the Michigan approach, so called because they
were first introduced by research groups at the Pittsburgh’s and Michigan’s
university, respectively. In the former case each individual encodes a whole
solution (in this case a logic program), while in the latter case an individual
encodes a part of the solution (e.g., a single clause). Both approaches present
advantages and drawbacks. The Pittsburgh approach allows an easier control
of the genetic search, but introduces a large redundancy that can lead to hard
to manage populations and to individuals of enormous size. The Michigan ap-
proach, on the other hand, allows for cooperation and competition between
different individuals, hence reduces redundancy, but requires sophisticated
strategies, like co-evolution, for coping with the presence in the population
of super individuals. Moreover, in the Pittsburgh approach, at the end of the
evolutionary process, the best individual represents the solution to the prob-
lem, while in the Michigan approach, some mechanisms have to be used for
extracting a subset of the population forming the solution to the problem.

A number of systems based on EC have been proposed to solve ILP prob-
lems. In the following we give a brief description of some of these systems.
The order in which the systems are presented reflects the complexity of the
representation adopted, starting from binary strings and ending with a tree
representation. For an extended overview of evolutionary systems for ILP the

37

38 CHAPTER 4. EC APPLIED TO ILP

reader can refer to (Divina, 2001a).

4.1 REGAL

REGAL (RElational Genetic Algorithm Learner) (Neri and Saitta, 1995; Gior-
dana and Neri, 1996) exploits the explicit parallelism of GAs. In fact it consists
of a network of genetic nodes fully interconnected and exchanging individuals
at each generation. Each genetic node performs a GA. A supervisor node is
used in order to coordinate these subpopulations. The system adopts a Michi-
gan approach, each individual encodes a partial solution, i.e., a clause.

The language used by REGAL is an intermediate between 3 � N and 3 � N �
(Michalski et al., 1983; Michalski et al., 1986), in which terms can be variables or
disjunctions of constants, and negation occurs in a restricted form. An atomic
formula of arity n has the form

� + � �*���������b�X�,��9 - , where
� �*�������\���X�

are vari-
ables and

9
is a disjunction of constant terms, denoted by

3) �.���������)54�6
, or the

negation of such a disjunction. For example, these are well formed formulas:Ø��nk`lum +��76 � 3 ���g¦Âk.o Õ ¡mD����m�©\�Vk.o Õ ¡m 6 - , pJ¦ Ø��Vk.ov©�m +��86 � �:9 � 3<; �>= �@? 6 - , o,k.�Xm +��76 � [3BA k.¦Â£n�C ¦�D\¦Â£ 6 - meaning, e.g., for the first rule, that the shape of
� �

is either a triangle
or a rectangle.

Before introducing how individuals are actually encoded by REGAL, we
first have to introduce the concept of language template used by REGAL. In-
formally, the template is a formula E belonging to the language, such that every
admissible conjunctive concept description can be obtained from E by deleting
some constants from the internal disjunctions occurring in it. The predicates
in the template can be divided in predicates in completed form and those not in
completed form.

Definition 4.1 A predicate
� + �w�.�������\�����v� 3) �J�������\�)54F6 - is in completed form if

the set
3) �.���������)54K6

, which constitutes its internal disjunction, is such that the
predicate can be satisfied for any binding of the variables

� �.�����������X�
.

For instance,
Ø��nk�lnm +�� 6 � 3 ���g¦Âk.o Õ ¡mD���`m`©��Vk.o Õ ¡mD� � 6 - is in completed form. The sym-

bol * means “everything which does not appear in the internal disjunction”.
A language template E must contain at least one predicate in completed form.
Indeed, given a language template, the search space explored by REGAL is
restricted to the set

! + E - of formulas that can be obtained by deleting some
constants from the completed terms occurring in E . This is because predicates
not in completed form have the role of constraints and must be satisfied by the
specific binding chosen for the variables in E . On the other hand, predicates in
completed form are used to define the search space. Deleting a constant from
a completed term makes the term more specific.

Since the search space is limited to
! + E - , only predicates in completed form

need to be processed, and so encoded. REGAL uses bit strings for this pur-
pose, where a string is divided into substrings. Each substring corresponds to
a literal, in the same order as they appear in the language template. Each bit

4.1. REGAL 39

F 1 G m�¦ Õ �7� + ��� 3 I ��u� C 6 - Úç©�£. ¡£J� + ��� 3 �`m`p«�@¥� ¨ÖumD� � 6 - ÚeØ��nk`lum + �e�3 ØIH\ÖukJ��mD�����g¦Âk.o Õ ¡mD�@©�¦���©� ¡m7� � 6 - ÚÀ�\k.� + �e����� 3 = � H � I �bu� C � � 6 -F7J 1 ©�£. ¯£.� + �e� 3 ��m�pv�@¥� ¨ÖumD� � 6 - ÚeØ��nk�lnm + ��� 3 ØIH\ÖukJ��mD�����g¦Âk.o Õ ¡mD�*©\¦���©� ¡mO� � 6 -Úv�\kJ� + ���`� � 3 = � H � I ��u� C � � 6 -�LK 1 G m�¦ Õ �7� + ��� 3 I ��u� C 6 - Úç©�£. ¡£J� + ��� 3 �`m`p 6 - ÚeØ��nk�lnm + ��� [3 ØIH\ÖukJ��mD�@©�¦���©� ¡m 6 -Úv�\kJ� + ���`� � 3 = � H 6 -�NM 1 G m�¦ Õ �7� + ��� 3 I ��u� C 6 - Úç©�£. ¡£J� + ��� [3 �`m`p 6 - ÚÀ�\kJ� + ������� 3 = � H 6 -áS+ E r - h 1 1 1 1 1 1 1 1 1 1 1 1 1
� � h 1 0 0 0 1 0 1 1 1 0 0 0 0
� N h 0 1 1 1 1 1 1 1 1 0 0 0 0

Figure 4.1: In the figure E r is the subset of E consisting of the predicates in
completed form. The bit strings are divided in substrings each of them corre-
sponding to a predicate in completed form, appearing in the same order than
in E . weight is not encoded since it is not in completed form.

corresponds to a term. If the bit corresponding to a given term
) {

in a predicate�
is set to 1, then it means that

) {
belongs to the current internal disjunction,

whereas, if it is set to 0 it does not belong to the internal disjunction. An ex-
ample of a language template and of the representation of formulas is given in
figure 4.1. The template is supplied by the user. This implies that the user has
some knowledge about the form of the rules that have to be learned. We will
see different approaches in section 4.4 and in chapter 5.

When the system evaluates a formula on an example, each variable in the
formula has to be bound to some object in the description of the example. Then
the predicates occurring in the formula are evaluated on the basis of the at-
tributes of the object bound to their variables. A formula is said to be true on
an example iff there exists at least one choice such that all the predicates oc-
curring in the formula are true. The user has to specify how to evaluate the
semantics of the predicates before starting to run REGAL on a specific applica-
tion. The fitness of an individual � , to be maximized, is given by the function;�+ ��- 1>;�+
 � & / - 1Ä+ = ñ]O
 -b� � �2P , where
 is a measure of the simplicity 1 of the
formula,] is a user tunable parameter with default value of 0.1 and & / is the
number of negative examples covered by � .

Individuals are selected for reproduction by means of the Universal Suffrage
(US) selection mechanism (Giordana and Neri, 1996). This selection mecha-
nism represents the base of the selection mechanisms used in the system pre-
sented in chapter 5. The US selection mechanism works as follow:

1Namely z is the number of 1s in the string divided by the length of the string.

40 CHAPTER 4. EC APPLIED TO ILP

NODAL GENETIC ALGORITHM
+

Node Q -
1 Initialize the population]SR + ? - and evaluate it
2 while not solve
3 do receive T âvq]SR + - q individuals from the network and store
4 them in] � �U� + -
5 Select

8 R + - from]OR + - Æ] � ��� + - with the US operator
6 Recombine

8 R + - using crossover and mutation
7 Update] R + - and] � ��� + - with the new individuals in

8 R + -
8 Send] � �U� + - on the network
9 Send the status to the supervisor

10 Check for messages from the supervisor

Figure 4.2: Genetic algorithm used by a node Q in the distributed version of
REGAL. The algorithm is repeated until the node receives a solve signal from
the supervisor.

1. the operator randomly selects n positive examples � { , =(~G� ~ & ;

2. for each � { an individual is selected as follows. A roulette wheel is per-
formed among individuals covering � { . The dimension of the sector asso-
ciated to each individual is proportional to its fitness. The winner of the
tournament is selected for reproduction. If � { is not covered then a new
individual covering � { is created using a seed operator.

Example 4.1 Suppose that there are five positive examples � { , = ~2�(~ C , and
that example � � is randomly selected in the first step of the US selection oper-
ator. Suppose moreover that � � is covered by three individuals � � , � N and � � ,
with fitnesses

;�+ � � - 1 ? � ± ;�+ � N - 1 ? � I ;�+ � � - 1 ? � = . Here we suppose that the
fitnesses are normalized. Then the roulette wheel built for the three individu-
als looks like the one given by figure 3.7, and � � has the greater possibilities of
being selected.

Species formation is achieved with the US selection operator, in fact only
individuals covering the same examples compete with each other.

REGAL adopts four crossover operators: the classical two-point and uni-
form crossovers described in chapter 3, and a generalizing and specializing cross-
overs. The generalizing crossover works by OR-ing some selected substrings
of the parents, while the specializing crossover works by AND-ing them. The
probability of applying the first two classical crossovers is higher when the two
selected individuals have a low fitness. Conversely, the higher the fitness the
more likely is to apply the other two crossovers. This choice is justified by the
observation that two-point and uniform crossovers have an high exploration
power, while the generalizing and specializing crossover can be used for refin-
ing individuals that are already good. The mutation operator is a classical bit
mutation operator, and can affect all the bits of the string.

4.2. G-NET 41

A first bias for limiting the hypothesis space is represented by the language
template. The set of examples that is assigned to a particular node represents
another bias. A node will develop individuals that belong to the species deter-
mined by the examples assigned to the node.

In figure 4.2 a scheme of the genetic algorithm for a node Q is presented.
In line 3 the node receives a number of individuals from the network, these
individuals will be used for avoiding the lethal mating problem, i.e., matings
that are bound to produce bad offspring. The execution will end when the
node receives a solve signal from the supervisor. During the learning process
the supervisor periodically receives and stores the best solution found by each
genetical node.

At the end of the learning process, since REGAL adopts a Michigan ap-
proach, a solution has to be extracted from the rules received by the supervi-
sor. For this purpose first the set

� �V is constructed, as the union of all positive
examples covered by the received clauses. The clauses are sorted in decreasing
order according to W +�	 - 1 " èYX ;�+�	 - . The minimum number of best clauses
able to cover

� �V represent the solution.

4.2 G-NET

G-NET (Genetic Network) (Anglano et al., 1998) is a descendant of REGAL. As
its predecessor, G-NET is also a distributed system, with a collection of genetic
nodes and a supervisor.

G-NET adopts a co-evolution strategy by means of two algorithms. The
first algorithm computes a global concept description out of the best hypothe-
ses emerged in various genetic nodes. The second algorithm computes the
assignment of the positive examples to the genetic nodes. The assignment
strategy consists in addressing the search on positive examples that are cov-
ered by poor hypotheses, without omitting to continue the refinement of the
other hypotheses.

G-NET is based on the same theory of species and niches formation and
on the same language adopted by REGAL. G-NET differs from REGAL by the
fitness function. In fact G-NET uses two functions. A first one is used at a
global level, while a second function is used at local level, so for evaluating a
clause in a genetic node. A global hypothesis

!
is evaluated in the following

way:

;[Z^+ ! - 1 � � �0\^]�_ E¢� � � + [" V ñ & V - Eç� � � + ! -
where � � � \^]�_

is the MDL (see section 3.3.2) of the whole learning set
and [" V is the number of positive examples not covered by

!
.

The formula used for evaluating an individual � at the local level is the
following:

; � + �i- 1 � � � \^]�_ E¢� � � + �i- Eç� � � + [" / - ñ +�; Z + ! ß - E ; Z + ! -b-

42 CHAPTER 4. EC APPLIED TO ILP

In the above formula
!

is the current global hypothesis,
! ß

is the hypothe-
sis obtained by adding � to

!
.

G-NET adopts three kinds of mutation operators. One of the mutation op-
erators is used in order to generalize an individual, another one is used for the
specialization and a third mutation operator is used for creating new clauses,
so it can be also seen as a seeding operator. The crossover is a combination
of the two-point crossover with a variant of the uniform crossover, modified
in order to perform either generalization or specialization of individuals. Both
crossover and mutation operators enforce diversity, so that it is assured that in
a genetic node there are no equal clauses.

4.3 DOGMA

DOGMA (Domain Oriented Genetic MAchine) (Hekanaho, 1996; Hekanaho,
1998) employs two distinct levels. On the lower level the Michigan approach
is adopted, while on a higher level the Pittsburgh approach is used.

On the lowest level the system uses fixed length chromosomes, which are
manipulated by crossover and mutation operators. On the higher level chro-
mosomes are combined into genetic families, through some special operators
that can merge and break families.

The representation adopted by DOGMA is the same representation used by
REGAL.

The fitness function combines two different functions. One is based on the
MDL principle, and the other is based on the information gain measure. The
total description length of a hypothesis

!
consists of the hypothesis cost, i.e.

the length of the encoding of
!

, and the exception cost, which is the encoding
of the data that is erroneously classified by

!
. The unit of length used is a bi-

nary digit. To turn the MDL principle (see section 3.3.2) into a fitness function,
the MDL of the current hypothesis

!
is compared against the total exception

length with the following function:

; \^` � + !ò��� - 1 =^E
\^` � � V ¸ / �acb5d \e` � � VNb ¸ / �

In the above formula, � � � + !gf0��� - stands for the total exception length, i.e.
the description length of an empty hypothesis that covers no examples. h f

is
a weight factor that is used to guarantee that even fairly bad hypotheses have
a positive fitness. This function alone can not be used as a fitness function. In
fact the function under rates hypotheses that are almost consistent and very
incomplete. This would lead to a prevalence of fairly large, but very incom-
plete clauses, since these are mostly preferred by the function to fairly small,
but almost consistent clauses. In this way the population would become overly
general and very inconsistent. For this reason, the function based on informa-
tion gain is used. This function promotes small and almost consistent clauses.
The information gain of a hypothesis

!
compared to another hypothesis

!ji � �
measures how much information is gained in the distribution of correctly and

4.4. SIA01 43

incorrectly classified positive examples of
!

compared to the distribution of!ki � � . The fitness function based on the information gain uses this gain mea-
sure: l

kJ¦�o + ! i � � �`!ò��� - 1 » '@ã(m�+ " V ñ = - X + Þ & ;v'7+ ! i � � ��� - EÿÞ & ;v'7+ !���� -�- �
where Pon = (default value 1.2) and Þ & ;v'7+ !ò��� - 1 E�» '@ã ä>päIp � � p . Hypotheses
are compared against

!qi � � , a default hypothesis that classifies all examples as
positives. The fitness function based of the information gain is then defined as
follows:

;5Z^+ !ò�`� - 1 h Z X rts�uwv � VNxzyU{ ¸ V ¸ / �rts�uwv � V xzyU{ ¸ V}|t~�� ¸ / �
where h Z A4? is a tunable parameter, and

! 4�� # is a hypothetical hypothe-
sis that correctly classifies all examples. Finally the fitness function used by
DOGMA is the following:

; \ Z�1 �À¦�o +�; \^` � + !ò��� - � ;5Z�+ !ò�`� -b-
that chooses the minimum between

; \^` � and
; Z

.
To enhance diversity and to separate different kinds of clauses, the system

uses speciation of chromosomes. This can be done randomly or by dividing in-
dividuals into species according to which parts of the background knowledge
they may use. Speciation has three applications in the system. First it is used
for controlling the mating of chromosomes of different species. Secondly, speci-
ation can control what part of the background knowledge individuals can use.
Finally, speciation is used when merging chromosomes into families. Chromo-
somes of the same species cannot be merged in the same family.

DOGMA uses the crossover operators used by REGAL, a classical mutation
operator, and a seeding operator which, given a randomly selected example,
randomly creates a bit string and then adjusts it in order to cover that example.
The remaining operators work on the family level. A break operator splits ran-
domly a family into two separate families. In opposition to the break operator,
a join operator joins two families into one. If there are two chromosomes of the
same species then one of them is deleted. In addition to these operators, a make-
family operator is used for forming families by selecting useful chromosomes
of different species from the population. The order in which the operators are
currently applied is given in figure 4.3.

DOGMA follows the metaphor of competing families by keeping genetic
operators, such as crossover and mutation, working on the lower level, and by
building good blocks of chromosomes, while lifting selection and replacement
to the family level. Fitness is also lifted to the higher level.

4.4 SIA01

SIA01 (Supervised Inductive Algorithm version 01) (Augier et al., 1995) uses
the sequential covering principle developed in AQ (Michalski et al., 1986). The

44 CHAPTER 4. EC APPLIED TO ILP

MAKE-NEXT-GENERATION
+ � -

1
�}� � Select families in

�
2

�}� æ � Mate chromosomes
�N�

3
� _ � Crossover

�}� æ
4

� \ � Mutate
� _

5
��� � Break families

� \
6

�}� � Join families
� �

7
�N� � �}�uÆ

Make families
�

8
� / � Evaluate

�N�
9

� ß � Replace families
+ �}��� / -

10 return
� ß

Figure 4.3: Algorithm used by DOGMA for the creation of a new population� ß
starting from an old population

�
.

system adopts a bottom-up approach. For creating the initial clause, SIA01 ran-
domly chooses an uncovered positive example and uses it as a seed. Then it
finds the best generalization of this clause according to some evaluation crite-
rion. This is done by means of a GA. To obtain a new generation the algorithm
applies to each individual in the population a genetic operator, and then the
newly created individual may be inserted in the population. The size of the
population can grow in this way until a certain bound is reached. A scheme of
the GA used for searching the best clause is represented in figure 4.4.

A high level representation, similar to the one adopted by the system in-
troduced in this thesis (chapter 5), is used for encoding clauses. SIA01 uses
predicate symbols and their arguments as genes.

For instance the clause � Ù.�`k.�À¦Âp +�� - � A £J ¡£.� +�� ��Ù0m\ � ¯£ G - �I�$Ö@l0lu£.�g� + �s� � - � ,
will be encoded in the following individual:

Pyramid X Color X yellow Support Y X

The fitness function used takes into consideration the consistency of the
clause, its completeness, its syntactic generality and some user’s preferences:

;�+�	 - 1�� + =^E��eE�� - X 	 � ñ ��� ñ �] � ; 		� AB=^E �
? ' bÅ � c�� � á �

In the above formula
	 � is the absolute completeness and it is defined asä P- /���- , where

q.���Çq
is the total number of positive examples.

		�
is the absolute

consistency and it is defined as - /N��- � �2P- / � - where
q��X� q

is the total number of
negative examples.

�
is the maximum noise tolerated, � is the syntactic gen-

erality of � and] is the clause’s appropriateness to the user’s preferences.
�

,
] , � and � are user tunable parameters.

A mutation operator and two crossover operators are used for creating new
individuals. The mutation operator selects a relevant gene and performs one
of the following operations:

4.5. GLPS 45

GA
+ �iÞD]F?n= -

1 Pop = Seed
2 repeat
3 for a �¢Y Pop
4 do if � has not already produced offspring
5 then create one offspring by mutation of �
6 create two offspring by crossover with � ß
7 put the offspring in

� ' " ß
8 for a �çY � ' " ß
9 do if � 5Y � ' "

10 then if
á ��
 � + � ' ",- < � MS%

11 or fitness � is better than the worst fitness in Pop
12 then insert � in Pop
13 until fitness(best �) has not changed since last n generations

Figure 4.4: The scheme of the GA adopted by SIA01. � ß is an individual in the
population that has not yet produced any offspring.

é if the gene encodes a predicate symbol then change it with a more general
predicate symbol, according to the background knowledge. If it is not
possible to generalize anymore then drop the predicate. For example the
predicate symbol

� U c M � � Q could be changed into
� ' � & �*Q E ' " without

modifying the arguments of the predicate;
é if the gene encodes a numerical constant then the mutation can create an

interval, or if the gene is already an interval the operator can enlarge it;
é if the gene encodes a symbolic constant, then the operator may create an

internal disjunction or generalize an existing disjunction;
é if the gene encodes a symbolic constant this constant can be turn into a

variable. This change is reported in the whole individual;
é if the gene encodes a variable the operator may replace it with another

variable.

The first crossover, which is used by default, is a restrained one-point cross-
over. The restriction is that the chosen point in the clause has to be before a
predicate. If the seed contains only one predicate then the standard one-point
crossover is used.

4.5 GLPS

The Genetic Logic Programming System (GLPS) (Wong and Leung, 1995) is
a GP system, where an individual represents a program, following the Pitts-
burgh approach. The reproduction phase involves selecting a program from

46 CHAPTER 4. EC APPLIED TO ILP

cup(X)

óGôõGöOR0 % % %%&&&&�0� �}�
óGôõGöAND1 paper cup(X) 2&&&& % % %%

stable(X)3 liftable(X) 4

stable(X)

óLôõLöAND0 % % %%&&&&
�}�

flat(Z) 2bottom(X,Z)1

liftable(X)

óLôõLöAND0
���% % %%&&&&

handle(Y) 2has(X,Z)1

Figure 4.5: A forest of AND-OR trees. The numbers next to each node are the
identifier numbers of the nodes.

the current population of programs and allowing it to survive by copying it
into the new population. The selection is based either on tournament or on
fitness proportional selection, where individuals are sorted according to their
fitness and the first n individuals are selected. The system uses crossover to
create two offspring from the selected parents. GLPS does not use any muta-
tion operators. After the reproduction and crossover phase, the new generation
replaces the old one. Next, GLPS evaluates the population assigning a fitness
value to each individual and iterates this process over many generations, until
a termination criterion is satisfied.

The system adopts a restriction on the representable clauses: function sym-
bols can not appear in a clause. Logic programs are represented as a forest of
AND-OR trees, being the leafs of such trees positive or negative literals con-
taining predicate symbols and terms of the problem domain. For example,
figure 4.5 represents the logic program:

	 = �Ä©�Ö@l +�� - � Øg�°kD¥\ ¡m +�� - �� ³¦ ���°kD¥\ ¡m +�� - �	 H �Ä©�Ö@l +�� - � lnk�lnm�� ©�Ö@l +�� - �	 I �>Øg�°kD¥\ ¯m +�� - � ¥�£.���V£.� +�� �I� - �B�^k.� + � - �	 X�B ¨¦ ���Vk0¥� ¡m +�� - � �nk.Ø +�� �$� - ���uk.o,p7 ¡m + � - �
In the figure the identifier of each clause is reported next to the relative tree

or branch. For instance, the left most tree represents both clauses
	 = and

	 H ,
where the left subtree starting at node 1 is relative to

	 = and the right subtree
is relative to

	 H .
With this representation it is not difficult to generate an initial population

randomly. A forest of AND-OR trees can be randomly generated and then the
leaves of these trees can be filled with literals of the problem. Another way is
to generate the initial population using some other systems, like FOIL.

The fitness function used by GLPS is a weighted sum of the total number of
misclassified positive and negative examples. The weight is used for dealing
with uneven distribution of positive and negative examples.

An ad-hoc crossover operator is used, which can operate in various modal-
ities: individuals are just copied unchanged to the next generation, individuals

4.6. DISCUSSION 47

Algorithm Encoding Approach Fitness features

REGAL
bit strings

Michigan con + sim(initial template)

G-NET bit strings Michigan 2 functions.
(initial template) con + sim + MDL

DOGMA
bit strings Michigan &

MDL + Gain(initial template) Pittsburgh

SIA01
high level

Michigan
con + com +

representation gen + pref

GLPS AND-OR trees Pittsburgh con + com

Table 4.1: In the table con stands for consistency, com for completeness, sim for
simplicity, pref for user’s preferences, gen for syntactic generality. MDL is the
Minimum Description Length Principle. Gain is the information gain.

exchange a set of clauses, a number of clauses belonging to a particular rule are
exchanged between the individuals, a number of literals belonging to a clause
are exchanged.

4.6 Discussion

We end this chapter with a brief comparison of the presented systems for what
regards the encoding, the fitness function, the selection operator, the variation
operators and biases adopted for limiting the search space. Table 4.1 summa-
rizes the encoding adopted by the systems, the approach used (either Michigan
or Pittsburgh) and the properties used in the fitness function. Table 4.2 sum-
marizes the variation operators and the type of selection operator adopted.

Representation REGAL, G-NET and DOGMA use the supplied template to
map clauses into bit strings. This implies some knowledge of what the user
expects to discover, which cannot be always taken for granted. The use of the
initial templates also imposes another limitation. All the rules handled must
follow the initial given template, which is constant and cannot change during
the learning process. Also with this approach, some problems can arise when
dealing with numerical values. In fact the binary representation of the model
can become quite long and this may slow down the process.

The bit string representation used by these three systems does not allow
them to perform some operations that are typical FOL operations, e.g., chang-
ing a constant into a variable. The high level representation adopted by SIA01
is more flexible, where the shape of clauses learned can vary during the learn-
ing process. In fact the particular shape of each clause is determined by the
positive example used as seed in the initialization phase.

48 CHAPTER 4. EC APPLIED TO ILP

Algorithm Type of crossover Mutation Selection

REGAL
uniform, two-point

classic USgeneralizing, specializing

DOGMA uniform, two-point classic lifted on
generalizing, specializing family level

G-NET
generalizing, specializing generalizing

tournamenttwo-point specializing

SIA01
restrained 1-point 4 generalizing inds that haven’t

classic 1-point modalities produce offspring

GLPS reproduction none tournamentexchange info

Table 4.2: A summary of the characteristics of the various operators adopted
by the presented systems. inds means individuals.

GLPS does not require an initial template either, so the shape of the initial
clauses is not fixed.

Fitness Function The system that adopts the simplest fitness functions is
GLPS. It takes into consideration only the completeness and the consistency
of individuals. The function adopted by SIA01 is more elaborated. In addi-
tion to completeness and consistency, simplicity is considered, and the user
can express some preferences for some type of clauses. However, consistency
and completeness are the features that have the biggest influence on the fitness
assigned to an individual.

The function used by REGAL considers only simplicity and consistency.
Completeness is not considered because the US selection operator already pro-
motes complete individuals. This reduces the complexity of the evaluation. G-
NET uses two fitness functions, one used at a local level, in the genetic nodes,
and another one used at a global level. G-NET also makes use of the MDL prin-
ciple in its fitness functions. Unlike REGAL, at a local level G-NET considers
also the global behavior of clauses. This is achieved by evaluating how well a
clause combines with others in order to form a global solution. This is a good
strategy, since G-NET is a distributed system.

DOGMA combines the information gain and the MDL principle. Informa-
tion gain is used for promoting small and almost consistent clauses. This is
done because using only the MDL would result in an under rating of hypothe-
ses that are almost consistent but very incomplete. This would lead DOGMA
towards a population with a majority of large and very inconsistent clauses. In
this way the population would be too general and very inconsistent.

Selection Operators The US selection operator adopted by REGAL allows
the system to achieve species and niches formation without the need of any

4.6. DISCUSSION 49

distance measure. This because only individuals covering the same examples
compete with each other for being selected. Moreover a good coverage of pos-
itive examples is encouraged. However, some mechanisms exploiting the dis-
tributed implementation of the system, have to be adopted for avoiding the
presence of super individuals in the subpopulation evolved in the nodes. In
the next chapter we describe a way for avoiding this problem in a non paral-
lel system. G-NET adopts a similar strategy for promoting species, but uses a
tournament selection.

In DOGMA the selection is raised to the family level and is simply based
on the fitness of the families.

SIA01 adopts a different method of selection, which is not based on the
fitness of individuals. In fact at each generation all individuals that have not
produced an offspring are selected for reproduction.

GLPS can use either tournament selection or a fitness proportional selec-
tion, where n individuals with higher fitness are selected.

Variation Operators REGAL and DOGMA adopt the same variation oper-
ators. Two crossovers are used to generalize and specialize individuals. In
addition to these, uniform and two-point crossovers are used in order to make
bigger steps in the hypothesis space.

G-NET introduces some novel ILP operators. Both the crossover and the
mutation operators, can be used in three modalities. For the crossover these
modalities are: generalization, specialization and exchanging modality. The
latter one is implemented by a classical two-point crossover. The generaliza-
tion modality tends to be used when both parents are consistent, and other-
wise the specialization modality is more likely to be applied. For the mutation
a similar strategy is applied. With this strategy when in a node a clause is often
chosen the search turns into a stochastic hill climbing.

What is done by these three systems when they generalize or specialize a
rule, is basically dropping or adding conditions. This is because the systems
adopt an internal disjunction in order to define the values that a variable can
assume.

SIA01 has the possibility to perform some operations which are more FOL
oriented. The mutation operator used by SIA01 can perform a variety of oper-
ations, e.g., changing a numeric constant into an interval or turning a constant
into a variable. An interesting feature is that the operators are designed in a
way that guarantees that individuals of the population are syntactically dif-
ferent from each other. SIA01 relies mostly on mutation. This is because the
high level representation adopted makes the design of an effective crossover
operator difficult.

In opposition, GLPS does not make use of any mutation operators, so the
reproduction phase is carried out only by the crossover operator, which can
exchange rules, clauses or just literals.

50 CHAPTER 4. EC APPLIED TO ILP

Biases REGAL, DOGMA and G-NET limit the hypothesis space by means
of an initial template. Only clauses that can be derived from the initial tem-
plate are considered during the search of a satisfying concept. SIA01 considers
clauses limited to the possible generalizations of the initial clause that was built
starting from a seed example. Therefore, SIA01 uses different biases for each
individual, depending on the example that is used for creating the individual.
In this way individuals are not constrained into a fixed shape. GLPS restricts
the search to individuals than can be represented with trees having a maxi-
mum depth specified by a user tunable parameter.

All the systems presented in this chapter are very good at exploring the
search space, but are not as good at exploitation. The exploration power they
have gives the systems the capability of efficiently searching the hypothesis
space, and the ability of escaping from local optima. However, they are not
very good at fine tuning candidate solutions. This is different from what hap-
pens in the systems presented in chapter 2, where the two presented systems
perform a greedy search through the hypothesis space. This gives them a good
exploitation power but a rather poor exploration power.

In order to overcome the limits and to exploit the good aspects of both ap-
proaches, in the next chapter we introduce a hybrid evolutionary system that
tries to combine the good features of both approaches, in order to obtain a
system that is good at both exploration and exploitation. This system uses a
selection mechanism similar to the one adopted by REGAL and a high level
representation inspired by SIA01. Only mutation operators are used for evolv-
ing individuals. In particular the mutation operators used can generalize and
specialize a clause by means of some ILP operations, e.g., turning a constant
into a variable. Moreover the particular mutation operators adopted do not
act at random, but act greedily, by considering a number of mutation possibil-
ities and applying the one yielding the best improvement in the fitness of the
individual being mutated.

4.7 Conclusions

In this chapter we have seen examples of how EC can be applied to solve ILP
problems. We first have motivated the choice of using EC at this aim. In partic-
ular we have given motivations on the use of GAs or GP, which have features
that render them suitable for ILP tasks.

We have then presented five EAs for ILP. REGAL adopts a binary string
representation, and genetic operators that can be used for generalizing or spe-
cializing clauses (by means of dropping or adding some conditions to the cla-
use). REGAL introduces the US selection operator, which promotes species
and niches formation without the need of using any distance measure. This
operator is the base of the selection operators introduced in the next chapter.
G-NET and DOGMA are highly based on REGAL, especially for what regards

4.7. CONCLUSIONS 51

the representation adopted. However they differ for the fitness functions they
adopt, and in the case of G-NET also for the genetic operators used.

An high level representation is what characterizes SIA01. Clauses are rep-
resented by using a list of predicates, variables and constants. This represen-
tation allows the system to perform ILP aimed operations, e.g., turning a con-
stant into a variable. This kind of operations are not directly possible to per-
form in systems with a representation like the one used by REGAL.

The last system presented, GLPS, adopts a Pittsburgh approach, by repre-
senting logic programs as a forest of AND-OR trees.

52 CHAPTER 4. EC APPLIED TO ILP

Chapter 5

Evolutionary Concept Learner

In this chapter we describe the hybrid evolutionary system for ILP ECL (for
Evolutionary Concept Learner) (Divina and Marchiori, 2001; Divina and Mar-
chiori, 2002; Divina, 2001b). ECL evolves a set of chromosomes representing
clauses, where at each iteration fitter chromosomes are selected, mutated, and
optimized. ECL follows the Michigan approach. Clauses are encoded in a high
level language that allows the system to perform ILP aimed operations. In par-
ticular four mutation operators are used, two for generalizing clauses and two
for specializing them.

One of the novelties with respect to previous approaches is the introduction
of two stochastic mechanisms for controlling the complexity of the construc-
tion, optimization and evaluation of clauses. The first mechanism allows the
user to specify the percentage of background knowledge that the algorithm
will use, in this way controlling the computational cost of fitness evaluation.
The second mechanism allows one to control the greediness of the operators
used to mutate and optimize a clause, thus controlling the computational cost
of the search. Furthermore ECL introduces a variant of the US selection opera-
tor, that helps the system in promoting diversity in the population while main-
taining at the same time a good coverage of the positive examples. Finally, ECL
is enhanced with methods for dynamic handling of numerical attributes. This
last aspect is treated in chapter 6.

5.1 Motivations

We are interested in learning knowledge expressed in first–order formulas con-
taining variables. In particular we are interested in knowledge represented by
a fragment of first–order logic, called Horn clauses that do not contain neg-
ative literals nor function symbols. This knowledge can be directly used in
programming languages based on logic programming, e.g., Prolog.

The approach used in the majority of first–order based learning systems,
e.g., the systems presented in chapter 2, is to use specific search strategies, like

53

54 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

the general-to-specific (hill climbing) search (Quinlan, 1990) and the inverse
resolution mechanism (Muggleton and Buntine, 1988). However, the greedy
selection strategies adopted for reducing the computational effort render these
techniques often incapable of escaping from local optima.

We have seen in chapter 4 that an alternative approach based on evolution-
ary computation can be used for inductive learning in FOL. This approach is
motivated by two major characteristics of EAs, as we have seen in chapter 4:
their good exploration power, that gives them the possibility of escaping from
local optima, and their ability to cope well when there is interaction among
arguments and when arguments are of different type. However the use of
stochastic variation operators is often responsible for the rather poor perfor-
mance of EAs on learning tasks which are easy to tackle by algorithms that use
specific search strategies.

These observations suggest that the two approaches are applicable to partly
complementary classes of learning problems. More important, they indicate
that a system incorporating features from both approaches would benefit from
the complementary qualities of the approaches. In fact, EAs are characterized
by good exploration qualities, but by rather poor exploitation qualities. On the
other hand standard ILP techniques have good exploitation quality but have
less exploration power.

This motivates us to investigate a framework based on EAs for ILP that in-
corporates effective search strategies, like those used in ILP systems presented
in chapter 2.

A common problem with ILP systems is the computational effort required
for establishing the coverage of hypotheses, consequently, evaluation of indi-
viduals is the most costly operation in an EA for ILP. Therefore, we want to
adopt some methods for improving the efficiency of evaluation of individuals.
In particular, we intend to reduce the amount of time required by evaluation by
a sampling of the background knowledge. This will result in using only a por-
tion of the background knowledge available for a problem during the learning
process.

Another feature that we want to incorporate in the system is a way for han-
dling numerical values. The standard way for handling numerical values in
ICL, is to discretize them into a number of intervals beforehand the learning
process. During the learning process the obtained intervals are used instead of
the numerical values. In this way numerical values can be treated as nominal.
However this strategy is not always the best solution for dealing with numer-
ical values. A system that adopts a simple technique for handling numerical
values during the learning process is SIA01. In fact SIA01 can create and mod-
ify intervals for numerical values during the learning process. The bounds of
the intervals are generated randomly, in a user given range. Other EAs for ILP,
like those presented in chapter 4, do not include any method for dealing with
numerical values. We believe that this is an important limitation. In fact ILP
problems in which numerical values are present are common. In these cases,
a good way for dealing with numerical values is essential for achieving good
results.

5.2. THE LEARNING ALGORITHM 55

5.2 The Learning Algorithm

The algorithm considers Horn clauses. Constants and variables are the only
terms allowed to appear inside a clause, so functions can not appear inside a
clause. ECL takes in input a set of positive examples, a set of negative exam-
ples and background knowledge and outputs a logic program describing the
concept to be learned. Examples and background knowledge consist of a set
of ground facts. Figure 5.1 shows an example of input taken by ECL if we
want to learn the simple family concept of father. From the first positive exam-
ple we know that

§ kD©`ª
is the father of

¥�¦� �
, and from the first negative example

we know that
m\¬.m

is not the father of
¥\¦� �

. The background knowledge for this
problem consists of facts describing family relations between people and other
features of people, such as the sex. For instance from the background knowl-
edge we can find that

§ k0©�ª
is a parent of

¥�¦� �
, that

m�¬*m
is a woman, and so on.

Information that is irrelevant to the learning task may as well appear in the
background knowledge. For example in the background knowledge shown in
the figure, it is stated that

��¦�D�¦Â£
is married to

¥�m\�µ�
. This information is useless

for the task of learning the concept of father.
The concept of father can be described by a single clause of this form:�\kJ���um\� +�� �$� - � lnkJ��m�ou� +�� �u� - ���Xk. ¡m +�� - . In the following we will see how ECL

can reach this solution starting from the input showed in figure 5.1.

Positive Examples Negative Examples Background Knowledge
father(jack,bill). father(eve,bill). parent(jack,bill).
father(giacobbe,noe). father(eve,clint). parent(jack,eve).
father(jack,eve). father(matt,bill). parent(eve,bill).
father(matt,jane). father(matt,eve). parent(matt,clint).
father(matt,luck). father(jane,matt). parent(matt,luck).
father(tizio,caio). father(jane,luck). parent(eve,clint).
father(tizio,sempronio). father(caio,bill). parent(tizio,caio).
father(lucio,cesare). father(caio,eve). parent(tizio,sempronio).
father(lucio,lucia). father(caio,matt). male(sempronio).
father(cesare,nerone). father(sempronio,tizio). married(tizio,beth).
father(cesare,cleopatra). father(cesare,lucio). relative(jack,bill).

father(nerone,cesare). male(jack).
father(cleopatra,cesare). male(bill).
father(noe,cesare). female(eve).
father(giacobbe,sempronio). female(cleopatra).

male(clint).
male(caio).
male(tizio).

Figure 5.1: Example of input of ECL for the simple family relation concept of
father.

Since the output of ECL can be directly used in Prolog, in the following we
can also write a clause in Prolog syntax, where � is substituted with

� E .

56 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

ECL works only with positive and negative examples, so it works with two
classes of examples. When the examples belong to & classes, & AÃH , then ECL
is run on each class � , =s~B�K~ & , using the � th class as positive examples, and
the union of the other classes as negative examples. So a set of rules is learned
for each class. To the rules induced, a classification procedure similar to the
one of CN2 (Clark and Boswell, 1991) is applied: all rules whose conditions
apply to a testing example are taken and the number of training examples of
each class covered by the rules are summed up. The class with the largest sum
is assigned to the testing example.

ALGORITHM
+ � 	 � -

1 Sel = positive examples
2 repeat
3 Select partial BK
4 Population =

ì
5 while not terminate
6 do Adjust weights of Sel
7 Select n individuals using Sel
8 for each selected individual �
9 do Mutate �

10 Optimize �
11 Insert � in Population
12 Store Population in Final Population
13 Sel = Sel -

x
positive examples covered by clauses in Population

z
14 until max iter is reached
15 Evaluate Final Population using BK
16 Extract a solution from Final Population

Figure 5.2: The overall learning algorithm ECL. In the selection a variant of the
US selection operator is used.

Figure 5.2 gives the overall scheme of ECL and figure 5.3 gives a graphical
scheme of ECL. In the repeat statement the algorithm constructs iteratively a
Final Population as the union of max iter populations. The user can set
the value of max iter through the use of a parameter supplied to ECL before
starting the learning process. At each iteration, part of the background knowl-
edge is chosen using a stochastic search bias described below. A Population
is evolved by the repeated application of selection, mutation and optimization
(the while statement). These operators and the evaluation of individuals use
only the chosen part of background knowledge. In chapter 2, we have seen
how we can verify if a clause covers an example. In order to evaluate indi-
viduals, ECL poses a query for each example to be tested to the logic program
formed by the union of the clause encoded by the individual and the partial
background knowledge in use. Prolog is then used for verifying whether these
queries have successful derivations or not. If a query relative to an example has

5.2. THE LEARNING ALGORITHM 57

a successful derivation, then the example is covered by the clause, otherwise it
is not.

At each generation & clauses are selected by means of a variant of the US
selection operator, described in the following sections. The selected clauses are
then modified using mutation and optimization operators, and are inserted
in the population. The population is let grown in this way until a maximum
size has been reached. When the maximum population size is reached, newly
generated individuals will substitute some individuals of the current popula-
tion. To this aim a tournament mechanism of size four is adopted. We adopt
this strategy instead of replacing the worst individual in the population for
efficiency reasons, in fact the population is not kept sorted. Four mutation
operators are used. Two mutation operators can generalize clauses, while the
other two can specialize clauses. The optimization phase consists of a repeated
application of mutation operators to the selected individual.

When the construction of the Final population is completed, a logic
program is extracted using a procedure that builds a solution that is as accurate
as possible.

In the following sections we address each feature of ECL in detail.

Select BK

È
Select Ex/BK,

Examples based on BK

È
run GA on BK

and Ex/BK � � � � � � � � �w�

È
Add Population
evolved by GA to

Final population
ÈÍÍÍÍ
Ë Ë Ë Ë

ËËË
Ë

Í Í Í
Ímax iter

No

�

�Yes
Extract Prolog
program from

Final population

 ¡ ¢£
Population

È
Select Individuals

È
Mutate Individuals

È
Optimize Individuals

È
Evaluate Individuals

È
Insert in Population

�

Figure 5.3: A schematic description of ECL.

58 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

5.3 Stochastic Search Biases

ECL uses two stochastic mechanisms, one for selecting part of the background
knowledge in step 3 of figure 5.2, and one for selecting the degree of greediness
of the operators used in the evolutionary process.

A parameter " PI¤ (" P�¤ real number in
+ ? � = 6) is used in a simple stochastic

sampling mechanism which selects an element of the background knowledge
with probability " P�¤ . In this way the user can limit the cost of the search and
fitness evaluation by setting " PI¤ to a low value. This because only a part of the
background knowledge will be used when assessing the goodness of an indi-
vidual. This leads to the implicit selection of a subset of the examples (only
those examples that can be covered with the partial background knowledge
selected will be considered). Individuals will be evaluated on these examples
using only the partial background knowledge. In this way an individual can
be wrongly evaluated because a subset of the examples is used, and also be-
cause those examples can be wrongly classified, in case they are covered using
the whole background knowledge, but are not covered using the partial back-
ground knowledge.

Example 5.1 Suppose we have selected from the background knowledge of
figure 5.1 only the following five facts:

luk.�`m\o$� + �Xk.���\�� ³Öu©`ª - , luk.��m�ou� +¨§ k0©�ªv�*¥\¦� � - ,��kJ ¡m +¨§ kD©`ª - , �Xk. ¡m + ¥\¦� � - , �\m\�Xk. ¡m + m\¬.m - . Let � 1 �\kJ���um\� +¨§ kD©`ª«� � - � luk.��m�ou� +¨§ k0©�ªv�
� - � � MO» � +¦¥ M _ ¤ - be the individual that has to be evaluated. Then the positive ex-
ample

�\k.�µ�nm�� +¨§ kD©`ª«�@¥�¦� � - will be correctly classified, while the positive example�\k.�µ�nm�� +¨§ k0©�ªv�*m\¬.m - will be wrongly classified as negative. However if the whole
background knowledge were used then both the examples would be correctly
classified by � .

This is different from other mechanisms used for improving the efficiency
of fitness evaluation, like (Glover and Sharpe, 1999; Teller and Andre, 1997; Se-
bag and Rouveirol, 1997), where training set sampling is employed for speed-
ing up the evaluation of individuals.

The construction, mutation and optimization of a clause uses four greedy
generalization/specialization operators (described later in an apart section).
Each greedy operator involves the selection of a set of constants, variables or
atoms, depending on the particular mutation operator. The size of this set can
be supplied by the user by setting a corresponding parameter

� � (� 1 = �������\��).
The elements of the set are then randomly chosen with uniform probability.
Each element of the set represents a mutation possibility. Each possibility is
tested, and the one yielding the best improvement in the fitness of the individ-
ual is applied. In this way the user can control the greediness of the operators,
where higher values of the parameters imply higher greediness.

Finally ECL uses also a language bias which is commonly employed in ILP
systems for limiting explicitly the maximum length of clauses.

These search biases allow one to reduce the cost of both the search and
fitness evaluation, but the price to pay may be the impossibility of finding the

5.4. FITNESS FUNCTION AND ENCODING 59

best clauses.

5.4 Fitness Function and Encoding

The fitness function assigned to an individual is the inverse of its accuracy. So
the fitness of an individual � will be:

;�+ �i- 1 =
] __ + �i-

1 q � � q ñ q � � q
" / ñ + q � � q E & / - (5.1)

The aim of ECL is to minimize the fitness.
ECL uses a high level representation similar to the one used by SIA01 (see

section 4.4), where a rule " + ���`� - �dc + ����� - � f + ��� M - � can be described by an
individual of the following form:

" ������� , c �b���g� , f ����� M ,(t,Z,b)

where the framed atoms are active while the atom between brackets is not.
Atoms that are not active are not considered when the clause is evaluated.
However they can be activated during the evolutionary process. In this way it
is easy to represent rules of variable length, and to access and process atoms
contained in the rule. The length of a clause

	
, » �@& ã bÅ +�	 - , is defined as the

number of active atoms in
	

. For instance the length of the above clause is
three.

5.5 Selection Operator

In step 7 of the algorithm shown in figure 5.2, individuals can be selected by
three selection operators: the standard US selection operator or two variants
of it. The standard US selection operator is described in chapter 4. The first
variant of the US selection operator is called Weighted US (WUS) selection op-
erator (Divina and Marchiori, 2002), while the second is called Exponentially
Weighted US (EWUS) selection operator (Divina et al., 2002; Divina and Mar-
chiori, 2004b). The second variant is used by default.

5.5.1 Why the Two Variants of the US Selection Operator?

The US selection operator has various good characteristics. With the US se-
lection operator individuals with a high coverage and with good fitness are
favored. This is because individuals with a high coverage participate in more
roulette wheels, and individuals with high fitness have wider sectors in the
roulette wheel tournaments in which they participate. In this way a good cov-
erage of positive examples is promoted. Speciation is obtained through the
use of the US selection operator. In fact only individuals covering the same
examples compete with each other for being selected.

60 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

The selection operator is called “universal suffrage” because positive exam-
ples can be viewed as voters and chromosomes as candidates to be elected. All
examples have the same right (probability) of voting. The US operator does not
distinguish between examples that are harder to cover, and this can favor the
emergence of so called super–individuals that cover many (easy) examples.
Super–individuals will be often selected, and this may lead to a population
characterized by a low diversity. This phenomenon can negatively affect the
solution, since there are less clauses to choose from, in order to build the final
solution.

In REGAL this problem is tackled by using the distributed architecture of
nodes where each node evolves a single population acting on a different set
of examples, and the nodes co-evolve in order to favor the formation of dif-
ferent species. A supervisor process can shift the focus of the genetic search
performed by each genetic node that constitute the system by simply assign-
ing a different set of training examples to the nodes. In this way the system
promotes diversity. However this strategy is not adopted in ECL, because ECL
was not born as a parallel system. For this reason the two following operators
are introduced.

5.5.2 WUS Selection Operator

The first variation of the US selection operator is represented by the WUS se-
lection operator. The difference between this operator and the standard US
selection operator lies in the first step of the selection. In the WUS operator
examples do not have the same voting power, i.e., examples are no longer cho-
sen at random. A weight is associated to each example, where smaller weights
are associated to examples harder to cover. More precisely the weight for an
example � { is equal to: � { 1 q 	('*)v+ � { - q

q � ' " q (5.2)

=ò~ �:~ �
, being

q � ' " q the population size and
�

the number of positive
examples. If the population is empty, then each example has the same weight.
Examples are now chosen with a roulette wheel mechanism, where the sector
associated to each example is inversely proportional to its weight. So the fewer
individuals cover an example, the more chances that example has of being se-
lected in the first step of the selection.

5.5.3 EWUS Selection Operator

The WUS selection operator selects with higher probability examples that are
harder to cover, by means of the weights assigned to each example. The EWUS
selection operator continues this line, with the difference that now the weight

5.5. SELECTION OPERATOR 61� { of an example � { , =�~L�t~ � , is given by the following formula:� { 1 � � - è ��§ � � ! � -� �ë�� � � � - è ��§ � �U¨ � - (5.3)

Examples are still selected with a roulette wheel mechanism, where the sec-
tor associated to each example is proportional to its weight. In this way the
selection pressure toward examples harder to cover will be much higher than
in the WUS selection operator.

In both the WUS and the EWUS operators, the second step of the selection
is the same as the one performed by the US operator. In both the WUS and
the EWUS selection operators, at the beginning of each generation the weights
assigned to the positive examples are updated (step 6 of the algorithm of figure
5.2).

Example 5.2 Suppose we have three positive examples � � � � N � � � , and five in-
dividuals: � �J� � N � � � � ��© � �}ª . Let

	('*),+ � � - 1Ûx � �.� � N z , 	('*)v+ � N - 1 x � N � � � � ��© z ,	('*)v+ � � - 1Bx �}ª z . Then each example has the same probability of being selected
in the first step of the US selection operator. The weights assigned to each ex-
ample by the WUS and the EWUS operators are those reported in table 5.1.

Operator � + � � - � + � N - � + � � -
WUS 0.4 0.6 0.2

EWUS 0.2477 0.0901 0.6653

Table 5.1: Weights assigned to each example by the WUS and the EWUS oper-
ator.

The selection probability relative to each example � { , =Z~���~LI , in the WUS
operator is inversely proportional to the weight assigned to � { . The difference
between the WUS and the EWUS operators is that in the former operator the
weights are linear, while in the latter the weights are exponential. For this
reason, � N has a small chance of being selected by the EWUS operator, while
the chance that � N has of being selected by the WUS operator is higher. Another
observation is that � � is the example that will likely be selected by the EWUS
operator. Also in the WUS operator � � has a probability of being selected higher
than the other examples. However this probability is much smaller in the WUS
operator than in the EWUS operator.

5.5.4 Discussion on Selection

With the introduction of the two weighted variants of the US selection operator
we wanted to achieve the following aims:

62 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

1. Good coverage of positive examples.

2. Diversity in the population.

One would usually like to have the final hypothesis found by the GA to
cover as many positive examples as possible and as few negative examples as
possible. The fitness function deals with the coverage of positive examples.
The variants of the US selection operator deal also with the second aspect. By
having the learning system focusing more and more on difficult examples to
cover, it is easier to have each positive example covered by at least one indi-
vidual. It is also easier to have more diversity in the population.

Maintaining a good diversity in the population would also lead to a good
coverage of examples. Generally it is a good idea to have the population spread
across the hypothesis space, so that all the areas of the hypothesis space can be
searched. We have seen some methods for maintaining diversity in section 3.5.
Those methods implied the use of some distance measure in order to establish
the similarity between individuals. Establishing a distance measure is not an
easy task when the rules are expressed in FOL. The US selection operator pro-
motes species and niches formation without the need of any distance measure.

The US selection operator considers all the examples as equally important.
In this way the search can focus mainly in the areas where the concentration
of hypotheses covering many (easy) positive examples is higher, and seldom
touches less inhabited areas of the hypothesis space, because hypotheses in
these areas may cover few (difficult) examples. With the weighted variants of
the US operator, examples difficult to cover will have higher chance of being
selected. In this way, if we have many individuals covering the same subset of
training examples, those individuals will be seldom selected for reproduction,
because that area of the hypothesis space is already crowded. Instead we will
select, or create, individuals that occupy, or will occupy, less exploited regions.

Formally, the probability that an individual � has of being selected can be
written as: � + �i- 1¬«� !� ä P � + � q � { - â�� + � { -

where
� + � q � { - , the probability of � being selected conditioned to the selec-

tion of example � { in " / , is equal to
;�+ �i-� / è ��§ � � ! � ;�+ �i-

with
;�+ �i- the fitness of individual � . The three US based selection operators

induce different probability
� + � { - of selection of example � { .

In the US selection operator
� + � { - 1 �- /���- . No distinction is made among

positive examples, so individuals with a high recall are favored in this scheme,
because they cover many positive examples. The recall of an individual is de-
fined as follows:

Definition 5.1 Let � be an individual. Then the recall of � is defined as
ä P- / � - .

5.5. SELECTION OPERATOR 63

A possible effect of favoring individuals with high recall, could be the pres-
ence of super individuals, that will dominate the population and will be often
selected, leading to a low diversity in the population. Also some examples
could stay uncovered, because not selected and difficult to cover.

In the WUS selection operator
� + � { - is proportional to

�® ! � � , with � { de-
fined in equation 5.2. In this way WUS tries to favor not only examples that are
uncovered, but in general it favors examples that are difficult to cover. Individ-
uals with a high recall will still have more chances of being selected. However
the system will focus more and more on examples harder to cover. In this
way it is more probable that at the end of the evolutionary process all positive
examples are covered. The weights given to examples by the WUS operator in-
crease linearly with each individual that covers the example. This means that
the chances that an example covered by one individual is selected are almost
the same as the ones of an uncovered example. The EWUS selection operator
deals with this problem, by choosing

� + � { - 1 � { , with � { defined in equation
5.3, which changes exponentially. If there are uncovered examples, then the
probabilities that they have of being selected with the EWUS operator are very
high, and also examples covered by few individuals are likely to be chosen.

In this way a good coverage of positive examples is encouraged, leading
also to a good diversity in the population.

Individuals with a high recall will be selected more often only if there are
not multiple copies of them, because in this case the examples that they cover
will have an high coverage rate, and if these individuals do not cover only easy
examples.

Example 5.3 Suppose the population is formed by four individuals � { , =Ç~
�X~

, and that the clause encoded by � � is the same as the one encoded by� N , while the other two individuals encode different clauses. Suppose there
are five positive examples � ë , =G~ ¥ ~ C and that the coverage sets are the
following:

	('*)v+ � � - =
x � � � � N z	('*)v+ � N - =
x � � � � N � � � z	('*)v+ � � - =
x � � z	('*)v+ � © - =
x � � z	('*)v+ ��ª*- =
x ��© z

In this case � � and � N have less chances of being selected in the WUS and
EWUS selection operators than the other two individuals, because even if their
recall is good they cover only “easy” examples. On the other hand � � is the
individual that has more probability of being selected, since it has a good recall
and it covers also examples that are not “easy”.

64 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

5.6 Clause Construction

A clause
	

is constructed when the selection operator selects a positive ex-
ample which is not yet covered by any clause in the actual population. This
example is used as seed in the following procedure, where

8W9 ä m ê denotes the
part of background knowledge selected at step 3 of ECL.

1. The selected example becomes the head of the emerging clause;

2. Construct two sets] è and
8 è .] è consists of all atoms in

8:9 ä m ê having
all arguments appearing in the head;

8 è contains all elements in
8W9 ä m êt¯

] è having at least one argument occurring in the head.

3. while » �@& ã bÅ +�	 - <Ç» and] è Æ 8 è |1>ì

(a) Randomly select an atom from] è and remove it from] è . If] è is
empty then randomly select an atom from

8 è (and remove it from8 è). Add the selected atom to the body of the emerging clause
	

.

4. Generalize
	

as much as possible by means of the repeated application of
the generalization operator “constant into variable” (described in section
5.7). Apply this operator to the clause until either its fitness increases or
a maximum number of iterations is reached. In the former case, retract
the last application of the generalization operator.

In step 3, » is the maximum length of a clause, supplied by the user. If » was not
supplied then the first condition of the while cycle is dropped, and no constraint
on the length of the clause is imposed.

In the second step, there is also the possibility to consider a third set
8 ßè ,

consisting of all the atoms of
8:9 ä m ê having at least one argument appearing in

] è Æ 8 è . When
8 ßè is constructed

8 è becomes
8 è Æ 8 ßè .

At the end of the procedure, if
q] è q AÁ» , the atoms of] è that were not

added to
	

are moved into
8 è . Thus

8 è contains all the atoms that are not
considered to be in the body of the

	
, called non–active atoms.

Example 5.4 Suppose the example
m 1 �\k.�µ�nm�� +¨§ k0©�ªv�*¥\¦� � - from figure 5.1 is se-

lected, and let
	('*)v+ �.- 1 ì

. Then a new clause
	

covering � must be created.
Suppose that we use all the background knowledge shown in figure 5.1, and
let » 1

. From the first step we have that
	Á1Û; M bÅ � c +¦¥ M _ ¤ � P��V»Â» - � �

From
the second step we have that] è is

x lnkJ��m\o$� +¨§ kD©`ª«�@¥�¦� � - ����m\ ¯k.��¦�¬*m +¨§ kD©`ª«�@¥�¦� � - z , and°²± 1Äx luk.��m�ou� +¨§ k0©�ªv�*m\¬.m - � " M c �@& + �) � � P��V»�» - ����kJ ¡m +¨§ k0©�ª - � � MO» � + P��V»Â» - z .
Now we start adding atoms to the body of

	
. We add

luk.��m�ou� +¨§ k0©�ªv�*¥\¦� � - andc � »�M �) � +�¥ M _ ¤ � P��V»Â» - , since they are the only atoms present in] è .] è is now
equal to

ì
, so we select an atom from

8 è , let it be
� MO» � +¦¥ M _ ¤ - . We then add it

to
	

and remove it from
8 è .

Now » �@& ã bÅ +�	 - 1 1 » so the final result of this initialization step is�\k.�µ�nm�� +¨§ k0©�ªv�*¥\¦� � - � lnkJ��m\o$� +¨§ kD©`ª«�@¥�¦� � - ����m\ ¯k.��¦�¬*m +¨§ kD©`ª«�@¥�¦� � - ����k0 ¡m +¨§ kD©gª - � . We still
need to perform step 4 of the initialization procedure. We can generalize the

5.7. MUTATION AND OPTIMIZATION 65

clause by applying
x`§ k0©�ª 50� z

, and
x ¥\¦� � 5 � z

. No further generalizations are
possible, and the final result is already the target concept:

�\kJ���um\� +�� �u� - �luk.��m�ou� +�� �u� - ����m\ ¯k.��¦�¬*m +�� �$� - ���Xk. ¯m +�� - � .

5.7 Mutation and Optimization

For moving in the hypothesis space ECL makes use of four mutation operators,
and takes advantage of the general-to-specific order of the hypothesis space.
In fact, two mutation operators are used for generalizing clauses, and two for
specializing. Here we use the concept of generality as defined in section 2.2.
A clause can be then generalized by either deleting an atom from its body (the
atom is deactivated) or by turning a constant into a variable. With the inverse
operations a clause can be specialized.

These mutation operators do not act completely at random, but consider a
number of mutation possibilities and among these possibilities the best one is
applied. The number of mutation possibilities considered are determined by
the values of four parameters

� �*��������� � © . Table 5.2 shows for each mutation
operator the associated parameter

� {
, =(~G��~ .

Mutation Operator Associated
� {

Atom Deletion
� �

Constant into Variable
� N

Atom Addition
� �

Variable into Constant
� ©

Table 5.2: Mutation operators with associated parameters for controlling the
greediness.

In order to determine which mutation possibility is the best, a gain function
is used. When applied to clause

	
and mutation operator ³ , the gain function

yields the difference between the clause fitness before and after the application
of ³ :

ã MS� & +�	 � ³ - 1>;�+�	 - E ;�+ ³ +�	 -b-
In the following with

	('*)D/ç1j3 " /,5 & /n6 we indicate the number " / of positive
and & / of negative examples covered by an individual � . The four operators
are defined below.

Atom Deletion

Consider the set Atm of
� �

atoms of the body of
	

randomly chosen. If the
number of atoms in the body of

	
is less than

� �
then Atm contains all the

atoms in the body of
	

. For each] in] � , compute
ã MS� & +�	 � E�] - , the gain of	

when] is deleted from
	

.

66 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

Choose an atom] yielding the highest gain
ã MS� & +�	 � E�] - (ties are randomly

broken), and generalize
	

by deleting] from its body.
Insert the deleted atom] in a list

� è associated with
	

containing atoms
which are deactivated. Atoms from this list may be added to the clause (acti-
vated) during the evolutionary process by means of a specialization operator.

Example 5.5 Consider the problem of learning the concept of father from the
input given in figure 5.1. Suppose that the parameter

� �
is set to H , and that an

individual � has been selected. Let, moreover, � encode the following clause:
�\k.�µ�nm�� +�� �@¥�¦� � - � E luk.�`m\o$� +�� �*¥\¦� � - ���Xk. ¡m +�� - �Vluk.��m�ou� + ��¦�D\¦Â£n�@¥�¦� � - ����kJ ¡m + ¥�¦� � - �
For the selected individual

	('*)D/e1 3 ? 5 ? 6 . Then an application of the atom-
deletion operator could work as follows. Two atoms are randomly chosen for
being considered for deletion. Let them be

�Xk. ¡m +�� - and " M c ��& + ��
0� ' � Pg�°»�» - .
Deleting the atom

��kJ ¡m +�� - does not modify
	('*) /

, while without the atomlnkJ��m�ou� + ��¦�D�¦Â£7�*¥\¦� � - 	('*) / becomes
3 = 5 ? 6 yielding to a better fitness of � . So the

atom
luk.��m�ou� + ��¦�D\¦Â£n�@¥�¦� � - is deleted from the body of the clause.

Constant into Variable

Consider the set 3�M c of variables present in
	

plus a new variable. Consider
also the set

	(' & consisting of
� N constants of

	
randomly chosen. If the num-

ber of constants of
	

is less than
� N then

	(' & consists of all the constants of	
.

For each M in
	(' & and each

�
in 3ZM c , compute

ã MS� & +�	 � x M 5 � z - , the gain of	
when all occurrences of M are replaced by

�
.

Choose a substitution
x M 5 � z yielding the highest gain (ties are randomly

broken), and generalize
	

by applying
x M 5 � z .

Example 5.6 Suppose we select the clause
�\kJ���um\� +�� �@¥�¦� � - � E luk.�`m\o$� +�� �*¥\¦� � - ���Xk. ¡m +�� - ���Xk. ¡m + ¥\¦� � - �

encoded by an individual � and suppose that the parameter
� N is set to 1.

Then 3�M c 1 x ����� z
and

	(' & 1 x P��V»Â» z . The two substitution
�´6¢1 x ¥�¦� � 5J� z

and
�"9ò1¿x ¥\¦� � 5 � z

are applied to the clause. With the application of
� �

,
	('*)0/

becomes
3 ? 5 ? 6 . With the application of

� N , 	('*)0/ becomes
3 I 5 ? 6 improving in

this way the fitness. So
� N is applied to the clause.

Atom Addition

Consider the set] � consisting of
�W�

atoms of
8 è (list built at initialization

time) and of
�W�

atoms of
� è , all randomly chosen. If

8 è contains less than
�W�

atoms, then] � contains all the atoms of
8 è . The same holds for

� è .
For each] in] � compute

ã MS� & +�	 � ñ] - , the gain of
	

when] is added to
the body of

	
.

5.7. MUTATION AND OPTIMIZATION 67

Choose an atom] yielding the highest gain
ã MS� & +�	 � ñ] - (ties are randomly

broken), and specialize
	

by adding] to its body.
Remove] from its original list (

8 è or
� è).

Example 5.7 Suppose the individual � represents the clause
�\k.�µ�nm�� +�� �*¥\¦� � - � E lnkJ��m�ou� +�� �@¥�¦� � - ���Xk. ¯m + ¥\¦� � - �

has been selected, and suppose that
� �

is set to 2.
	('*) / 1º3 = 5 = 6 . The atom-

addition operator could consider to add the atoms
�Xk. ¡m +�� - and

�\m\�Xk. ¡m +�� - to
the body of the clause. The addition of

� MS» � + � - changes
	('*) /

to
3 = 5 ? 6 , while

the addition of
�\m���kJ ¡m +�� - changes

	('*) /
to
3 ? 5 = 6 . So the atom

�Xk. ¡m +�� - is added
to the body of the clause.

Variable into Constant

Consider the set
	(' & consisting of

� © constants (of the problem language) ran-
domly chosen, and a variable

�
of
	

randomly chosen. If the constants of the
problem language are less than

� © , then
	(' & contains all the available con-

stants.
For each M in

	(' & , compute
ã MS� & +�	 � x � 5 M z - , the gain of

	
when all occur-

rences of
�

are replaced by M .
Choose a substitution

x � 5 M z yielding the highest gain (ties are randomly
broken), and specialize

	
by replacing all occurrences of

�
with M .

Example 5.8 Suppose the individual � representing the clause
�\k.�µ�nm�� +�� �u� - � E luk.�`m\o$� +�� �$� - ����kJ ¡m + � - ���\m\�Xk. ¯m +�� - �

has been selected, and suppose that
� © is set to 2.

	('*)0/�1j3 ? 5 H 6 . Let
	(' & 1x`§ k0©�ªv�@m�¬.m z

and
�

the variable chosen. Then the operator will apply the sub-
stitutions

�´6�1Ûx*��5g§ k0©�ª z
and

�"9ÿ1 x*��5 m\¬.m z
. The application of

� �
yields to	('*)0/w1 3 ? 5 ? 6 , while the application of

� N yield to
	('*)0/ 1 3 ? 5 H 6 . So

� �
is applied

to the clause.

The optimization phase, performed after an individual is mutated, is shown
in figure 5.4. Optimization consists of a repeated application of the greedy
operators to the selected individual, until either its fitness does not increase or a
maximum number of iterations (in figure denoted as

� MS% ' " á �`" á) is reached.
The default value of

� MD% ' " á �`" á is 10, and can be modified by setting a
relative parameter. If the procedure ends because an application of a mutation
operator negatively affected the fitness of the individual being optimized then
the last mutation applied is retracted. This control, and the relative action, is
performed in the if statement in step 7 of the procedure.

ECL does not use any crossover operator. Experiments with a simple cross-
over operator, which uniformly swaps atoms of the body of the two clauses,
have been conducted. However the results did not justify its use. Other EAs

68 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

OPTIMIZATION
+ � ,

� MS% ' " á �`" á -
1

' " á �`" áF1 = , _ ' & = true
2 while

+Â' " á �`" á < � MS% ' " á �`" á - Ú (
_ ' &)

3 do
4 � ß = mutate(�)
5 evaluate(� ß)
6

' " á �`" áK1®' " á �`" á ñ =
7 if

; � &R� á*áS+ �i- < ; � &R� á*áS+ � ß -
8 then

_ ' & = false
9 else

_ ' & = true
10 � 1 � ß
11 return �

Figure 5.4: Optimization function used in step 9 of the algorithm of figure 5.2.
The procedure takes as input an individual � and a maximum number of opti-
mization steps,

� MS% ' " á �`" á .

do not use any crossover operators. For instance EP and ES usually rely only
on mutation for carrying out the evolutionary process.

5.8 Hypothesis Extraction

The termination condition of the main while statement of ECL, in step 5 of
figure 5.2, is met when either all positive examples are covered or a maximum
number of iterations is reached. In this case a logic program for the target
predicate is extracted from the final population.

In a early version of ECL the problem of extracting a solution from the fi-
nal population was translated into an instance of the weighted set covering
problem as follow. Each element � of the final population was a column with
positive weight equal to � � � ã Ån /w1®;�+ �i- ñ = (5.4)

Each covered positive and uncovered negative example was a row. The columns
covering each positive example were the clauses that covered that example.
The columns relative to each uncovered negative examples were the clauses
that did not cover that negative example. In this way clauses covering few neg-
ative examples were favored. The task was to find a set of columns (clauses)
with minimal total weight that cover all the rows (hence the positive exam-
ples). A fast heuristic algorithm (Marchiori and Steenbeek, 2000) was applied
to this problem instance to find a “best” theory. However this approach turned
out not to be the best one for this problem, as illustrated in example 5.9.

In (Divina and Marchiori, 2002), the problem was then translated differently

5.8. HYPOTHESIS EXTRACTION 69

having weights equal to � � � ã Åu / 1 & / ñ = (5.5)

and each covered positive example was a row. Again the columns relative to
each positive example were the clauses that covered that example. However
also this solution had problems in extracting hypotheses that excluded nega-
tive examples. This is due to the fact that the procedure considers the weight of
the emerging solution only as the sum of the weights of the individuals in the
solution, without considering possible overlapping among negative examples
covered.

Positive
	('*)v+ " { -

" � � � � ©
" N � � � N � � � ©
" � � � � N � � ��©
"µ© � � � � ��©
"¶ª � � ��©
"¶· � � ��©

Negative
	('*)v+ & { -

& � � � � �
& N � � � �
& � � N&�© � N ��©
&�ª ��©
&�· ��©

Table 5.3: Coverage of positive and negative examples for example 5.9.

Individual weight 5.4 weight 5.5� � 2.50 3� N 3 3� � 2.33 3� © 2.33 4

Table 5.4: Weights assigned to each individual by the procedures for extracting
the final solution using weights defined in equations 5.4 and 5.5.

Example 5.9 Suppose we have six positive examples � { , =Z~L�t~ ± and six neg-
ative examples. Suppose that in the final population there are four individuals
that cover the training examples as in table 5.3.

The weights assigned to each individual by the procedures using the weights
given by equation 5.4 and 5.5 are given in table 5.4.

Both the procedures based on the weighted set covering algorithm extract
a solution formed by only ��© , since this solution covers all positive examples
with minimal total weight. The total weight of this solution is 2.33 in case
of weights given by equation 5.4, and 4 in case of weights given by equation
5.5. The accuracy of this solution is

· � �� N 1 1� N . In this case a solution formed
by � � and � � has better accuracy, equal to

· � ©� N 1 � �� N . In both the procedures

70 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

based on the weighted set covering algorithm, the solution formed by � � and� � has a higher weight than �}© . In fact the procedure using weights given
by equation 5.4 assigns a total weight equal to 4.83 to this solution, while the
weight assigned to

x � �.� � � z by the procedure using weights given by equation
5.5 is 6.

EXTRACT SOLUTION
+ �(� & MO» � ' " T »�M � ' & -

1
! 1>ì

, Pop = Final Population,
_ ' & 1 c T �

2 while Pop and
_ ' &

3 do Let � the most precise individual in Pop
4 if " / |1>ì
5 then

! 1 ! Æ �
6 Pop

1
Pop

¯ �
7 if Accuracy(

!
) < Accuracy(

x ! E � z)
8 then

! 1 ! ¯ �
9

_ ' & 1>; MO» á �
10 else Extract " / from

�:�
11 Recompute the precision of all � ß Y Pop using

���
12 else

_ ' & 1®; MO» á �
13 return

!

Figure 5.5: Procedure for hypothesis extraction adopted by ECL.

A different approach to the problem was then experimented successfully.
A new procedure for extracting the solution was adopted. This procedure is
very simple, and illustrated in figure 5.5.

In the figure precision is defined as follow.

Definition 5.2 Let � be an individual. Then the precision of � is defined asä Pä P � �2P .

Precision measures the proportion of examples that are correctly classified,
while accuracy measures how well

!
classifies the training examples. Another

measure that can be used for measuring the goodness of a hypothesis is recall
(definition 5.1), which measures the proportion of positive examples that are
correctly classified.

In step 3 the most precise individual in the population is selected. If two
individuals have the same precision then the one covering more positive exam-
ples is chosen. If both individuals cover the same number of positive examples
then one is randomly chosen. In step 6 the selected individual is extracted from
the population. If the accuracy of the solution with the new added individual
has dropped (step 7), then the individual is removed from the solution and the
procedure stops. If that is not the case, in step 10 all the positive examples cov-
ered by the selected individual are extracted from the training examples set.

5.8. HYPOTHESIS EXTRACTION 71

In step 11 the precision of all the remaining individuals in the population is
recomputed, as now there are less positive examples.

We have seen that a first stopping criterion is represented by the accuracy
of the emerging solution. As far as it does not decrease the procedure can be
repeated. Other stopping criterion are that the set of positive examples covered
by the extracted individual must not be empty (step 4), and that there need to
be individuals in the population, otherwise it means that all the population
has been added to the emerging solution. With this procedure the first clauses
inserted in the solution are the most precise ones. Mistakes in classifying neg-
ative examples as positive are therefore unlikely to happen.

" { 	('*)v+ " { - & { 	('*),+ & { -
" � � � & � � �
" N � � & N" � � � & �
" © � N & ©
" ª � N � � � & ª � �

Table 5.5:
	('*),+ " { - and

	('*)v+ & { - for the example 5.10.

Example 5.10 Suppose we have five positive examples, " { , =X~B��~ÄC and five
negative examples, & { . Let Final Population be made of three individuals,� �*� � N � � � . Let

	('*),+ " { - and
	('*),+ � { - be those given in table 5.5. The precisions

for the three individuals are
�© , = ,

�
N ,respectively. At the first iteration of the

“extract solution” procedure, � N is chosen in the third step and is added to!
. It is then removed from

� ' " , and the positive examples covered by � N are
removed from

�:�
. The recomputed precision (step 11) for � � is still

�© , and for� � is ? , since now " / ½ 12ì
. The accuracy of

!
is N� � . At the next iteration � � is

the most precise individual and is added to
!

. Now all the positive examples
are removed. The accuracy of

!
is 1� � , so the procedure it iterated again. � � is

selected, but since " / ½ 1¿ì
, the procedure ends and

! 1 x � N � � �@z is returned
as the final solution.

Example 5.11 Consider the population and examples given by example 5.9.
The procedure based on precision extracts a solution composed by � � and � � ,
in this order. This solution has an accuracy of

· � ©� N 1 � �� N .

In chapter 7 we experimentally verify that the procedure based on precision
is able to extract solutions of better quality than the solutions extracted by the
other two procedures based on the weighted set covering algorithm.

72 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

Algorithm Encoding Approach Fitness features

ECL
high level

Michigan
Inverse accuracy

representation computed on partial BK

Table 5.6: Encoding, approach and fitness adopted by ECL.

Algorithm Type of crossover Mutation Selection

ECL none
2 greedy generalizing

US, WUS, EWUS2 greedy specializing
optimization

Table 5.7: A summary of the various operators adopted by ECL.

5.9 Conclusions

In this chapter we have presented the hybrid evolutionary system ECL for ILP.
We have described in detail the various components of the systems. The most
characterizing features of ECL are the use of greedy mutation operators, the
use of a high level representation, the use of a stochastic sampling of the back-
ground knowledge and the incorporation of an optimization phase that follows
the mutation. Tables 5.6 and 5.7 summarize the features of ECL.

The high level representation allows ECL to perform some ILP oriented op-
erations, e.g., turning a particular variable into a particular constant. Moreover
it allows the implementation of greedy ILP oriented mutation operators. When
a mutation operator is applied to an individual, a number of mutation possibil-
ities are tested, and the one yielding the best improvement in the fitness of the
individual is then applied. The number of possibilities considered determines
the greediness of each operator. The greediness of each mutation operator can
be tuned by setting a relative parameter. Different values of the parameters de-
termine different search strategies: low values yield weak learning methods,
like standard EAs, while high values yield more greedy learning methods, like
ILP systems, e.g., FOIL.

A high level representation has the advantage over a binary string repre-
sentation of a direct way to define operators for generalizing and specializing
a rule, and allows a more flexible form of the rules. Another advantage of an
high level representation is that with such a representation it is easy to have in-
dividuals of variable length. With a binary representation, some problems can
arise when dealing with numerical values. In fact the binary representation of
the model can become quite long and this may slow down the process. An-
other advantage of the adopted representation, is that the user is not required
to provide any model of the rules to be learned, as it happens, e.g., in REGAL.
In ECL it is the example used as seed that determines the model of the rule.
Furthermore, different examples determine different models for the rules, so

5.9. CONCLUSIONS 73

that the model is not an instance of a pre-defined scheme, as in REGAL.
The default selection operator, the EWUS selection operator, adopted by

ECL promotes diversity in the population, as well as a good coverage of posi-
tive examples. An experimental evaluation of the US, the WUS and the EWUS
selection operator is performed in chapter 7.

At the end of the evolutionary process a solution has to be extracted from
the final population. To this aim, a simple procedure is adopted. The procedure
first detects the most precise individual in the population, and adds it to the
emerging solution. If the accuracy of the solution has not decreased then the
procedure is repeated. This procedure solved some problems that were present
in previous solutions adopted for this task.

In section 5.1, we stated that we wanted to introduce some methods for
dealing with numerical values. The way ECL deals with numerical values is
the subject of the next chapter.

74 CHAPTER 5. EVOLUTIONARY CONCEPT LEARNER

Chapter 6

Treating Numerical Values

Real life learning tasks are often described by nominal as well as continuous,
real-valued, attributes. However, most inductive learning systems treat all at-
tributes as nominal, hence cannot exploit the linear order of real values. This
limitation may have a negative effect not only on the execution speed but also
on the learning capabilities of such systems.

In order to overcome these drawbacks, continuous-valued attributes are
transformed into nominal ones by splitting the range of the values of the at-
tribute in a finite number of intervals. Alternatively, continuous attributes are
treated by means of inequalities, describing attribute subranges, whose bound-
aries are computed during the learning process. This process, called discretiza-
tion, is supervised when it uses the class labels of examples, and unsupervised
otherwise. Discretization can be applied prior or during the learning process
(global and local discretization, respectively), and can either discretize one at-
tribute at a time (univariate discretization) or take into account attributes inter-
dependencies (multivariate discretization) (Dougherty et al., 1995).

Researchers in the Machine Learning community have introduced many
discretization algorithms. An overview of various types of discretization algo-
rithms can be found, e.g., in (Freitas, 2002; Freitas and Lavington, 1998; Kohavi
and Sahami, 1996; Liu et al., 2002). Most of these algorithms perform an itera-
tive greedy heuristic search in the space of candidate discretizations, using dif-
ferent types of scoring functions for evaluating a discretization. For instance,
the popular Fayyad & Irani’s discretization algorithm (Catlett, 1991; Fayyad
and Irani, 1993) considers one attribute at a time, uses an information class
entropy measure for choosing a cut point yielding a partition of the attribute
domain, applies recursively the procedure to both the partitions, and uses the
minimum description length as criterion for stopping the recursion.

In this chapter we first illustrate through an example a weak point of uni-
variate discretization, which does not take into consideration the possible inter-
actions among attributes. This motivates the introduction of multivariate dis-
cretization methods. A popular univariate discretization method is described.
This method is a global supervised recursive algorithm, that uses the class en-

75

76 CHAPTER 6. TREATING NUMERICAL VALUES

tropy information for discretizing numerical attributes.
We then present two methods for dealing with numerical attributes, which

have been incorporated in ECL. The first method is a local unsupervised dis-
cretization method, here called ECL-LUD and was first introduced in (Divina
et al., 2003c). The other method was introduced in (Divina et al., 2003b; Divina
and Marchiori, 2004a) and is a local supervised method, of which two variants
are proposed. In chapter 7 we will experimentally compare the proposed me-
thods. Both methods treat numerical attributes by means of inequalities. An
inequality is introduced in a rule each time a continuous attribute value of an
example is considered. Inequalities are then modified during the evolution of
rules. The way these inequalities are initialized and modified is different in the
two methods.

Differently from the propositional case, where an attribute has exactly one
value for each example, in ILP a numerical argument can have more values per
example.

Example 6.1 Consider the molecule shown in figure 2.1. Suppose that that
molecule is an example of a learning problem. The molecule is formed by
a variable number of atoms. Each atom of each example is described by a
number of proprieties, e.g., its charge. In this case an example will have more
values for the argument charge, one for each atom composing the molecule.

This can negatively influence methods based on class entropy. An example
with many values for a numerical argument has a high impact in the calcula-
tion of the average class entropy. In order to overcome this problem we pro-
pose three methods for dealing with numerical values. Information about class
entropy is used only in the initialization of inequalities. However inequalities
can be modified during the learning process, and so erroneous initializations
of inequalities can be corrected.

In section 6.6 we give an overview of some other methods for dealing with
numerical values in ICL, and in section 6.7 we summarize the content of this
chapter.

6.1 Weak Point of Univariate Discretization

A typical example showing a drawback of univariate discretization methods
based on class information entropy is the problem of separating the two classes
shown in the figure 6.1, where positive and negative examples are labeled ñ
and X . In this problem, every example is described by two attributes M V c � and
M V c N uniformly distributed on the interval [0,1000]. The examples are equally
divided in two classes. The solution to this learning problem is represented by
the two lines in figure 6.1, described by the two rules

+ M V c � ~ÃCJ?D? - Ú + M V c N ~
CJ?D? - and

+ M V c � AÇCJ?D? - Ú + M V c N AðCJ?D? - .
Univariate discretization methods based on class information entropy, are

not able to capture the interdependencies among attributes. For this reason

6.2. ECL-LUD 77

Figure 6.1: An artificially generated dataset, for which univariate global dis-
cretization is unlikely to work.

globally discretizing numerical attributes with such methods, e.g., with the
Fayyad & Irani’s algorithm, yields the risk of missing the necessary informa-
tion to find the correct solution. In fact, any cut point divides the domain of
one attribute in two partitions having approximately the same class distribu-
tion as the entire domain. Thus a condition on a single attribute does not im-
prove class separation, so the two attributes will be discretized into two unique
intervals, and the solution for this classification problem cannot be found. For
this reason univariate supervised discretization methods based on information
class entropy are unlikely to work. This suggests that in some cases the use of
an univariate discretization method could negatively affect the accuracy of the
learned theory.

An elegant and robust approach for overcoming this drawback is provided
by evolutionary algorithms, which can be used for performing local multivari-
ate discretization during the evolutionary learning process. Recent methods
based on this approach deal with continuous attributes by means of inequal-
ities. These methods differ among each other mainly in the way inequalities,
describing continuous attribute subranges, are encoded, and in the definition
of suitable genetic operators for modifying inequalities. A brief description of
these methods is presented in section 6.6.

Evolutionary learners for ILP, like ECL REGAL, G–NET and DOGMA, gen-
erally treat continuous attributes as nominal ones or discretize them prior to in-
duction, e.g., using Fayyad & Irani’s algorithm. SIA01 adopts some method for
handling numerical attributes, as it can randomly create and extend an interval
for a numerical value.

6.2 ECL-LUD

The first method we propose for dealing with numerical values is named ECL-
LUD (Divina et al., 2003c). With ECL-LUD (ECL with Local Unsupervised
Discretization), we handle numerical attributes by using inequalities of the

78 CHAPTER 6. TREATING NUMERICAL VALUES

form M¢~ � ~�P , where
�

is a variable relative to a numerical attribute, and
M � P are attribute values. An inequality for a numerical attribute is generated
when that attribute is selected. Inequalities are then modified during the evo-
lutionary process by using operators defined in the sequel. These operators
use information on the distribution of the values of attributes in order to up-
date the interval boundaries of inequalities. Information about the distribution
of the values of numerical attributes is obtained by clustering the values of
each attribute using a mixture of Gaussian distributions. To this end we use
the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

For each numerical attribute the EM algorithm returns n clusters described
by mean T { and standard deviation ¸ { , =ç~ �X~ & of Gaussian distributions.
A begin P ¹º¹ ! and an end � ¹º¹ ! of a cluster

_ » { are generated by intersecting the
distributions of

_ » { with the ones of
_ » { � � and

_ » { � � . Special cases are P ¹º¹ !i1 EO»
and � ¹º¹ !�1 ñ » . The boundaries M � P of each inequality Ms~ � ~ÇP are contained
in one cluster. In the following

� + MB~ � ~ÁP - 1 � + M � P - indicates the area
under the curve of the Gaussian distribution between M and P .

6.2.1 Operators

Within each cluster, we use inequalities for restricting the range of values of an
attribute variable.

An inequality can be modified by the following operations:

1. enlarge the boundaries;

2. shrink the boundaries;

3. shift the boundaries;

4. change cluster of the boundaries;

5. ground the inequality (i.e., restrict its range to a single value).

Formally, consider the inequality Þ � Mç~ � ~yP , and let P ¹º¹ and � ¹º¹ be the
begin and the end of the cluster

_ » containing Þ , respectively.

Enlarge This operator applied to Þ returns Þ ß«1 M ß ~ � ~�P ß where M ß ~ÇM and
PF~ðP ß . The new bounds M ß � P ß are computed in the following way:

1. let
� � & 1ð� � & � � T,�2x � + P ¹º¹ ~ � ~LM - �`� + PF~ � ~ � ¹º¹ - z the minimum

of the probability that
�

is between P ¹º¹ and M and the probability that�
is between P and � ¹º¹ .

2. generate randomly " with ?�~ " ~ � � & ;

3. find two points M ß � P ß such that " 1 � + M ß ~ � ~GM - 1 � + PF~ � ~ÇP ß - .
Bounds are enlarged by generating probabilities instead of random points
inside the cluster because in this way we can exploit the information ab-
out the distribution of the data values in an interval.

6.2. ECL-LUD 79

Shrink This operator applied to Þ returns Þ ß 1 M ß ~ � ~>P ß where M ß nBM and
P ß ~ P . M ß and P ß are computed by randomly choosing " ~ � + M � P - such
that " 1 � + Mw~ � ~LM ß - 1 � + P ß ~ � ~ÇP - , and M ß ~ÇP ß .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

a ba’ b’

Figure 6.2: An example of the application of the Enlarge operator.

Example 6.2 Let Þ 1 MÇ~ � ~ P the inequality describing the interval3 M � P 6 shown in figure 6.2. Then an example of the application of the en-
large operator is shown in figure 6.2. The cluster which Þ belongs to is
represented by the normal distribution plotted in the figure. Two points
M ß and P ß are generated, where

� + M ß ~ � ~ M - 1 � + Pò~ � ~ P ß - . The
resulting enlarged inequality is Þ ßi1 M ß ~ � ~2P ß . An application of the
shrink operator to Þ ß could generate again Þ .

Shift This operator, applied to Þ returns Þ ß�1 M ß ~ � ~ P ß where M ß � P ß are
points in the cluster containing M � P such that

� + M ß ~ � ~ P ß - 1 � + M�~� ~ðP - .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

b a’a b’

Figure 6.3: An example of the application of the Shift operator.

Example 6.3 Let Þ 1 MÇ~ � ~ P the inequality describing the interval3 M � P 6 shown in figure 6.3. Then an application of the shift operator may

80 CHAPTER 6. TREATING NUMERICAL VALUES

return the inequality Þ ßt1 M ß ~ � ~ P ß , where
� + Mç~ � ~ P - 1 � + M ß ~� ~LP ß - .

Change Cluster This operator, applied to Þ 1 MG~ � ~ P returns Þ ß}1 M ß ~� ~jP ß where M ß � P ß belong to a different cluster. First, a new cluster is
chosen at random. Next a pair M ß � P ß in the cluster with M ß ~ÇP ß is randomly
generated. (In general,

� + M ß ~ � ~ÇP ß - is not equal to
� + Ms~ � ~ðP -).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ba cl a’ b’

Figure 6.4: An example of the application of the Change cluster operator.

Example 6.4 Let Þ 1 MÇ~ � ~4P the inequality describing the interval3 M � P 6 shown in figure 6.4. Let in the figure “cl” be the end and the begin
of the clusters in which points M � P and M ß � P ß are contained, respectively.
Then an application of the change cluster operator applied to Þ can return
the inequality Þ ß$1 M ß ~ � ~ÇP ß .

Ground This operator, applied to Þ returns Þ ß�1 M ß ~ � ~�M ß , with M ß in the
cluster containing M � P .

6.2.2 Incorporation of the Method into ECL

When a new clause is built using a positive example as a seed, or when a clause
is specialized, atoms of the background knowledge are added to its body. Each
time an atom containing a numerical argument is introduced in a clause, an
inequality relative to that argument is added to the clause as well. For example,
consider the following clause for example

_ HJI :
	B1 M c ã � + _ H0I - � E f + _ HJI � M - � + _ H0I � U - �

Suppose now that we would like to add the atom c + _ H0I � ´ � H0I - stating that ex-
ample

_ H0I is in a relation c with a numerical value, in this case 8.23. Then we
obtain the clause:

 M c ã � + _ HJI - � E f + _ H0I � M - � + _ HJI � U - � c + _ HJI �b� - � ´ � HJI�~ � ~ ´ � H0I �

6.2. ECL-LUD 81

The operators for handling inequalities, introduced in the previous section,
are used as mutation operators. When an operator is chosen then it is applied
to an inequality & _ Å ' � _ � á times, where & _ Å ' � _ � á is a user supplied parameter.
In this way & _ Å ' � _ � á new inequalities are generated and the one yielding the
best fitness improvement is chosen.

Shrink and Ground These two operators are applied when specializing a cla-
use. More precisely, when the system is specializing a clause by turning
a variable into a constant, if the selected variable occurs in an inequality
then either Shrink or Ground are applied to that inequality.

Enlarge This operator is applied when the system decides to generalize a cla-
use. ECL has two generalization operators: delete an atom and constant
into variable operators. When delete an atom is selected and the atom cho-
sen for deletion describes the value of a numerical attribute, then both the
atom and the inequality relative to the described attribute are deleted. If
delete an atom is not selected and there are inequalities in the body of the
clause chosen for mutation, then the system randomly selects between
the constant into variable and enlarge operators.

Change Cluster and Shift These operators are applied with a probability " _
(typical value ? � H), if in the selected individual there are inequalities.

The shrink and ground operators are specialization operators. In fact, if
the shrink or the ground operator is applied to an inequality Þ contained in

	
,

then for the resulting clause
	Zß

, we have that " ßè ï ",è and &Rè æ ï &Rè . And
from definition 2.9 we can conclude that

	Zß
is more specific than

	
.

On the other hand, the enlarge operator is a generalization operator. In
fact if

	
is the clause to which the enlarge operator is applied, and

	�ß
is the

resulting clause, then "vè ï "$è æ and &Rè ï &Rè æ .
The other two operators, change cluster and shift, can be viewed as explo-

ration operators. In fact it is impossible to predict the effects that an application
of one of these two operators can have on the set of examples covered by a cla-
use.

ECL-LUD is an unsupervised local discretization method. Information ab-
out the distribution of examples is obtained through a number of Gaussian
distributions that describes an equal number of clusters for each numerical
attribute. Other clustering algorithms, e.g., K-means clustering (MacQueen,
1967) or Minimal Spanning Tree clustering algorithm , could be used for ob-
taining clusters. However the EM algorithm has the desirable feature of de-
scribing the clusters by means of Gaussian distributions, which are used in the
operators adopted by ECL-LUD for modifying inequalities.

82 CHAPTER 6. TREATING NUMERICAL VALUES

6.3 Boundary Points

Boundary points represent candidate cut–points for discretization. They are
used in the Fayyad & Irani’s discretization algorithm, described in the follow-
ing section, as well as in the methods developed for ECL and described in
section 6.5. Boundary points have been introduced and analyzed in (Fayyad
and Irani, 1992). A boundary point is defined as follows:

Definition 6.1 Given a numeric attribute] and a set of positive and negative
examples, the values of] occurring in the examples are sorted in increasing
order. A boundary point is the midpoint of two successive values of] occurring
in examples of different classes.

Here we call boundary points also the smallest and biggest value of] , denoted
by EO» and » , respectively.

Each pair of consecutive boundary points describes an interval, which can
be of three types: negative if its values occur only in negative examples, positive
if they occur only in positive examples, and mixed if the interval contains just
one value, and this value occurs both in a positive and a negative example. An
example is shown in figure 6.5.

é¼
mix

¼½¼¾¼½¼
pos

éLéLé
neg

é¼
mix

éLé
neg

¼¾¼½¼½¼¾¼
pos

Figure 6.5: An example of boundary points of an attribute:
¼

denotes a value
occurring in a positive example, while é a value occurring in a negative one.

Definition 6.2 Let] be a numerical attribute. We then define the set of bound-
ary points relative to] , and we indicate it as

8:� +] - , as the sequence of bound-
ary points of] sorted in increasing order.

Definition 6.3 Let] be a numerical attribute, and
8W� +] - the relative set of

boundary points. We then define a
8W�

interval as an interval defined by two
successive elements of

8W� +] - .
Boundary points are sufficient for finding the minimum of class information
entropy, a measure used in the Fayyad & Irani’s discretization algorithm.

6.4 Fayyad & Irani’s Discretization

A standard approach for dealing with numerical attributes is to discretize them
into intervals, and then use the intervals instead of the numerical values. To
this end, the Fayyad & Irani’s algorithm is widely used. In (Dougherty et al.,

6.4. FAYYAD & IRANI’S DISCRETIZATION 83

1995; Kohavi and Sahami, 1996) a study of some discretization methods is con-
ducted, and it is shown that Fayyad & Irani’s discretization method represents
a good way for globally discretizing numerical attributes.

This supervised recursive algorithm uses the class information entropy of
candidate intervals to select the boundaries of the discretization intervals. Given
a set � of instances, an attribute " , and a partition bound

, the class information

entropy of the partition induced by

is given by:

� + " � � � - 1 � & c ' " U + � � - q � �Jqq � q ñ � & c ' " U + �«N - q �RN qq � q (6.1)

where � � is the set of instances whose values of " are in the first half of the
partition and � N the set of instances whose values of " are in the second half of
the partition. Moreover

q � q denotes the number of elements of � and
� & c ' " U

is defined as:
� & c ' " U + � - 1 E " � â » '@ã N + " � - E " � â » '@ã N + " � - (6.2)

with " � and " � the proportion of positive and negative examples in � re-
spectively.

For a given attribute " the boundary
 î which minimizes

� + " � � � - is se-
lected as a binary discretization boundary. The method is then applied recur-
sively to both the partitions induced by the selected boundary

 î until a stop-
ping criterion is satisfied. The MDL principle is used to define the stopping
criterion. Recursive partitioning within a set of instances stops if

� & c ' " U + � - E� + " � � � - is smaller than » '@ã N
��¿ � � �¿ ñÁÀ � ä ¸ � ¸ � �¿ , where Â + " � � � - 1 » '@ã N + I

ê
E¤H - E3 ¤ â�� & c ' " U + � - EÃ¤ ��â�� & c ' " U + � � - E�¤DN â�� & c ' " U + �«N - 6 and ¤ { is the number of

class labels represented in � { .
The algorithm works without a predefined number of intervals. Instead,

it recursively splits intervals at the cut–point that minimizes the entropy, until
the entropy decrease is smaller than the increase of MDL induced by the new
point.

The method is applied to each numerical attribute of the domain. The at-
tributes are split into a number of intervals, and each interval is considered
as one value of a nominal attribute. If for treating numerical values, we use
the intervals found with the Fayyad & Irani’s algorithm, then we refer to ECL
as ECL-GSD (ECL with Global univariate Supervised Discretization). So in
ECL-GSD a number of intervals are used as nominal values for each numerical
attribute.

Definition 6.4 Let] be a numerical attribute. Then we define the set of dis-
cretization points relative to] , and we indicate it as

� � +] - , as the sequence
of discretization points obtained using the Fayyad & Irani’s algorithm sorted
in increasing order.

Definition 6.5 Let] be a numerical attribute and
� � +] - the relative set of

discretization points. We then define
� �

interval as an interval defined by two
consecutive elements of

� � +] - .

84 CHAPTER 6. TREATING NUMERICAL VALUES

6.5 ECL-LSDc and ECL-LSDf

ECL-LUD is an unsupervised local discretization method. For this reason it can
not take advantage of the class information of examples. In order to change an
inequality, ECL-LUD takes into consideration only the density distribution as
estimated by the Gaussian distribution of the relative cluster.

In order to exploit class information, we here introduce a local supervised
method for dealing with numerical values in ECL. Also this method handles
numerical attributes by means of inequalities of the form »À<]º~ T

, where
»�< T are specific elements of

8W� +] - . However, inequalities are initialized and
modified in a different way from how the same operations are performed in
ECL-LUD. An element of

8:� +] - is called left-good if it is not the left boundary
of a negative

8W� +] - interval, and right-good if it is not the right boundary of a
negative

8W� +] - interval. For example, in figure 6.6,
 � � �*� � � ª are left-good,

and
 �.� N � © � · are right good. We will consider only inequalities »Z<]Û~ T

with » and
T

left- and right-good, describing intervals that do not start or end
with a negative

8:� +] - interval.

Example 6.5 Assume the boundary points of] are those in figure 6.6. Then � <j] ~ N is a legal inequality, while
 � <�] ~ �

is not legal, because it
describes an interval that ends with a negative

8:� +] - interval.

Now assume
8W� +] - 1 + �D��������� � - , and consider an inequality

 { <] ~ ë
with � � ¥ Y 3 ? � & 6 , ��< ¥

and
 {¾� ë

left- and right-good. We introduce the
following generalization and specialization operators.

enlarge

1. Randomly select either
 {

or
 ë

.

2. (a) If
 {

has been chosen, find the greatest
 { æ such that � ß <G� and

 { æ
is left-good. Set

 {
to
 { æ . If such

 { æ does not exist (if � 1 ? or all
intervals to the left of

 {
are negative) then choose

 ë
and go to

step (b) if it was not already tried.
(b) If

 ë
has been chosen, find the smallest

 ë æ such that
¥ ß A ¥

and ë æ is right-good. Set
 ë

to
 ë æ . If such

 ë æ does not exist (if
¥w1 &

or all intervals to the right of
 ë

are negative) then choose
 {

and
go to step (a) if it was not already tried.

shrink This operator is applicable if
q � E ¥ q AB= .

1. Randomly select either
 {

or
 ë

.

2. (a) If
 {

has been chosen, find the smallest
 { æ such that � ß < ¥ � � ß Að�

and
 { æ is left-good. Set

 {
to
 { æ .

(b) If
 ë

has been chosen, find the greatest
 ë æ , where

¥Sß < ¥ � ¥Sß A �
and

 ë æ is right-good. Set
 ë

to
 ë æ .

6.5. ECL-LSDC AND ECL-LSDF 85

 � · � N � © ªmix pos neg mix neg pos

Ò

(a)

 � · � N � © ªmix pos neg mix neg pos

Ä
(b)

Figure 6.6: part (a): application of enlarge; part (b): application of shrink. The
inequality is represented by a thick segment.

Notice that application of enlarge and shrink preserves the left- and right-
goodness of the boundaries of an inequality.

Example 6.6 Figure 6.6 illustrates the application of the enlarge and shrink
operators to inequalities represented by the thick lines. Enlarge applied to � <L]Ä~ © shifts its left boundary

 �
to
 �

, while shrink applied to
 � <Ç]Ã~ ©

shifts its left boundary
 �

to
 �

.

6.5.1 Incorporation of the Method into ECL

Two variants of the proposed method are introduced: ECL-LSDf (ECL with
Local Supervised Discretization with Fine grain initialization) and ECL-LSDc
(ECL with Local Supervised Discretization with Coarse grain initialization).
ECL-LSDf and ECL-LSDc differ in the way inequalities are initialized in the
two methods. For example, assume the clause

 M c ã � + _ - � E f + _.� M - � + _.� P - �
is constructed with the example

 M c ã � + _ - as seed. If the specialization operator
“add an atom” is chosen and the BK fact c + _.� ´ � HJI - is selected, then the clause
becomes M c ã � + _ - � E f + _.� M - � + _J� P - � c + _.��� - � »�< � ~ T �
where in ECL-LSDf » � T are boundaries of the BP interval containing

´ � H0I , while
in ECL-LSDc » � T are boundaries of the DP interval containing

´ � HJI .
The same operators for evolving rules are used in both ECL-LSDf and ECL-

LSDc. If the generalization operator “delete an atom” is chosen and c + _.��� -
is selected for deletion, then c + _.�b� - and the corresponding inequality are re-
moved from the clause. The other possible generalization operator consists of
a random choice between the “constant into variable”, which replaces one of
the constants M � P ��_ with a variable, and the “enlarge” operator, which enlarges
one boundary of the inequality. If the specialization operator “variable into
constant” is chosen and the variable

�
is selected, then the “shrink” operator

is applied to the relative inequality.

86 CHAPTER 6. TREATING NUMERICAL VALUES

6.6 Related Work

Recent methods based on evolutionary algorithms performing multivariate
discretization during the learning process are (Kwedlo and Kretowski, 1999;
Bacardit and Garrel, 2002; Bacardit and Garrel, 2003), where the EAs for classi-
fication GIL (Janikow, 1993) and GABIL (De Jong et al., 1993) are extended into
the systems EDRL-MD and GAssit, respectively. Both EDRL-MD and GAssist
are Pittsburgh EAs and deal with continuous attributes by means of inequali-
ties that can be modified during the evolutionary process.

In EDRL-MD, candidate solutions are encoded by means of string chromo-
somes. The string is composed by n substrings, each encoding a condition
related to one attribute. In case of continuous attributes the relative substring
encodes the lower and the upper thresholds of an interval describing the al-
lowed subrange of values for the described attribute.

GAssist evolves individuals that are ordered variable–length rule sets. The
knowledge representation for real–valued attributes is called Adaptive Dis-
cretization Intervals rule representation (ADI). This representation uses the
same semantics for rules as GABIL (Conjunctive Normal Form predicates), but
uses non–static intervals formed by joining several neighbor discretization in-
tervals. The representation can also combine several discretizations at the same
time, allowing the system to choose the correct discretizer for each attribute.

Another EA system adopting a similar method for dealing with numeri-
cal value is HIDER* (Giráldez et al., 2003; Aguilar-Ruiz et al., 2002; Giráldez
et al., 2004). HIDER* utilizes the USD (Giráldez et al., 2002) discretizer in or-
der to find a number of boundary points that are used as limits of intervals
describing subranges of values for numerical attributes. The USD discretizer
divides the domains of continuous attributes in a finite number of intervals
with maximum goodness, so that the average-goodness of the final set of in-
tervals will be the highest. The main process is divided in two different parts:
first, USD calculates the initial intervals by means of projections, which will
be refined later, depending on the goodnesses obtained after carrying out two
possible actions: to join or not adjacent intervals. The main features of the USD
are: it is deterministic, does not need any user–parameter and its complex-
ity is sub-quadratic. An important feature of HIDER* is its encoding method:
each attribute is encoded with only one gene, reducing considerably the length
of the individuals, and therefore the search space size, making the algorithm
faster while maintaining its prediction accuracy. In this encoding inequalities
are represented as natural numbers, and can be easily modified during the evo-
lutionary process.

To our knowledge, the only EA for ILP that adopts some methods for deal-
ing with numerical values is SIA01 (Augier et al., 1995) (see chapter 4). SIA01
uses intervals for numerical attributes, which are randomly created and modi-
fied during the evolutionary process.

Discretization is not the only way to handle real–valued attributes in EC
applied to ICL. Some examples of alternative ways are induction of decision
trees (either axis–parallel or oblique), by either generating a full tree by means

6.7. CONCLUSIONS 87

of genetic programming operators, as it happens in GALE (Llorá and Garrell,
2001b; Llorá and Garrell, 2001a) or using a heuristic method to generate the
tree and later a genetic algorithm or an evolutionary strategy to optimize the
test performed at each node (Cantu-Paz and Kamath, 2003). Another example
is represented by the XCS system (Stone and Bull, 2003; Wilson, 1998). XCS
induces rules with real–valued intervals represented as a

+ _ { � c { - , where
_ {

andc { are real numbers, which represents the center and radius of the interval
3 _ { Ec { �`_ { ñ c { 6 . Another strategy is generating an instance set used as the core of a

k-NN classifier (Llorá and Garrell, 2001b).
In this chapter we have seen some examples of discretization algorithms.

In the literature, several other discretization algorithms are reported. Among
these the Mántaras discretizer (De Mántaras, 1991) which is similar to the Fay-
yad & Irani’s algorithm, but uses a different formulation of the entropy mini-
mization. Another example of discretization method similar to the Fayyad &
Irani’s, but not relying on entropy, is represented by the Holte’s discretization
method (Holte, 1993). This methods, used in IB1 (Aha et al., 1991), attempts to
divide the domain of every continuous attribute into pure bins, each contain-
ing a strong majority of one particular class with the constraint that each bin
must include at least some pre specified number of instances. Yet another ex-
ample is ChiMerge (Kerber, 1992). This discretizer creates an initial pool of cut
points containing the real values in the domain to discretize, and iteratively
merges neighbor intervals that make true a certain criterion based on the Å N
statistical test.

6.7 Conclusions

In ILP discretization methods based on entropy, e.g., Fayyad & Irani’s algo-
rithm, can be negatively affected by the presence of examples having multiple
values for a numerical argument, as we have seen in example 6.1. In order to
overcome this phenomenon we introduced three methods for dealing with nu-
merical values in ECL. When in ECL intervals found with the Fayyad & Irani’s
algorithm are used for dealing with numerical values, we refer to ECL with
ECL-GSD. In this case the standard mutation operators of ECL, described in
chapter 5, are used, because numerical values are treated as nominal ones.

An overview of the discretization methods presented in this chapter is given
in table 6.1. ECL-LUD, ECL-LSDf and ECL-LSDc treat numerical values by
means of inequalities. The way in which inequalities are initialized and modi-
fied during the evolutionary process is different.

The first method, called ECL-LUD, is a local unsupervised discretization
method. It first finds a number of clusters for each numerical attribute, by
means of the EM algorithm. Each cluster is described by a Gaussian distribu-
tion, which represents the density distribution of examples in the cluster. In-
equalities are initialized to a single value, and can be then modified by means
of ad-hoc mutation operators. Some of these operators exploit information re-
garding the density distribution of examples. ECL-LSDf and ECL-LSDc are al-

88 CHAPTER 6. TREATING NUMERICAL VALUES

Method Class info G/L Initialization Operators
ECL-GSD supervised global DP interval standard

Inequality to
enlarge, shrink

ECL-LUD unsupervised local single value change cluster
shift

ECL-LSDf supervised local
Inequality to enlarge
BP interval shrink

ECL-LSDc supervised local
Inequality to enlarge
DP interval shrink

Table 6.1: Overview of the components of the discretization methods described
in this chapter. For each method, we indicate if the method exploits informa-
tion about the class of examples, if the method is applied previously or during
the evolutionary process, the initial range assigned to numerical variables, and
the operators used for modifying this initial range.

ternative local supervised discretization methods. Both methods exploit class
information of training examples. This is an advantage with respect to ECL-
LUD which exploits only information about the density distribution of exam-
ples. ECL-LSDf and ECL-LSDc use the same operators for modifying inequali-
ties during the evolutionary process. The difference between the two methods
lies in the way inequalities are initialized. In fact ECL-LSDc initializes inequal-
ities to already sub–optimal intervals, which are found with the application
of the Fayyad & Irani’s algorithm, while ECL-LSDf initializes inequalities to
a
8:�

interval, which is not already sub-optimal. For this reason, ECL-LSDc
can reach a good solution in a less amount of time than ECL-LSDf. ECL-LSDf
needs more computational resources for reaching the same intervals as those
described by inequalities of clauses obtained by ECL-LSDc. Moreover, ECL-
LSDf runs the risk of overfitting the training examples. This is due to the fact
that solutions found could contain many clauses, each of which contains in-
equalities describing intervals that are good relatively to the training examples,
but that are rather poor relatively to testing examples.

We believe that the treatment of numerical values in EAs for ILP has not
been given enough attention. To our knowledge, only SIA01 addressed this
issue. In fact, SIA01 can create intervals for numerical values. However these
intervals are randomly modified during the evolutionary process.

In the next chapter we present an experimental comparison of the four me-
thods.

Chapter 7

Experimental Evaluation

In this chapter we present an experimental evaluation of the various compo-
nents of ECL introduced in chapters 5 and 6.

The first aspect we want to investigate, is how the optimization phase and
greediness in the mutation operators affects both the quality of the solution
found and the computational time required by the evolutionary process.

A second aspect concerns the use of different amounts of background knowl-
edge at each iteration performed by ECL. The possibility of using only a subset
of the background knowledge at each iteration was introduced for reducing
the computational time required by the evaluation of individuals. We want to
assess how this affects the quality of the solution found and the computational
time required by the learning process.

A third aspect regards the effectiveness of the variants of the US selection
mechanism introduced in chapter 5. In particular we are interested in assessing
the effectiveness of the various selection mechanisms in promoting diversity in
the population as well as a good coverage of the positive examples.

In section 5.8, we stated that the procedure based on precision is more effec-
tive than the procedure based on the algorithm for solving weighted set cov-
ering problems for extracting a solution from the final population. We want to
experimentally confirm that statement.

The last set of experiments for evaluating the components of ECL, are aimed
at assessing the effectiveness of the various methods for treating numerical val-
ues presented in chapter 6. In all the experiments we use both propositional
and relational datasets.

This chapter is structured in the following way. In section 7.1 we begin
by giving the setting used in the experiments. Section 7.2 reports a first set of
experiments aimed at verifying the effectiveness of incorporating the optimiza-
tion phase and a degree of greediness in the mutation operators. In section 7.3
we present results obtained by ECL using different values of the parameter" P�¤ , that controls the amount of background knowledge used at each iteration.
Results of experiments obtained with the different selection operators are pre-
sented in section 7.4. In section 7.5 experiments showing the different results

89

90 CHAPTER 7. EXPERIMENTAL EVALUATION

of ECL when different procedures for extracting a final solution are applied to
the same final population are presented. Section 7.6 reports results on experi-
ments using the different methods for handling numerical values. Finally we
compare the results obtained by ECL with those obtained by other systems for
inductive concept learning.

7.1 Experimental Settings

Dataset Examples (+,-) Continuous Nominal BK size
Australian 690 (307,383) 6 8 9660

Breast 699 (458,241) 10 0 6275
Crx 690 (307,383) 6 9 10283

Echocardiogram 74 (24,50) 5 1 750
German 1000 (700,300) 24 0 24000
Glass2 163 (87,76) 9 0 1467
Heart 270 (120,150) 7 6 3510

Hepatitis 155 (123,32) 6 13 2778
Liver 345 (145,200) 6 0 2070

Ionosphere 351 (225,126) 34 0 11934
Pima-Indians 768 (500,268) 8 0 6144

Sonar 208 (97,111) 60 0 12480
Vote 435 (267,168) 0 16 6568

Wdbc 569 (212,357) 30 0 17070
Wpbc 198 (47,151) 33 0 6530

Table 7.1: Characteristics of the propositional datasets used in the experiments
performed in this chapter. From left to right: number of examples (positive,
negative), of continuous attributes, of nominal attributes, and of ground facts
in the BK.

In all the experiments, unless stated otherwise, we use ten–fold cross vali-
dation. Each dataset is divided in ten disjoint sets of similar size. One of these
sets forms the test set, and the union of the remaining nine the training set. The
system is run three times, using different random seeds, on each training set
and its output (a Prolog program) is evaluated on the corresponding test set
(so the algorithm is run 30 times per dataset).

Table 7.1 presents the features of the propositional datasets used in this
chapter. These datasets are taken from the UCI Machine Learning repository
(Blake and Merz, 1998), and are well known benchmarks. They regard various
problems, going from detecting frauds in the use of credit cards, to detecting if
a person is likely to develop diabetes, and so on.

Table 7.2 shows the features of the relational datasets. The mutagenesis da-
taset (Debnath et al., 1991) originates from the problem in organic chemistry of

7.2. EXPERIMENTS ON INCORPORATING GREEDINESS IN ECL 91

learning the mutagenic activity of nitroaromatic compounds. The traffic data-
set (Džeroski et al., 1998a; Džeroski et al., 1998b) concerns the task of detecting
sections of roads where a traffic problem - an accident or a congestion - has oc-
curred at a specific time. The biodegradability dataset (Džeroski et al., 1999)
originates from the task of predicting the half-life time in water for aerobic
aqueous biodegradation of a compound. It consists of four classes: fast if the
biodegradation time of a compound is up to 7 days, moderate if the biodegra-
dation time is 1 to 4 weeks, slow if the biodegradation time it 1 to 6 months,
and resistant in the other cases. On the biodegradability dataset we used the
same splitting of data as in (Džeroski et al., 1999), consisting of five different
ten–fold cross validation sets. The pyrimidines dataset originated from (King
et al., 1995) and regards the classic drug design problem of inhibition of Dihy-
drolate Reductase by pyrimidines. Pyrimidine compounds are antibiotics. For
this dataset we used a five–fold cross validation used in the original study of
the database.

Dataset Examples Continuous Nominal BK size
Mutagenesis 188 (125,63) 6 4 13125

Traffic 256 (62,66,128) 3 2 15770
Biodegradability 328 (65,120,101,42) 2 4 17260

Pyrimidines 2788 (1394,1394) 0 8 2116

Table 7.2: Characteristics of the relational datasets. From left to right: dataset
name, total number of examples and, between brackets, number of examples
per class, number of continuous and nominal properties and number of facts
in the BK.

The parameters used in the experiments for both the propositional and the
relational datasets are shown in table 7.3. All these parameters were obtained
after few, in the order of 10, runs of the system on the relative dataset. We em-
phasize that the parameter settings chosen were the ones which led to the best
classification accuracy in the training set, i.e., the test set was never accessed
during the runs allocated for parameter setting. If not differently stated, ECL-
LSDc is used. The reasons for this choice will become evident in section 7.6.
Naturally, in the experiments regarding the methods for dealing with numeri-
cal values, all the methods are tested.

7.2 Experiments on Incorporating Greediness in ECL

In this section we want to evaluate the effectiveness of incorporating the op-
timization phase that follows the mutation and of using the non–random mu-
tation operators described in chapter 5. In order to do so, we perform experi-
ments with ECL in three settings:

ECL-GA In this setting ECL is run with all the values of
� {

set to 1 and with no

92 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset pop size gen sel max iter Ni lc pbk
Australian 50 10 15 1 (4,4,4,4) 6 0.4

Biodegradability 50 10 10 1 (4,4,4,4) 4 1.0
Breast 50 5 5 1 (3,3,3,3) 5 1.0

Crx 80 20 15 1 (4,4,4,4) 7 1.0
Echocardiogram 40 8 10 10 (4,4,4,4) 4 0.7

German 200 10 10 2 (3,4,3,4) 6 0.4
Glass2 150 15 20 3 (2,8,2,9) 5 0.8
Heart 50 10 15 1 (4,4,4,4) 6 1.0

Hepatitis 50 10 10 5 (4,4,4,4) 7 0.2
Ionosphere 50 10 15 6 (4,8,4,8) 6 0.2

Liver 60 10 7 1 (2,5,3,5) 4 0.2
Mutagenesis 50 10 15 2 (4,8,2,8) 3 0.8
Pima-Indians 60 10 7 5 (2,5,3,5) 4 0.2
Pyrimidines 70 25 15 1 (4,2,5,2) 4 1.0

Sonar 80 10 15 1 (4,8,4,8) 5 1.0
Traffic 30 10 10 1 (10,2,2,2) 8 1.0
Vote 80 10 15 2 (3,6,2,5) 4 0.5

Wdbc 100 15 15 1 (3,7,5,3) 2 1.0
Wpbc 20 5 5 1 (3,3,3,3) 5 1.0

Table 7.3: Parameter settings used in the experiments: pop size is the population
size, gen is the number of generations performed by the GA, sel is the number
of individuals selected per generation, max iter is the maximum number of iter-
ations performed,

� {
, � Y 3 = �b 6 , are the greediness parameters of the mutation

operators, lc is the maximum length of a clause, and pbk is the probability of
selecting a BK fact.

optimization phase. In this way all the mutation operators act randomly,
as in standard GA operators;

ECL-NOT In this setting ECL is run with the values of
� {

set as reported in
table 7.3. The optimization phase is not performed.

ECL-Opt In this setting ECL is run with the parameters
� {

set as reported in
table 7.3. The optimization phase is performed after mutation, with a
maximum of 10 optimization steps.

In order to perform a fair comparison, we increased the values of the pa-
rameter

á � » in ECL-GA and in ECL-NOT so that the three settings perform
about the same number of evaluations.

Table 7.4 reports the average results obtained by ECL in the three different
settings.

A first aim of these experiments was to assess how the incorporation of the
optimization phase and the use of greedy mutation operators affect the com-
putational time required by the evolutionary process. From the experiments,

7.2. EXPERIMENTS ON INCORPORATING GREEDINESS IN ECL 93

Dataset Setting Accuracy Time (s) Simplicity
ECL-GA 0.82 (0.01) 2752.16 (82.69) 35.3 (10.92)

Accidents ECL-NOT 0.88 (0.01) 3092.62 (103.72) 23.37 (9.69)
ECL-Opt 0.95 (0.02) 3395.01 (136.82) 3.55 (0.49)
ECL-GA 0.82 (0.03) 1353.02 (7.72) 14.4 (2.77)

Australian ECL-NOT 0.83 (0.03) 1444.05 (16.54) 12.30 (2.58)
ECL-Opt 0.85 (0.01) 1686.38 (144.07) 6.10 (2.18)
ECL-GA 0.92 (0.01) 173.67 (2.33) 11.30 (2.20)

Breast ECL-NOT 0.93 (0.02) 238.72 (11.52) 11.50 (2.01)
ECL-Opt 0.95 (0.02) 286.13 (37.00) 8.60 (0.41)
ECL-GA 0.91 (0.02) 2532.98 (98.43) 5.70 (1.25)

Congestions ECL-NOT 0.92 (0.02) 2983.15 (38.65) 5.46 (1.46)
ECL-Opt 0.94 (0.02) 3246.30 (138.73) 3.95 (0.35)
ECL-GA 0.84 (0.04) 1707.82 (66.47) 13.30 (3.34)

Crx ECL-NOT 0.83 (0.03) 1852.97 (54.47) 11.70 (3.13)
ECL-Opt 0.84 (0.01) 2668.00 (176.45) 4.80 (0.05)
ECL-GA 0.70 (0.03) 1245.21 (6.21) 2.50 (0.53)

Echocardiogram ECL-NOT 0.73 (0.03) 1311.95 (10.31) 2.50 (0.53)
ECL-Opt 0.74 (0.01) 1443.63 (36.62) 2.60 (0.70)
ECL-GA 0.74 (0.02) 1041.74 (19.83) 14.2 (2.20)

German ECL-NOT 0.73 (0.03) 1153.52 (11.32) 16.70 (3.09)
ECL-Opt 0.74 (0.01) 1605.75 (144.34) 11.70 (0.24)
ECL-GA 0.82 (0.04) 956.17 (2.74) 3.90 (0.99)

Glass2 ECL-NOT 0.85 (0.03) 1143.05 (21.49) 4.40 (1.51)
ECL-Opt 0.85 (0.01) 1246.00 (55.94) 4.20 (1.23)
ECL-GA 0.77 (0.03) 345.34 (8.40) 9.20 (1.93)

Heart ECL-NOT 0.78 (0.02) 474.51 (13.41) 7.40 (2.12)
ECL-Opt 0.80 (0.03) 436.38 (57.59) 4.20 (1.32)
ECL-GA 0.82 (0.02) 878.202 (6.31) 13.00 (1.63)

Hepatitis ECL-NOT 0.83 (0.03) 954.61 (10.34) 13.40 (1.51)
ECL-Opt 0.83 (0.02) 1056.73 (63.84) 7.60 (0.95)
ECL-GA 0.87 (0.04) 4364.59 (15.96) 25.90 (3.96)

Ionosphere ECL-NOT 0.89 (0.03) 4498.72 (13.21) 25.10 (2.72)
ECL-Opt 0.89 (0.02) 5276.83 (138.93) 12.50 (1.48)
ECL-GA 0.84 (0.03) 407.88 (4.56) 4.56 (0.73)

Mutagenesis ECL-NOT 0.86 (0.02) 470.32 (5.14) 4.70 (0.95)
ECL-Opt 0.88 (0.01) 542.88 (27.88) 7.92 (1.51)
ECL-GA 0.73 (0.03) 1031.71 (10.95) 9.70 (3.06)

Pima-Indians ECL-NOT 0.74 (0.02) 1157.64 (14.47) 9.20 (1.87)
ECL-Opt 0.76 (0.01) 1214.75 (31.86) 8.40 (1.84)
ECL-GA 0.92 (0.03) 768.78 (42.61) 10.20 (2.55)

Vote ECL-NOT 0.93 (0.01) 967.38 (56.68) 9.00 (2.91)
ECL-Opt 0.94 (0.02) 993.24 (43.29) 3.70 (1.06)

Table 7.4: Experiments with various setting of greediness of ECL. In ECL-GA
ECL runs as a standard GA. In ECL-NOT greedy mutation operators are used
and in ECL-Opt both greedy mutation operators and the optimization phase
are used.

94 CHAPTER 7. EXPERIMENTAL EVALUATION

it emerges that the computational time required by ECL-GA and by ECL-NOT
is smaller than the time required by ECL-Opt. In particular ECL-GA is the
fastest setting. This result was expected, since in ECL-GA mutations are done
randomly and no optimization phase takes place.

The second, and main, aim of these experiments was to establish if the in-
corporation of the optimization phase and of the greedy mutation operators
was beneficial for improving the accuracy of the found solutions.

It can be noticed that ECL-Opt generally obtained the best accuracies. Only
on the Crx dataset ECL-GA obtained the same accuracy as the one obtained
by ECL-Opt, but with a higher standard deviation. It can also be noticed that
generally ECL-NOT obtained better results than ECL-GA. In some cases the so-
lution found by ECL-NOT is equal to the solution found by ECL-Opt. However
neither ECL-GA nor ECL-NOT were capable of finding solutions with higher
accuracy than the solutions found by ECL-Opt. This is evident especially for
the relational datasets.

For the Traffic dataset, this is not only true for the single classes. Also when
the induced clauses are used for addressing the whole problem, the incorpo-
ration of knowledge in ECL is beneficial for obtaining better results. In fact,
on the Traffic dataset, ECL-GA obtained an accuracy of 0.74, ECL-NOT of 0.83
while ECL-Opt obtained the best accuracy of 0.93. This is due to the fact that
for the relational datasets it is important to find good relations among the argu-
ments of a clause. It is more likely to find good relations with greedy operators
and an optimization phase than using only random operators.

It is interesting to notice that generally the logic programs induced by the
three settings become simpler with the use of greedy mutation operators and
with the inclusion of the optimization phase. This is mostly due to the opti-
mization phase. In fact during this phase individuals are rapidly refined so
that less clauses are needed for obtaining a logic program with good accuracy.
It can be seen that only on three datasets, namely on the Echocardiogram, the
Glass2 and the Mutagenesis dataset, ECL-Opt did not find the simplest solu-
tion. Only on the Mutagenesis dataset the difference in the simplicity of the
solution is significant, while in the other two cases the simplicity of the so-
lutions is comparable. On all the other datasets ECL-Opt found the simplest
solution. This can be noticed especially for the Accidents dataset where the
solution found by ECL-Opt is almost 10 times simpler than the one obtained
by ECL-GA and almost 7 times simpler than the one obtained by ECL-NOT.

In order to summarize the performance of the three settings of ECL and the
significance of the results with respect to the accuracy, we compute the statis-
tical paired two-tailed t-test, with confidence level of 1% and 5%. The t-test is
performed on the 30 results obtained from the 10 folds and the 3 random seeds.
For the Echocardiogram, the Glass2, the Heart and the Hepatitis datasets, the
results are not normally distributed and so the t-test cannot be performed on
these datasets. Table 7.5 reports the results of the t-test for the other datasets
used in this section. Using a confidence level of 1%, we can see that ECL-Opt
outperformed once ECL-GA, namely it obtained significantly better results on
the Accidents dataset. If we extend the confidence level to 5%, we have that

7.2. EXPERIMENTS ON INCORPORATING GREEDINESS IN ECL 95

ECL-GA ECL-NOT ECL-Opt Total
ECL-GA – 0 0 0

ECL-NOT 0 – 0 0
ECL-Opt 1 (3) 0 (1) – 1 (4)

Total 1 (3) 0 (1) 0

Table 7.5: Results of the two-tailed paired t-test for the used datasets with 1%
confidence level: each entry contains the number of datasets on which the algo-
rithm in the row is significantly better than the one in the column. The results
of the test using 5% confidence level are reported between brackets when they
differ from those using 1% confidence level.

ECL-Opt outperforms ECL-GA on three datasets, namely the Accidents, the
Congestion and the Mutagenesis datasets. Using a 5% confidence level we
have that ECL-Opt outperforms ECL-NOT on the Accidents dataset.

(a) Average and best fitness. (b) Average coverage of individuals.

Figure 7.1: Graphs relative to fitness and coverage for 10 runs of ECL-GA on
the Accidents dataset. Fitness is minimized.

The difference of performance between ECL-Opt and the other two settings
is evident on the Accidents dataset. For this reason we want to analyze the
dynamics of the three settings on this dataset. In graphs 7.1(a), 7.2(a) and 7.3(a),
we show the best and average fitness of the population at every generation,
computed over 10 runs of the various settings. In graphs 7.1(b), 7.2(b) and
7.3(b) we report the average number of positive and negative examples covered
by an individual in the population evolved with the three settings, computed
over 10 runs.

From the graphs, it can be seen that the fitness of the best individual in the
population is better if more knowledge is incorporated in ECL. It is interesting
to notice that the same does not hold for what concerns the average fitness. In
fact the average fitness is better in the population evolved with ECL-GA than
in the population evolved with ECL-NOT, and is comparable with the aver-

96 CHAPTER 7. EXPERIMENTAL EVALUATION

(a) Average and best fitness. (b) Average coverage of individuals.

Figure 7.2: Graphs relative to fitness and coverage for 10 runs of ECL-NOT on
the Accidents dataset. Fitness is minimized.

(a) Average and best fitness. (b) Average coverage of individuals.

Figure 7.3: Graphs relative to fitness and coverage for 10 runs of ECL-Opt on
the Accidents dataset. Fitness is minimized.

age fitness of the population evolved with ECL-Opt. By looking at the graphs
relative to the coverage of each individual evolved in the three settings, it can
be noticed that individuals evolved by ECL-GA are more specific than those
evolved by ECL-Opt and by ECL-NOT. In particular individuals evolved by
ECL-Opt are much more general than those evolved by the other two settings.
This fact explains the difference in the simplicity of the solution found, which is
much higher in ECL-GA and ECL-NOT than in ECL-Opt. So, on the Accidents
dataset, incorporating more knowledge has the effect of allowing ECL-Opt to
evolve more general individuals, that have on average not better performances
on the training sets, but when used on the test sets yield better results.

This suggests that incorporating knowledge in the mutation operators and
the optimization phase is beneficial in order to obtain more accurate solutions,
especially for relational datasets.

7.3. EXPERIMENTS ON BACKGROUND KNOWLEDGE SELECTION 97

7.3 Experiments on Background Knowledge Selec-
tion

In this section we present and discuss results obtained with different values
of the parameter " P�¤ . The aim of these experiments is to evaluate the behav-
ior of ECL when portions of different sizes of the background knowledge are
used at each iteration. With these experiments we want to evaluate the im-
pact of the parameter " P�¤ on both the computational time and the accuracy of
the obtained solutions. To this end, for each dataset we run ECL using five
values of " P�¤ , namely: 0.2,0.4,0.6,0.8 and 1. When " P�¤ is set to 1 the whole
background knowledge is used. Recall that

8:9
is randomly selected, where" P�¤ controls the probability that each fact of the background knowledge has of

being selected and used inside each iteration of ECL. Tables 7.6 and 7.7 report
the results of the experiments.

From these results, it can be noticed that using a smaller portion of the back-
ground knowledge does not necessarily lead to worse results. On the opposite,
in some cases the use of the whole background knowledge does not lead to bet-
ter performance. As far as the accuracy of the solution is concerned, we cannot
fix an optimal value of " P�¤ , since this value is domain dependent. We can,
however, observe that the use of more background knowledge does not gener-
ally yield to overfitting. Another observation that can be made is that for the
relational datasets best performance are obtained with high values of " PI¤ . This
can be explained by the fact that for these datasets using too little background
knowledge prevents ECL from finding good relations among the objects of the
domain, thus leading to poor solutions.

Concerning the computational time, the results confirm that the compu-
tational cost of ECL increases proportionally to the values of " P�¤ , as can be
seen from figure 7.4. In the figure, the average time employed by ECL on all
the benchmark datasets used in the experiments with different values of " PI¤
is shown. The more background knowledge is used the less efficient ECL is.

Figure 7.4: Average times, in seconds, employed by ECL with different values
of " P�¤ .

98 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset ÆÈÇ É Accuracy Accuracy on train Time (s) Simplicity
0.2 0.88 (0.03) 0.89 (0.01) 492.0 (12.03) 2.4 (1.26)
0.4 0.87 (0.03) 0.90 (0.01) 564.15 (23.18) 3.9 (1.52)

Accidents 0.6 0.89 (0.02) 0.91 (0.02) 669.5 (31.73) 3.8 (1.03)
0.8 0.93 (0.02) 0.95 (0.02) 966.8 (62.81) 5.2 (1.62)
1.0 0.95 (0.02) 0.95 (0.02) 1083.8 (86.82) 3.55 (0.49)
0.2 0.85 (0.03) 0.84 (0.01) 650.55 (29.36) 2.1 (0.99)
0.4 0.85 (0.01) 0.85 (0.02) 1266.83 (73.28) 5.3 (1.06)

Australian 0.6 0.83 (0.04) 0.85 (0.02) 1531.8 (125.66) 6.1 (1.73)
0.8 0.85 (0.01) 0.85 (0.02) 1686.38 (144.07) 6.1 (2.18)
1.0 0.83 (0.01) 0.84 (0.03) 1729.57 (146.23) 6.2 (2.49)
0.2 0.93 (0.03) 0.94 (0.01) 89.64 (4.32) 3.2 (0.79)
0.4 0.94 (0.02) 0.96 (0.01) 115.23 (6.31) 6.9 (2.33)

Breast 0.6 0.96 (0.02) 0.96 (0.00) 144.17 (11.97) 9.1 (1.59)
0.8 0.95 (0.02) 0.97 (0.01) 177.83 (14.73) 10 (2.94)
1.0 0.95 (0.02) 0.96 (0.00) 286.13 (37.00) 8.60 (0.41)
0.2 0.79 (0.03) 0.84 (0.03) 525.80 (26.36) 1.7 (0.48)
0.4 0.83 (0.03) 0.86 (0.03) 597.43 (34.73) 2.5 (1.08)

Congestions 0.6 0.87 (0.02) 0.88 (0.04) 737.68 (71.03) 2.8 (0.79)
0.8 0.90 (0.02) 0.93 (0.03) 981.49 (102.65) 3.5 (0.85)
1.0 0.94 (0.02) 0.96 (0.01) 1107.30 (138.73) 3.95 (0.35)
0.2 0.83 (0.03) 0.84 (0.02) 1446.41 (48.61) 2.6 (0.70)
0.4 0.85 (0.03) 0.85 (0.01) 2260.93 (152,31) 4.1 (1.10)

Crx 0.6 0.84 (0.03) 0.86 (0.01) 2323.95 (144.27) 5.3 (1.83)
0.8 0.85 (0.03) 0.86 (0.01) 2384.47 (161.58) 4.4 (1.65)
1.0 0.84 (0.01) 0.86 (0.01) 2668.00 (176.45) 4.80 (0.05)
0.2 0.72 (0.03) 0.77 (0.02) 1033.3 (29.10) 1.8 (0.63)
0.4 0.73 (0.03) 0.79 (0.02) 1206.84 (46.87) 2.2 (0.79)

Echocardiogram 0.6 0.69 (0.04) 0.82 (0.02) 1384.3 (44.71) 1.8 (0.79)
0.8 0.70 (0.03) 0.83 (0.01) 1545.5 (39.21) 3.2 (1.03)
1.0 0.78 (0.02) 0.85 (0.02) 1666.42 (33.40) 3.7 (0.67)
0.2 0.72 (0.03) 0.75 (0.01) 1232.61 (50.41) 7.3 (1.89)
0.4 0.74 (0.01) 0.76 (0.01) 1605.75 (144.34) 11.70 (0.24)

German 0.6 0.74 (0.02) 0.75 (0.01) 2015.74 (53.8) 8.9 (2.56)
0.8 0.74 (0.02) 0.75 (0.01) 2223.56 (70.59) 6.0 (1.76)
1.0 0.74 (0.01) 0.74 (0.01) 2874.49 (138.37) 6.4 (1.43)
0.2 0.81 (0.04) 0.81 (0.03) 935.26 (41.32) 2.5 (0.71)
0.4 0.79 (0.05) 0.83 (0.02) 1025.79 (53.56) 2.7 (0.82)

Glass2 0.6 0.79 (0.04) 0.86 (0.01) 1047.95 (34.24) 2.7 (0.48)
0.8 0.85 ((0.01) 0.86 (0.01) 1246.00 (55.94) 4.2 (1.23)
1.0 0.80 (0.02) 0.89 (0.01) 1445.10 (39.31) 5.2 (1.03)
0.2 0.75 (0.05) 0.78 (0.02) 326.89 (12.66) 2.3 (0.48)
0.4 0.81 (0.02) 0.81 (0.02) 360.47 (29.15) 4.7 (1.42)

Heart 0.6 0.81 (0.03) 0.82 (0.02) 391.74 (36.88) 4.6 (0.97)
0.8 0.79 (0.04) 0.83 (0.02) 429.20 (39.40) 5.5 (1.18)
1.0 0.80 (0.03) 0.83 (0.03) 436.38 (57.59) 4.20 (1.32)

Table 7.6: First set of experiments with different values of " P�¤ . " P�¤ is the prob-
ability that a fact of the background knowledge is selected at each iteration of
ECL.

7.3. EXPERIMENTS ON BACKGROUND KNOWLEDGE SELECTION 99

Dataset ÆÈÇ É Accuracy Accuracy on train Time (s) Simplicity
0.2 0.83 (0.02) 0.88 (0.01) 1056.73 (63.84) 7.60 (0.95)
0.4 0.82 (0.02) 0.94 (0.01) 1108.14 (57.05) 18.8 (2.30)

Hepatitis 0.6 0.81 (0.04) 0.95 (0.01) 1254.51 (18.58) 19.1 (3.48)
0.8 0.80 (0.03) 0.94 (0.01) 1265.01 (20.62) 18.0 (2.05)
1.0 0.83 (0.03) 0.94 (0.01) 1279.30 (13.41) 12.2 (1.55)
0.2 0.89 (0.02) 0.93 (0.02) 3200.99 (109.48) 12.50 (1.48)
0.4 0.86 (0.02) 0.91 (0.01) 3496.21 (64.80) 6.0 (1.05)

Ionosphere 0.6 0.88 (0.02) 0.90 (0.01) 4184.74 (86.19) 5.5 (0.97)
0.8 0.86 (0.02) 0.91 (0.00) 4638.37 (118.37) 5.4 (1.35)
1.0 0.89 (0.01) 0.93 (0.01) 5476.84 (155.83) 4.3 (1.64)
0.2 0.87 (0.05) 0.89 (0.01) 504.84 (19.79) 3 (0.67)
0.4 0.83 (0.04) 0.87 (0.02) 519.97 (19.90) 2.7 (0.82)

Mutagenesis 0.6 0.88 (0.03) 0.90 (0.01) 546.32 (22.35) 4.4 (0.84)
0.8 0.88 (0.01) 0.94 (0.01) 558.25 (24.09) 4.61 (0.84)
1.0 0.84 (0.03) 0.93 (0.01) 644.03 (26.77) 6.9 (1.59)
0.2 0.76 (0.01) 0.82 (0.01) 1214.75 (31.86) 8.40 (1.84)
0.4 0.76 (0.02) 0.77 (0.01) 1234.85 (82.56) 10.9 (2.18)

Pima-Indians 0.6 0.76 (0.01) 0.79 (0.01) 1401.14 (23.36) 14.7 (0.67)
0.8 0.76 (0.02) 0.79 (0.01) 1628.93 (90.07) 13.4 (3.24)
1.0 0.77 (0.02) 0.79 (0.01) 1697.19 (111.97) 11.5 (1.90)
0.2 0.94 (0.04) 0.95 (0.01) 674.26 (38.01) 2.1 (0.32)
0.4 0.93 (0.05) 0.95 (0.01) 928.54 (31.95) 3.2 (1.23)

Vote 0.6 0.94 (0.03) 0.95 (0.01) 1247.39 (51.21) 4.6 (2.01)
0.8 0.94 (0.02) 0.95 (0.01) 1412.48 (35.54) 5.4 (1.51)
1.0 0.92 (0.02) 0.95 (0.01) 1569.21 (78.03) 5.9 (1.52)

Table 7.7: Second set of experiments with different values of " P�¤ . " P�¤ is the
probability that a fact of the background knowledge is selected at each iteration
of ECL.

This is due to the cost of evaluating clauses. In fact, the derivation tree built
by Progol in order to control if a clause covers an example or not, becomes
bigger with higher values of " P�¤ . This is because more background knowledge
means more possible derivations that can be built for a given query to a logic
program, as explained in chapter 2.

It is interesting to notice that for some datasets (Breast, Heart, Hepatitis,
Ionosphere, Pima-Indians, Accidents) the simplicity increases with increasing
values of " PI¤ until " PI¤Ã~Û? � ´ , and it decreases when the whole background
knowledge is used. In the other cases the simplicity increases when bigger
portions of the background knowledge are used. This is because ECL achieves
a higher diversity in the population, and the procedure for the extraction of
the final solution adds more clauses to the final solution. In fact this procedure
adds clauses to the emerging logic program as long as the accuracy of the logic
program does not decrease.

The last thing that is interesting to notice is that for the Breast dataset, with

100 CHAPTER 7. EXPERIMENTAL EVALUATION

" P�¤ set to 0.6, ECL obtains the best results, in a time comparable to the one
required by the setting ECL-GA presented in section 7.2. With " PI¤ set to 0.2,
ECL could obtain an accuracy higher than the one obtained by both ECL-GA
and ECL-NOT in a less amount of time.

Choosing the Value of Ê�Ë�Ì We propose here a simple procedure that can be
used for choosing a good value of " PI¤ . This procedure is not guaranteed to
find the optimal value of " P�¤ , it represents only a way for finding a good value
of " P�¤ . We suppose here that a k–fold cross validation is used. In the settings
of parameters of an EA, it is important to recall that only the results on the
training sets should be used, i.e., the test sets should not be accessed during
the runs conducted for setting the parameters.

First a set of initial values of " P�¤ that we want to test should be established.
Let us denote this set as

x " P�¤ �@� " P�¤DN ��������� " PI¤ � z , where " P�¤ { < " P�¤ { � � , =(~L� < & .
The procedure that can be used for establishing a good value of " P�¤ is then the
following:

Choose pbk

1. � 1 = , perform a run for each training fold with " P�¤ set to " P�¤ { ;
2. Perform a run for each training fold with " P�¤ set to " P�¤ { � � ;
3. Register the average accuracies, and average simplicities obtained on the

k training folds with " PI¤ { and " P�¤ { � � (let us denote this with M __ ä m ê ¨ andá � � " ä m ê ¨ , respectively,
¥ Y x � � � ñ = z);

4. If M __ ä m ê ! ALM _�_ ä m ê ! � · then go to step 7;

5. � 1 � ñ = ;
6. If � < & go to step 2;

7. Choose " PI¤ ë , =�~ ¥ ~ � , such that M _�_ ä m ê ¨ is the highest. If the highest
value of M __ ä m ê ! was obtained with different " P�¤ { , then choose the " P�¤ {
such that

á � � " ä m ê ! is the lowest. If even the values of
á � � " ä m ê ! are equal,

then choose the smallest " PI¤ { .
For example, if we apply this procedure to the benchmark datasets used in

the experiments presented in this section, we obtain the values of " P�¤ given
in table 7.8. In the third column we indicate if the suggested value is the one
yielding the best accuracy on the test sets.

In six cases, the average accuracy obtained on the test sets achieved with
the value of " P�¤ found with the proposed procedure was not the highest. How-
ever, only on the Glass2 dataset the suggested value of " PI¤ yields an average
accuracy on the test sets that is evidently lower than the one obtained with the
optimal value. In the other cases, the accuracy obtained on the test sets with
the suggested values of " P�¤ is only slightly worse than the one obtained with
the optimal values of " PI¤ . In six cases, the procedure finds the values of " P�¤

7.4. EXPERIMENTS ON THE SELECTION OPERATORS 101

Dataset " P�¤ suggested Winner Difference
Accidents 1.0 Yes 0
Australian 0.4 Yes 0

Breast 0.8 No 0.01
Congestions 1.0 Yes 0

Crx 0.8 Yes 0
Echocardiogram 1.0 Yes 0

German 0.4 Yes 0
Glass2 1.0 No 0.05
Heart 1.0 No 0.01

Hepatitis 0.6 No 0.02
Ionosphere 0.2 Yes 0

Mutagenesis 0.2 No 0.01
Pima-Indians 0.2 No 0.01

Vote 0.2 Yes 0

Table 7.8: Values of " P�¤ obtained with the procedure Choose pbk. In the col-
umn labeled “Winner” we indicate if the suggested value is the winner on the
test set. In the last column the difference between the best accuracy and the
accuracy obtained with the suggested value of " P�¤ is reported.

in the first two steps, requiring in this way little effort for setting the value of" P�¤ . Among these six cases, the suggested value represents the optimal value
in five cases, and only on the Mutagenesis dataset the suggested value does
not yield the best performances on the test set.

7.4 Experiments on the Selection Operators

In this section we perform some experiments in order to establish the benefi-
cial properties of the variants of the US operator described in chapter 5. We
first perform experiments on an artificially generated dataset, and then on real
life datasets. The artificial dataset is made of five hundred positive examples
and five hundred negative examples. Each example can be described by three
attributes f � " and c , that can assume respectively the values

x M � P z , x _J� Q � � z andx.; � ã z
.

Attr a,c a,d a,e b,c b,d b,e f g
Pos 0.50 0.30 0.05 0.05 0.05 0.05 0.70 0.30
Neg 0.05 0.05 0.50 0.20 0.10 0.10 0.30 0.70

Table 7.9: Probabilities of having a particular combination of attributes/values
describing an example, given a positive (Pos) or a negative (Neg) example in
the dataset.

102 CHAPTER 7. EXPERIMENTAL EVALUATION

The dataset was generated with the probabilities given in table 7.9. For in-
stance, the probability of having a positive example described by the attributef with value M and by the attribute " with value

_
is 0.5, while the probability

of having a negative example described by the same pair of attributes values is
0.05.

(a) US (b) WUS (c) EWUS

Figure 7.5: Distribution of different rules in the final population obtained with
the use of the different selection operators.

Figures 7.5(a), 7.5(b) and 7.5(c) show the percentage of different kind of
clauses in the final population obtained with the use of the US, the WUS and
the EWUS selection operator, respectively. The difference between the US and
the EWUS selection operator is evident here. In the population obtained with
the US selection operator, there are three kind of rules that dominate the popu-
lation, namely c + ��� ; - � f + �e� M - and " + ���`_ - . Instead, in the population obtained
with the EWUS operator the distribution of different kind of rules is more ho-
mogeneous. There are no individuals that dominate the population. Also the
WUS operator shows better results regarding the diversity in the population.
There are still individuals that dominate the population, but the distribution of
different kind of rules is more even.

US WUS EWUS
Uncovered 13.5 (3.53) 13 (0.01) 0.67 (0.58)

Average 19.80 (0.24) 17.20 (3.11) 9.00 (0.23)

Table 7.10: The first row of the table shows how many positive examples were
still uncovered after the GA ended. The second row shows the average of
the dimension of the coverage sets, which is how many individuals cover a
positive example.

Table 7.10 shows another result in which we were interested: how the posi-
tive examples are covered by population evolved by the system using the three
selection operators. Again, results obtained with the EWUS operator are better
than the ones obtained with the other two operators. Practically with the use of

7.4. EXPERIMENTS ON THE SELECTION OPERATORS 103

Dataset Mechanism Diversity Unc. Cov. Accuracy Simplicity
US 12.7 (3.12) 1.4 (0.70) 17.92 (4.00) 0.92 (0.01) 3.2 (1.14)

Accidents WUS 11.2 (1.55) 1.2 (0.92) 17.73 (3.21) 0.94 (0.02) 3.3 (0.83)
EWUS 15.4 (1.78) 0.3 (0.48) 14.45 (3.48) 0.95 (0.02) 3.5 (0.49)

US 11.9 (5.74) 10.5 (4.20) 38.54 (5.09) 0.85 (0.04) 2.2 (1.23)
Australian WUS 9.7 (3.20) 11.9 (3.84) 41.38 (1.91) 0.85 (0.02) 2.6 (0.97)

EWUS 29.7 (4.45) 1.8 (2.20) 24.52 (3.21) 0.85 (0.01) 5.5 (1.43)
US 19.1 (1.85) 10.8 (5.71) 16.74 (2.03) 0.94 (0.03) 7.0 (1.05)

Breast WUS 18.6 (1.58) 10.5 (4.11) 15.59 (2.24) 0.94 (0.03) 6.9 (1.59)
EWUS 17.8 (3.46) 7.2 (5.12) 10.41 (1.88) 0.95 (0.02) 8.6 (1.65)

US 13.1 (2.84) 4.3 (2.17) 17.16 (4.33) 0.92 (0.02) 3.3 (0.82)
Congestions WUS 12.8 (3.15) 2.0 (1.05) 15.32 (2.63) 0.93 (0.02) 3.2 (1.03)

EWUS 13.2 (2.44) 0.4 (0.70) 10.70 (2.52) 0.94 (0.02) 3.5 (0.49)
US 3.2 (0.79) 21.5 (2.95) 70.49 (1.47) 0.85 (0.04) 1.6 (0.70)

Crx WUS 4.6 (1.51) 19.5 (6.47) 68.70 (2.57) 0.85 (0.04) 1.9 (0.99)
EWUS 28.1 (10.70) 4.8 (3.85) 29.24 (8.03) 0.84 (0.01) 5.0 (1.76)

US 142.1 (19.34) 0.87 (0.03) 259.86 (17.40) 0.73 (0.03) 2.8 (0.79)
Echocardiogram WUS 140.3 (20.16) 0 (0.0) 259.14 (14.28) 0.76 (0.03) 2.5 (0.71)

EWUS 154.5 (15.64) 0 (0.0) 216.52 (23.28) 0.74 (0.01) 3.0 (0.81)
US 49.7 (7.27) 1.2 (0.03) 166.22 (6.34) 0.74 (0.03) 8.2 (2.10)

German WUS 50.1 (8.45) 0 (0.0) 168.43 (7.00) 0.73 (0.04) 8.7 (2.21)
EWUS 71.9 (4.65) 0 (0.0) 144.20 (5.98) 0.74 (0.01) 11.7 (0.24)

US 104.3 (24.21) 0.6 (0.04) 403.49 (4.48) 0.84 (0.02) 2.7 (0.67)
Glass2 WUS 123.8 (8.73) 0 (0.0) 399.45 (4.65) 0.83 (0.02) 2.7 (0.95)

EWUS 180.4 (30.00) 0 (0.0) 356.14 (19.50) 0.85 (0.01) 3.7 (1.06)
US 11.4 (2.01) 7.1 (3.45) 32.85 (1.84) 0.80 (0.05) 3 (0.94)

Heart WUS 11.6 (4.35) 5.1 (3.07) 31.78 (3.27) 0.76 (0.04) 2.7 (0.67)
EWUS 41.7 (3.20) 0.9 (0.57) 28.57 (3.11) 0.81 (0.03) 2.9 (0.74)

US 43.7 (5.82) 1.23 (0.02) 229.56 (3.57) 0.80 (0.03) 5.6 (1.17)
Hepatitis WUS 45.3 (4.99) 0 (0.0) 230.20 (3.56) 0.81 (0.04) 6.7 (1.16)

EWUS 58.0 (6.50) 0 (0.0) 221.31 (2.62) 0.83 (0.02) 6.3 (1.25)
US 126.6 (8.64) 1.2 (0.18) 160.42 (2.74) 0.87 (0.02) 8.0 (2.36)

Ionosphere WUS 122.9 (9.69) 0 (0.0) 260.93 (11.73) 0.88 (0.03) 8.4 (1.35)
EWUS 195.0 (6.32) 0 (0.0) 222.07 (9.60) 0.89 (0.02) 12.0 (1.76)

US 29.6 (5.87) 1.2 (0.43) 119.66 (5.13) 0.87 (0.02) 3.1 (0.74)
Mutagenesis WUS 30.0 (5.696) 0 (0.0) 120.281 (4.07) 0.90 (0.02) 2.9 (0.99)

EWUS 41.8 (7.60) 0 (0.0) 109.86 (7.18) 0.88 (0.01) 4.6 (0.84)
US 22.00 (2.36) 0.0 (0.0) 58.71 (2.10) 0.75 (0.02) 7.5 (1.65)

Pima-Indians WUS 21.6 (1.78) 0.0 (0.0) 57.74 (2.85) 0.74 (0.05) 8.1 (2.23)
EWUS 20.3 (1.34) 0.0 (0.0) 51.37 (2.25) 0.77 (0.02) 7.9 (1.29)

US 29.4 (3.53) 1.1 (0.32) 129.82 (5.73) 0.92 (0.04) 3.1 (1.20)
Vote WUS 30.0 (4.42) 0.2 (0.42) 132.39 (3.87) 0.93 (0.04) 3.4 (1.51)

EWUS 48.0 (9.61) 0 (0.0) 127.38 (2.18) 0.94 (0.02) 3.7 (1.06)

Table 7.11: Results for the various selection mechanisms. The column labeled
Unc. report the average number of positive examples that are not covered by
any individual in the evolved population. The column labeled Cov. reports
the average number of individuals that cover a positive example. Standard
deviation is reported between brackets. Best results are highlighted.

104 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset US WUS EWUS
Accidents E E
Australian E E

Breast
Congestions

Crx W,E E
Echocardiogram (E) (E)

German E E
Glass2 (W),E E
Heart E E

Hepatitis E E
Ionosphere E E

Mutagenesis E E
Pima-Indians

Vote E E

Table 7.12: Results of t-test for the diversity of the final population. For each da-
taset we report when a method achieved significant better result than another,
as estimated by t-test with confidence level of 1%, where E stands for EWUS,
W for WUS, U for US. A symbol between brackets stands for a confidence level
of 5%.

the EWUS operator, all the positive examples are covered, while with the other
two variants thirteen positive examples are still uncovered after the GA has
ended. This is due to the more variety in the population evolved by the system
with the use of the EWUS selection operator. The second row of table 7.10 also
indicates that the population obtained with the EWUS operator is more spread
through the hypothesis space than the one obtained with the other two oper-
ators. For this result the WUS operator performed a little bit better than the
US operator, however these results are significantly worse than those obtained
using the EWUS operator.

Table 7.11 contains results on the considered benchmark datasets. It can be
seen that in most of the cases, the EWUS selection operator leads to a better
diversity in the evolved final population. Only in two cases (the Breast and the
Pima-Indians datasets) the population evolved with the standard US operator
has a slightly higher diversity. The WUS selection operator was less successful
than the EWUS in promoting diversity. In most of the cases the diversity ob-
tained by the WUS operator is comparable to the diversity obtained by the US
operator. In table 7.12, we further analyze the results regarding the diversity
achieved with the use of the three selection operators. In the table we report
the results of the statistical paired two–tailed t-test regarding the diversity with
confidence level 1% and 5%. An entry of the table contains a symbol relative
to a selection operator, if the indicated selection operator achieved a signifi-
cantly higher diversity than the one achieved by the selection operator relative

7.5. EXPERIMENTS ON SOLUTION EXTRACTION 105

to the column for the particular dataset relative to the row. We can notice that
EWUS was never outperformed by the other selection mechanisms. Using a
confidence level of 1% we can see that EWUS outperformed both US and WUS
on the same ten datasets. WUS outperformed once, on the Crx dataset, the
US selection operator, while US never outperformed the other selection mech-
anisms. If we extend the confidence level to 5%, then we can see that EWUS
outperformed the US and the WUS also on the Echocardiogram dataset, and
the WUS outperformed the US also on the Glass2 dataset.

Generally, there are also less uncovered positive examples at the end of the
evolution when EWUS is used. This also confirms the fact that the population
evolved by ECL with EWUS is more spread out through the hypothesis space
than the population evolved with the use of the other two selection mecha-
nisms. The fifth column presents the average number of individuals in the
final population covering a positive example. Also these results confirm the
effectiveness of the EWUS selection operator in promoting diversity. Having
higher diversity implies having less individuals covering the same examples.
Higher diversity in the population is also positively reflected in the quality of
the solution found. In fact the solutions found with the use of EWUS generally
have a higher accuracy than the solutions found with the other two selection
mechanisms.

In almost all the cases the solutions found by ECL with the use of the EWUS
operator are less simple than those found with the use of the other selection
operators. In some cases, like in the Ionosphere, the Crx and the Australian
datasets, the difference is evident. This is due to the fact that the population
evolved with the use of EWUS is characterized by a higher diversity. More
diversity in the population means that more rules are taken in consideration
for being added to the final solution, thus the solution extracted can contain
more rules. This can be noticed for example in the Ionosphere, the Crx and
the Australian cases, where the solutions found are more complex and where
the population evolved with the EWUS operator is much more diverse than
the other two populations. However this cannot be considered as a negative
fact. In fact, in the other cases, the difference in simplicity is not evident, and
in many cases is similar to the simplicity of solutions found with US and WUS.

7.5 Experiments on Solution Extraction

In this section we experimentally compare the three methods that can be used
for the extraction of the final solution, and we identify them as follows:

WSCAf is the method based on the heuristic for solving weighted set covering
problems using the weights given by equation 5.4;

WSCAn is the method relying on the same heuristic but using weights given
by equation 5.5;

Precision is the procedure based on precision, given in figure 5.5.

106 CHAPTER 7. EXPERIMENTAL EVALUATION

The three methods are described in chapter 5.
Table 7.13 reports the results obtained. The table shows the average ac-

curacies and the average simplicity of the solution extracted when the three
methods are applied to the same final population. In the table, a é next to a
result, stands for a significant difference between the accuracy obtained by the
relative method and the accuracy obtained with Precision as estimated by the
statistical paired two-tailed t-test, with confidence level 1%. A

+ éJ- stands for
a significant difference with confidence level 5%. We performed the t-test in
the same way as in section 7.2. The setting given in section 7.1 was used in all
the experiments. The only difference between the obtained results lies in the
method applied for the extraction of the final solution.

From the results, it emerges that the procedure based on precision can al-
ways find a solution of higher accuracy. In particular, for the Australian, the
Glass2, the Heart, and the Congestions dataset the difference in the accuracy
of the solutions extracted is evident. It should also be noticed that in the cases
where the t-test is applicable, only on the Breast dataset the difference in the
obtained results is not significant. On the Ionosphere dataset only the results
obtained by WSCAf are significantly worse than the results obtained by Preci-
sion. In all the other cases, the difference is significant. The t-test is not appli-
cable on the Echocardiogram, the Glass2, the Heart and the Hepatitis datasets,
since results on these datasets are not normally distributed.

Generally, the accuracy of the solutions extracted by WSCAn is slightly bet-
ter than the accuracy of the solution extracted by WSCAf. This is particularly
true for the Australian, the Crx, the Glass2, the Heart, the Ionosphere and the
Congestions datasets. However, these differences are not significant. In the
cases where the accuracy of the solution found by WSCAn and WSCAf is equal,
many of the solutions extracted with the two methods are formed by exactly
the same logic programs.

The solutions extracted by both WSCAn and WSCAf are simpler than those
extracted by Precision. However since the difference in the accuracy is so re-
markable, we cannot conclude that this is a positive effect. The solutions found
by the procedure based on precision are in some cases much more complex,
e.g., in the Ionosphere case, but the accuracy of the solution is higher. The rea-
son why solutions extracted by Precision contain more clauses is because with
this method the most precise clause is always added to the emerging solution,
as long as the accuracy of the solution does not decrease. In this way, many
very specific clauses can be added. This is less likely to happen in both WS-
CAn and in WSCAf. In fact these two methods try to cover all the positive
examples with a minimum weight. For this reason it is likely that the final
solution consists of less clauses.

We can conclude that, as stated in chapter 5, in many cases, the procedure
based on the weighted covering set algorithm is not capable of extracting a
solution of good quality, even when the clauses for building an accurate logic
program are present in the population. This is demonstrated by the fact the
the procedure based on the precision is able, given the same set of clauses, to
extract a solution of satisfying quality for all the cases.

7.5. EXPERIMENTS ON SOLUTION EXTRACTION 107

Dataset Mechanism Accuracy T-test Simplicity
WSCAf 0.92 (0.01) é 2.30 (0.48)

Accidents WSCAn 0.93 (0.01) (é) 2.70 (0.67)
Precision 0.94 (0.02) 3.70 (1.06)
WSCAf 0.62 (0.04) é 5.30 (1.16)

Australian WSCAn 0.67 (0.02) é 5.70 (1.34)
Precision 0.85 (0.01) 6.10 (2.18)
WSCAf 0.94 (0.01) 5.80 (1.40)

Breast WSCAn 0.94 (0.02) 6.10 (1.45)
Precision 0.95 (0.02) 8.60 (0.41)
WSCAf 0.85 (0.03) é 3.70 (1.16)

Congestions WSCAn 0.90 (0.02) (é) 4.20 (1.55)
Precision 0.94 (0.02) 3.95 (0.35)
WSCAf 0.64 (0.01) é 4.90 (0.74)

Crx WSCAn 0.67 (0.02) é 5.40 (1.43)
Precision 0.84 (0.01) 4.80 (0.05)
WSCAf 0.60 (0.03) 3.30 (0.48)

Echocardiogram WSCAn 0.60 (0.02) NA 3.20 (0.42)
Precision 0.74 (0.01) 2.60 (0.70)
WSCAf 0.70 (0.01) é 5.30 (2.71)

German WSCAn 0.71 (0.01) é 5.30 (2.79)
Precision 0.74 (0.01) 11.70 (0.24)
WSCAf 0.73 (0.03) 3.50 (0.71)

Glass2 WSCAn 0.75 (0.02) NA 3.30 (0.48)
Precision 0.85 (0.01) 4.20 (1.23)
WSCAf 0.60 (0.03) 4.50 (0.53)

Heart WSCAn 0.64 (0.02) NA 4.30 (0.67)
Precision 0.80 (0.03) 4.20 (1.32)
WSCAf 0.82 (0.01) 4.20 (0.63)

Hepatitis WSCAn 0.82 (0.02) NA 4.10 (0.94)
Precision 0.83 (0.02) 7.60 (0.95)
WSCAf 0.81 (0.03) é 2.90 (0.32)

Ionosphere WSCAn 0.87 (0.03) 3.80 (1.99)
Precision 0.89 (0.02) 12.50 (1.48)
WSCAf 0.77 (0.04) é 3.12 (0.32)

Mutagenesis WSCAn 0.80 (0.03) (é) 2.83 (0.63)
Precision 0.88 (0.01) 4.61 (0.84)
WSCAf 0.71 (0.02) (é) 6.10 (0.74)

Pima-Indians WSCAn 0.71 (0.02) (é) 6.10 (0.72)
Precision 0.76 (0.01) 8.40 (1.84)
WSCAf 0.83 (0.04) (é) 4.30 (0.48)

Vote WSCAn 0.85 (0.02) (é) 4.50 (0.53)
Precision 0.94 (0.02) 3.70 (1.06)

Table 7.13: Average accuracies and average simplicities obtained with the three
methods for the extraction of the final solution. Standard deviation between
brackets. A é stands for a significant difference related to accuracy as estimated
by t-test. NA means that the t-test is not applicable.

108 CHAPTER 7. EXPERIMENTAL EVALUATION

7.6 Experiments on Discretization Methods

The experiments presented in this section are aimed at evaluating the dis-
cretization methods described in chapter 6:

ECL-LSDc with local supervised discretization and a coarse initialization of
inequalities using DP points;

ECL-LSDf as the previous variant but with a fine initialization of inequalities
using BP points;

ECL-LUD with local unsupervised discretization;

ECL-GSD where Fayyad & Irani discretization algorithm is applied prior to
induction.

First, we use the artificial dataset discussed in the chapter 6 and illustrated
in figure 6.1, for analyzing the behavior ECL when the four discretization me-
thods are embedded into the system and the resulting four variants of ECL
are applied to this non-linearly separable problem. Next, we consider real-
life learning tasks and perform experiments on propositional and relational
datasets, chosen for the high presence of numeric values. In ECL-LUD we
have used the WEKA implementation (Witten and Frank, 2000b) of the EM
algorithm, in order to perform clustering of numerical values.

7.6.1 Artificially Generated Dataset

In this experiment, 50 positive and 50 negative examples of the target concept
described in section 6.1 are fed to the system. Each example is described by
two numerical attributes that can assume values in

3 ? � =�?0?D? 6 . The system is run
with population size equal to 100, for 50 generations and with 30 individuals
selected at each generation, while the greediness

� {
of the mutation operators

and the maximum length of a clause » _ are set to I .
ECL-GSD is not able to solve this problem because no discretization point

is found by the Fayyad & Irani’s method. Thus both continuous attributes
are discretized in a unique interval by the Fayyad & Irani’s algorithm. For
the same reason, ECL-LSDc has low performance, as shown in figure 7.6(a)
where accuracy, precision and recall of the extracted solution are plotted at
each generation of a typical run, indicating that there is no evolution.

The other two ECL variants, ECL-LUD and ECL-LSDf, have satisfactory
performance. Figure 7.6(b) shows a typical run of ECL-LUD, where the accu-
racy of the extracted solution can be seen to increase, even if rather slowly, dur-
ing the generations, and it becomes constant after about

 ? generations, where
recall becomes equal to = and precision is about ? � Í C . Figure 7.7 shows accu-
racy, precision and recall of the solution extracted at each of the 50 generations
in two typical runs of ECL-LSDf. It can be seen that after some oscillations a
perfect solution is found, like the one consisting of the following two clauses:

7.6. EXPERIMENTS ON DISCRETIZATION METHODS 109

(a) ECL-LSDc. (b) ECL-LUD.

Figure 7.6: Average accuracy, precision and recall of the solution found at every
generation of a typical run of ECL-LSDc and ECL-LUD.

(a) Run I. (b) Run II.

Figure 7.7: Average accuracy, precision and recall of the solution extracted at
every generation of ECL-LSDf during two typical runs on the artificial dataset.

110 CHAPTER 7. EXPERIMENTAL EVALUATION

(a) Average coverage of individuals. (b) Average and best fitness of individ-
uals.

Figure 7.8: Graphs for a typical run of ECL-LSDf. Vertical bars show standard
deviation.Î2Ï.Ð2Ñ

+ÓÒ - � E
Ï(ÔÈÔ"Õ×Ö

+ÓÒ ��Ø - � Ï(ÔÈÔÈÕÈÙ +ÓÒ ��Ú - � +BÛÝÜÈÜ � Þ Û < Ú ~àß"á Û �âÞ"Þ - �+ Þ Ü�Û � áÈßÀ< Ø ~àß"á Þ$�âã Û - �Î2Ï.Ð2Ñ
+ÓÒ - � E

Ï(ÔÈÔÈÕ.Ö
+ÓÒ ��Ø - � Ï(ÔÈÔÈÕÈÙ +ÓÒ � Ú - � + EO»�< Ú ~¾ä.åÈá � Þ å - � +BæÝÜ � æ äX< Ø ~çä.åÈß � Þ ß - �

Figure 7.8(a) shows the average number of positive and negative examples
covered by the individuals of the population at every generation, and figure
7.8(b) the average and best fitness at each generation. The fine initialization
of inequalities with

8:�
intervals allows the algorithm to progressively enlarge

the boundaries of inequalities and correctly classify more and more examples
until a solution is found. The graphs shown in this section are obtained from
typical runs. The same graphs relative to the average values obtained on a
number of runs, present the same behavior, so the same conclusions can be
drawn from them.

Thus ECL-LSDf seems the best choice for handling this type of problems.
However, we will see in the next sections that on real-life datasets ECL-LSDc
yields the best accuracy.

7.6.2 Propositional Datasets

In this section we test the four ECL variants on the ten propositional datasets
described in table 7.1.

Table 7.14 contains the total number of DP and BP points of the datasets,
showing that in general the latter is much bigger than the former. Tables 7.15
and 7.16 contain the results of the experiments on the training and test sets,
respectively. On the training sets ECL-LSDf obtains the best performance on
all datasets, with optimal performance on the Echocardiogram. However, on
the test sets, ECL-LSDc achieves the best accuracy in most of the cases, with
simplicity (that is, the number of clauses of the output program) that is second

7.6. EXPERIMENTS ON DISCRETIZATION METHODS 111

Dataset DP BP
Australian 13 810

Breast 29 84
Crx 13 806

Echocardiogram 5 151
German 30 256
Glass2 16 479
Heart 10 294

Hepatitis 10 192
Ionosphere 145 1359

Pima-Indians 17 1123
Liver 7 275
Sonar 81 5965
Wdbc 91 5184
Wpbc 34 2313

Table 7.14: Total number of DP and BP points per propositional dataset.

best after ECL-GSD. ECL-LSDf produces best results on the Echocardiogram
and Hepatitis dataset, ECL-GSD on Glass2, but the results are only slightly
better than those of ECL-LSDc. The unsupervised variant ECL-LUD produces
satisfactory approximate solutions, yet of quality inferior to that of the other
methods. The training time of the four algorithms is comparable, where ECL-
LSDc and ECL-GSD are slightly faster than the other variants.

In order to summarize the performance of the four variants and the signif-
icance of the results with respect to the accuracy, we compute the statistical
paired two-tailed t-test with confidence level of 1% and 5%. The t-test is per-
formed on the 30 results obtained from the 10 folds and the 3 random seeds.
In table 7.18 we report the results of the t-test for each of the propositional
datasets. In the columns we report the discretization methods, and in the rows
the dataset. We report in an entry of the table the symbol associated to another
discretization method if the discretization method identified by the symbol is
superior to the discretization method relative to the column on the dataset rel-
ative to the row. For example, ECL-LSDc is better than all the other methods
on the Pima-Indians dataset. If the symbol is between brackets it means that
the confidence level is 5%. Table 7.19 summaries the results reported in table
7.18. From the table we can extract the following hierarchy for the methods:
ECL-LSDc, ECL-LSDf, ECL-GSD, and ECL-LUD.

Using 1% confidence level we get that ECL-LSDc is never outperformed,
while it is significantly better than the other methods on the Pima-Indians da-
taset, better than ECL-GSD on the Breast and on the Wdbc datasets, and bet-
ter than ECL-LUD on the Sonar and the Ionosphere datasets, together with
ECL-GSD. On the Ionosphere dataset also ECL-LSDf is better than ECL-LUD.
ECL-LSDc is significantly better than ECL-LSDf also on the Liver dataset.

112 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset ECL-LSDc ECL-LSDf ECL-LUD ECL-GSD
Australian 0.85 (0.02) 0.85 (0.03) 0.86 (0.01) 0.84 (0.01)

Breast 0.96 (0.00) 0.96 (0.00) 0.96 (0.01) 0.94 (0.01)
Crx 0.86 (0.01) 0.87 (0.01) 0.87 (0.01) 0.85 (0.01)

Echocardiogram 0.82 (0.01) 1.00 (0.00) 1.00 (0.01) 0.69 (0.02)
German 0.76 (0.00) 0.78 (0.00) 0.77 (0.01) 0.75 (0.00)
Glass2 0.86 (0.01) 0.95 (0.02) 0.95 (0.01) 0.87 (0.01)
Heart 0.83 (0.03) 0.83 (0.03) 0.84 (0.02) 0.83 (0.02)

Hepatitis 0.88 (0.01) 0.90 (0.01) 0.90 (0.01) 0.87 (0.02)
Ionosphere 0.93 (0.02) 0.97 (0.01) 0.93 (0.01) 0.91 (0.02)

Pima-Indians 0.77 (0.01) 0.82 (0.01) 0.79 (0.01) 0.69 (0.03)
Liver 0.70 (0.02) 0.71 (0.01) 0.69 (0.02) 0.63 (0.01)
Sonar 0.81 (0.02) 0.86 (0.01) 0.83 (0.04) 0.78 (0.02)
Wdbc 0.95 (0.01) 0.96 (0.01) 0.94 (0.01) 0.94 (0.01)
Wpbc 0.79 (0.01) 0.90 (0.02) 0.89 (0.01) 0.76 (0.01)

Table 7.15: Results of 3 runs with different random seeds and ten–fold cross
validation on the training sets: average accuracy with standard deviation be-
tween brackets.

If we increase the confidence level to 5% then we get that ECL-LUD and
ECL-LSDc are significantly better than ECL-LSDf on the Australian dataset,
ECL-LSDf becomes also significantly better than ECL-GSD on the Breast data-
set, and ECL-LSDc (together with ECL-GSD) becomes significantly better than
ECL-LSDf and ECL-LUD on the German and on the Sonar dataset. ECL-LSDc
becomes better than ECL-LUD also on the Wdbc dataset, and better than ECL-
GSD on the Liver dataset. The other datasets (Echocardiogram, Glass 2, Heart,
and Hepatitis) are small, and the results of the experiments are not normally
distributed, so the t-test cannot be applied.

In general, simple solutions are obtained using Fayyad & Irani’s discretiza-
tion applied either prior to induction (ECL-GSD) or in the initialization of the
inequalities (ECL-LSDc). The simplicity column of the results also indicates
that the solutions produced by ECL-LSDf are in general more complex than
those generated by the other methods, due to the initialization of the inequali-
ties to rather small intervals.

In summary, the results of the experiments on these propositional datasets
seem to indicate that an effective search strategy for discretizing continuous
attributes in an evolutionary learner consists of starting from large intervals
for initializing inequalities and then refine them during the evolutionary pro-
cess using the boundary points for enlarging and shrinking the intervals. The
results also indicate that the supervised methods obtain in general better per-
formance than the unsupervised one. For this reason we will not consider ECL-
LUD in the experiments on relational datasets described in the next section.

7.6. EXPERIMENTS ON DISCRETIZATION METHODS 113

Dataset System Accuracy Simplicity Time (s)
ECL-LSDc 0.85 (0.01) 6.10 (2.18) 1686.38 (144.07)

Australian ECL-LSDf 0.83 (0.01) 15.50 (3.69) 2088.13 (114.96)
ECL-LUD 0.85 (0.01) 16.6 (2.72) 1798.38 (55.13)
ECL-GSD 0.84 (0.01) 3.20 (0.79) 2042.38 (342.80)
ECL-LSDc 0.95 (0.02) 8.60 (0.41) 286.13 (37.00)

Breast
ECL-LSDf 0.94(0.03) 13.75 (2.05) 299.63 (27.21)
ECL-LUD 0.94 (0.02) 14.10 (2.08) 521.50 (41.43)
ECL-GSD 0.93 (0.02) 6.05 (1.34) 274.23 (31.54)
ECL-LSDc 0.84 (0.01) 4.80 (0.05) 2668.00 (176.45)

Crx
ECL-LSDf 0.82 (0.02) 11.90 (3.48) 2763.23 (121.47)
ECL-LUD 0.83 (0.02) 9.80 (3.16) 2983.83 (138.87)
ECL-GSD 0.83 (0.01) 3.70 (0.83) 2693.32 (167.63)
ECL-LSDc 0.74 (0.01) 2.60 (0.70) 2375.63 (126.62)

Echocardiogram
ECL-LSDf 0.76 (0.02) 10.00 (1.15) 2383.01 (121.43)
ECL-LUD 0.65 (0.01) 11.90 (2.02) 2507.82 (103.32)
ECL-GSD 0.69 (0.02) 1.30 (0.48) 2205.75 (119.39)
ECL-LSDc 0.74 (0.01) 11.70 (0.24) 4605.75 (155.34)

German
ECL-LSDf 0.72 (0.02) 58.40 (2.40) 5158.38 (263.62)
ECL-LUD 0.71 (0.01) 80.30 (6.46) 5277.43 (174.27)
ECL-GSD 0.74 (0.01) 5.6 (0.57) 4597.27 (143.07)
ECL-LSDc 0.85 (0.01) 4.2 (1.23) 1246.00 (55.94)

Glass2 ECL-LSDf 0.75 (0.03) 21.8 (2.66) 1673.00 (96.12)
ECL-LUD 0.71 (0.03) 24.40 (3.89) 2846.00 (142.05)
ECL-GSD 0.86 (0.02) 2.2 (0.42) 1453.25 (132.66)
ECL-LSDc 0.80 (0.03) 4.20 (1.32) 436.38 (57.59)

Heart ECL-LSDf 0.73 (0.01) 9.20 (3.05) 516.50 (45.39)
ECL-LUD 0.77 (0.02) 10.90 (2.73) 850.75 (138.40)
ECL-GSD 0.77 (0.02) 2.50 (0.71) 403.64 (48.72)
ECL-LSDc 0.83 (0.02) 7.60 (0.95) 1056.73 (63.84)

Hepatitis
ECL-LSDf 0.84 (0.04) 17.70 (2.15) 1165.88 (45.80)
ECL-LUD 0.80 (0.03) 24.50 (4.06) 1686.63 (62.86)
ECL-GSD 0.83 (0.03) 6.40 (1.20) 1194.75 (70.26)
ECL-LSDc 0.89 (0.02) 12.50 (1.48) 5276.83 (138.93)

Ionosphere
ECL-LSDf 0.88 (0.04) 45.78 (5.37) 5285.61 (174.61)
ECL-LUD 0.78 (0.02) 88.20 (11.25) 5991.42 (182.02)
ECL-GSD 0.87 (0.03) 9.80 (1.34) 4972.87 (125.83)
ECL-LSDc 0.67 (0.03) 1.1 (0.32) 75.10 (3.44)

Liver
ECL-LSDf 0.54 (0.04) 20.7 (1.70) 107.38 (3.00)
ECL-LUD 0.56 (0.05) 19.7 (1.83) 196.75 (11.74)
ECL-GSD 0.63 (0.05) 1.2 (0.43) 187.37 (16.20)

Table 7.16: Results for the various methods on the propositional datasets: aver-
age accuracy on the test sets, number of clauses (simplicity), and training time
in seconds, with standard deviation between brackets.

114 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset System Accuracy Simplicity Time (s)
ECL-LSDc 0.76 (0.01) 8.40 (1.84) 1314.75 (31.86)

Pima-Indians
ECL-LSDf 0.71 (0.01) 75.60 (5.23) 1328.32 (29.35)
ECL-LUD 0.70 (0.01) 53.80 (6.66) 2920.00 (57.15)
ECL-GSD 0.68 (0.02) 2.20 (0.63) 1284.73 (38.74)
ECL-LSDc 0.76 (0.03) 2.9 (0.74) 713.28 (54.86)

Sonar ECL-LSDf 0.64 (0.04) 30.0 (3.59) 1182.26 (47.92)
ECL-LUD 0.58 (0.03) 32.2 (8.88) 1232.73 (35.71)
ECL-GSD 0.75 (0.02) 2.4 (0.52) 716,93 (64.39)
ECL-LSDc 0.95 (0.03) 7.8 (2.15) 1647.65 (113.37)

Wdbc ECL-LSDf 0.91 (0.04) 15.5 (5.70) 2560.44 (120.904)
ECL-LUD 0.90 (0.03) 24.2 (6.37) 1725.51 (97.12)
ECL-GSD 0.91 (0.03) 4.6 (1.43) 2141.81 (116.00)
ECL-LSDc 0.78 (0.04) 1.8 (0.92) 180.082 (20.56)

Wpbc
ECL-LSDf 0.74 (0.02) 19.9 (1.59) 243.70 (12.19)
ECL-LUD 0.76 (0.03) 20.9 (0.99) 249.692 (7.17)
ECL-GSD 0.76 (0.04) 2.1 (0.31) 178.32 (13.42)

Table 7.17: Second set of results for the various methods on the propositional
datasets: average accuracy on the test sets, number of clauses (simplicity), and
training time in seconds, with standard deviation between brackets.

Dataset ECL-LSDc ECL-LSDf ECL-LUD ECL-GSD
Australian (é) (è)

Breast é (
¼
)

Crx
Echocardiogram

German (é) (é) (é) (é)
Glass2
Heart

Hepatitis
Ionosphere é ¼ é

Pima-Indians é é é
Liver é (é)
Sonar (é) (é) é é
Wdbc (é) é
Wpbc

Table 7.18: Results of t-test for the propositional datasets. For each dataset we
report when a method is significantly better than another, as estimated by t-test
with confidence level of 1%, where é stands for ECL-LSDc,

¼
for ECL-LSDf, è

for ECL-LUD and é stands for ECL-GSD. A symbol between brackets stands
for a confidence level of 5%.

7.6. EXPERIMENTS ON DISCRETIZATION METHODS 115

Method ECL-LSDc ECL-LSDf ECL-LUD ECL-GSD Total
ECL-LSDc – 2(5) 3(5) 3 (4) 8 (14)
ECL-LSDf 0 – 1 0 (1) 1 (2)
ECL-LUD 0 0 (1) – 0 0 (1)
ECL-GSD 0 0 (2) 2(3) – 2 (5)

Total 0 2 (8) 6(9) 3(5)

Table 7.19: Results of the two-tailed paired t-test for the propositional datasets
with 1% confidence level: each entry contains the number of datasets on which
the algorithm in the row is significantly better than the one in the column.
The results of the test using 5% confidence level are reported between brackets
when they differ from those using 1% confidence level.

7.6.3 Relational Datasets

The relational datasets subject of the experiments presented here, are used as
benchmark problems for ILP systems (see, e.g., (Van Laer, 2002)). Table 7.20
contains the total number of DP and BP points per dataset.

Dataset DP BP
Mutagenesis 9 116

Accidents 7 121
Congestions 7 118

Bio-Fast 4 190
Bio-Slow 2 257

Bio-Moderate 2 311
Bio-Resistant 4 100

Table 7.20: Total number of DP and BP points per dataset.

We here consider each class of the traffic and the biodegradability datasets
as a separate learning task, thus obtaining a total of seven binary classifica-
tion problems. In section 7.7 both problems are considered as two multiclass
problems. In chapter 9 we propose a detailed study of the traffic dataset.

Table 7.21 shows the average accuracies on the training sets and Table 7.22
the results on the test sets.

On the training set ECL-LSDc yields the best average accuracy on the first
three datasets, ECL-LSDf outperforms the other algorithms on the last four
datasets, and ECL-GSD yields reasonable results, slightly inferior to those of
ECL-LSDc. The training time of the algorithms is comparable. However, the
higher complexity of the solutions found by ECL-LSDf, containing on average
twice the number of clauses of the other algorithms, penalizes its performance
on the test sets.

On the mutagenesis dataset the accuracies obtained by the three systems are

116 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset ECL-LSDc ECL-LSDf ECL-GSD
Mutagenesis 0.94 (0.01) 0.91 (0.02) 0.87 (0.03)

Accidents 0.95 (0.02) 0.94 (0.01) 0.93 (0.01)
Congestions 0.96 (0.01) 0.90 (0.01) 0.95 (0.00)

Bio-Fast 0.88 (0.01) 0.92 (0.00) 0.88 (0.01)
Bio-Slow 0.80 (0.01) 0.86 (0.00) 0.80 (0.01)

Bio-Moderate 0.75 (0.01) 0.80 (0.01) 0.75 (0.00)
Bio-Resistant 0.93 (0.01) 0.96 (0.00) 0.93 (0.01)

Table 7.21: Experiments on the relational datasets: average accuracies on train-
ing sets with standard deviation between brackets.

comparable, with ECL-LSDf performing slightly better than ECL-LSDc and
ECL-GSD.

On the traffic dataset the best results are produced by ECL-LSDc, while
ECL-LSDf obtains the worst performance. In (Džeroski et al., 1998a; Džeroski
et al., 1998b) a discretization provided by experts in the field was used for the
three numerical arguments of the traffic dataset. Using the same discretization,
ECL-GSD obtained results that are slightly superior to those obtained using
Fayyad & Irani’s algorithm (on the Accidents dataset the average accuracy on
the test and training sets is 0.92 (0.03) and 0.94 (0.02) and the average simplicity
is 5.10 (0.93). On the Congestions dataset the average accuracy on the test and
training sets is 0.93 (0.02) and 0.95 (0.00) and the average simplicity is 3.23
(0.21)). The two discretizations produce similar partitions for two of the three
attributes.

On the biodegradability dataset ECL-LSDc obtains the best results on two
of the three binary classification problems, and has slightly inferior perfor-
mance on the Bio-Slow class.

Like for the propositional datasets, we analyze further the accuracy results
by means of the statistical paired two-tailed t-test with 1% and 5% confidence
levels. The results of the t-test are reported per dataset in table 7.23, and the
summary of these results are reported in table 7.24. Also in this case, ECL-LSDc
turns out to be the best algorithm. ECL-LSDc is never outperformed, and using
1% confidence level it is significantly better than ECL-LSDf on three datasets
(Accidents, Congestion and Bio-Fast), and significantly better than ECL-GSD
on two datasets (Bio-Moderate, Bio-Resistant). Moreover, ECL-GSD is signif-
icantly better than ECL-LSDf on two datasets (Bio-Fast, Congestions) while it
is outperformed by ECL-LSDf on the Bio-Slow dataset. If we use a 5% confi-
dence level, then we have that ECL-LSDc is better than ECL-LSDf also on the
Bio-Moderate dataset, and better than ECL-GSD on the Accidents dataset.

In summary, for the relational datasets we can draw the same conclusions
as for the propositional ones, namely that a good performance in terms of accu-
racy and simplicity is obtained by embedding in ECL a discretization method
which initializes inequalities using Fayyad & Irani’s algorithm, and then re-

7.7. COMPARISON WITH OTHER SYSTEMS 117

Dataset System Accuracy Simplicity Time (s)
ECL-LSDc 0.88 (0.01) 4.61 (0.84) 558.25 (24.09)

Mutagenesis ECL-LSDf 0.90 (0.01) 7.92 (1.51) 542.88 (27.88)
ECL-GSD 0.89 (0.01) 2.71 (0.38) 693.13 (35.71)
ECL-LSDc 0.95 (0.02) 3.55 (0.49) 1083.8 (86.82)

Accidents ECL-LSDf 0.87 (0.02) 15.55 (1.06) 1182.84 (73.83)
ECL-GSD 0.92 (0.03) 5.10 (0.93) 974.31 (80.28)
ECL-LSDc 0.94 (0.02) 3.95 (0.35) 1107.30 (138.73)

Congestions ECL-LSDf 0.84 (0.01) 7.20 (0.57) 1489.51 (174.94)
ECL-GSD 0.93 (0.02) 3.23 (0.21) 1145.87 (108.91)
ECL-LSDc 0.82 (0.01) 10.28 (1.83) 818.90 (91.18)

Bio-Fast ECL-LSDf 0.77 (0.01) 23.72 (2.19) 831.25 (57.03)
ECL-GSD 0.82 (0.03) 10.66 (2.30) 1003.10 (37.47)
ECL-LSDc 0.68 (0.02) 13.50 (2.57) 916.00 (60.08)

Bio-Slow ECL-LSDf 0.70 (0.02) 25.40 (2.61) 886.60 (43.72)
ECL-GSD 0.66 (0.01) 13.80 (2.50) 1034.00 (59.79)
ECL-LSDc 0.66 (0.01) 13.98 (3.57) 935.20 (74.06)

Bio-Moderate ECL-LSDf 0.62 (0.04) 25.02 (3.41) 623.40 (57.60)
ECL-GSD 0.62 (0.05) 14.64 (2.13) 1002.60 (52.77)
ECL-LSDc 0.91 (0.01) 5.28 (1.21) 545.40 (46.71)

Bio-Resistant ECL-LSDf 0.90 (0.02) 12.56 (3.13) 588.50 (42.63)
ECL-GSD 0.89 (0.01) 5.73 (2.87) 645.70 (27.12)

Table 7.22: Results of experiments on the relational datasets: average accuracy
on the test sets, simplicity and training time in seconds (standard deviations
between brackets).

fines the inequalities during the learning process using smaller intervals in or-
der to take into account interdependencies between attributes.

7.7 Comparison with Other Systems

In this section we want to compare ECL with other systems for ICL both in the
propositional and in the relational case. The results of ECL are those already
presented in the previous sections of this chapter. For each dataset we have
taken the best result obtained by the various settings of ECL. We used ECL-
LSDc in all the cases but on the Mutagenesis dataset, where ECL-LSDf obtained
better results. The EWUS selection operators was always used.

7.7.1 Propositional Datasets

We compare the performance of ECL on the propositional datasets with those
of the following systems:

118 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset ECL-LSDc ECL-LSDf ECL-GSD
Mutagenesis

Accidents é (é)
Congestions é é

Bio-Fast é é
Bio-Slow

¼
Bio-Moderate (é) é
Bio-Resistant é

Table 7.23: Results of t-test for the relational datasets. For each dataset we
report when a method is significantly better than another, as estimated by t-
test with confidence level of 1%, where é stands for ECL-LSDc,

¼
for ECL-LSDf

and é stands for ECL-GSD. A symbol between brackets stands for a confidence
level of 5%.

Method ECL-LSDc ECL-LSDf ECL-GSD Total
ECL-LSDc - 3(4) 2(3) 5(7)
ECL-LSDf 0 - 1 1
ECL-GSD 0 2 - 2

Total 0 5(6) 3(4)

Table 7.24: Results of the two-tailed paired t-test for the relational datasets with
1% confidence level: each entry contains the number of datasets on which the
algorithm in the row is significantly better than the one in the column. The re-
sults of the test using 5% confidence level are reported between brackets when
they differ from those using 1% confidence level.

C4.5 (Quinlan, 1993) is a landmark decision tree program. The decision tree is
recursively grown starting from the root. The attribute with higher infor-
mation gain is selected for becoming the root. If the attribute is nominal
a branch is added for each value the attribute can assume. This splits up
the example into subsets, one for every branch, using only those instances
that actually reach the branch. If all the instances at a node have the same
classification a leaf is added, with label equal to the classification of the
examples, otherwise the process is repeated. If an attribute correspond-
ing to a node is continuous then a two–way split is introduced, and the
split point is the one with higher information gain;

IB1 (Aha et al., 1991) uses a simple distance measure to find the training in-
stance closest to the given test instance, and predicts the same class as
this training instance. If multiple instances have the same (smallest) dis-
tance to the test instance, the first one found is used. IB1 uses the Holte’s
discretization algorithm (see chapter 6);

7.7. COMPARISON WITH OTHER SYSTEMS 119

HIDER* (Aguilar-Ruiz et al., 2003; Giráldez, 2004) is an EA that produces a
hierarchical set of rules. When a new example is going to be classified,
the set of rules is sequentially evaluated according to the hierarchy, so if
the example does not fulfill a rule, the next one in the hierarchy order is
evaluated. This process is repeated until the example matches every con-
dition of a rule and then it is classified with the class that such rule estab-
lishes. An important feature of HIDER* is its encoding method (Giráldez
et al., 2003): each attribute is encoded with only one gene, reducing con-
siderably the length of the individuals, and therefore the search space
size, making the algorithm faster while maintaining its prediction accu-
racy. HIDER* is also used in the first case study proposed in chapter 9;

GAssist (Bacardit and Garrel, 2003) is a Pittsburgh Genetic–Based Machine
Learning system descendant of GABIL (DeJong and Spears, 1991). It
evolves individuals that are ordered variable–length rule sets. The con-
trol of the bloat effect is performed by a combination of a rule dele-
tion operator and hierarchical selection (Bacardit and Garrell, 2003). The
knowledge representation for real–valued attributes is called Adaptive
Discretization Intervals rule representation (ADI) (Bacardit and Garrel,
2003). This representation uses the semantics of the GABIL rules (Con-
junctive Normal Form predicates), but using non–static intervals formed
by joining several neighbor discretization intervals. These intervals can
evolve through the learning process splitting or merging among them.
The representation can also combine several discretizations at the same
time, allowing the system to choose the correct discretizer for each at-
tribute;

Naive Bayes (John and Langley, 1995) uses the Baye’s rule of conditional prob-
abilities combined with a “naive” presumption of conditional indepen-
dence of attributes, to predict the class of examples;

SMO (Platt, 1999) implements the sequential minimal optimization algorithm
for training support vector classifier. It only performs on binary classi-
fication. For classification, support vector machines (SVMs) operate by
mapping the input into a feature space and by finding a hyperplane in
the feature space. This hypersurface will attempt to split the positive ex-
amples from the negative examples. The split will be chosen to have the
largest distance from the hypersurface to the nearest of the positive and
negative examples. Intuitively, this makes the classification correct for
testing data that is near, but not identical to the training data.

For C4.5, IB1, NaiveBayes and SMO we used the WEKA implementation
(Witten and Frank, 2000b). For all the systems, we used the standard settings
of WEKA in the experiments.

Table 7.25 reports the average accuracies obtained by the various systems
on different propositional datasets, as estimated by ten–fold cross validation.

It can be seen that generally ECL obtained satisfactory results on the propo-
sitional datasets. ECL is never outperformed by C4.5, and on ten problems ECL

120 CHAPTER 7. EXPERIMENTAL EVALUATION

Dataset ECL C4.5 IB1 HIDER* GAssist NaiveBayes SMO
Australian 0.85 (1) 0.85 (4) 0.81 (1) 0.85 (3) 0.85 (5) 0.77 (1) 0.85 (1)

Breast 0.96 (2) 0.94 (2) 0.95 (1) 0.96 (2) 0.96 (2) 0.96 (1) 0.96 (1)
Crx 0.85 (1) 0.85 (4) 0.81 (1) 0.83 (5) 0.86 (5) 0.76 (1) 0.85 (2)

Echocardiogram 0.78 (2) 0.71 (1) 0.67 (3) 0.79 (13) 0.72 (2) 0.75 (2) 0.75 (3)
German 0.74 (1) 0.72 (4) 0.67 (1) 0.73 (4) 0.72 (2) 0.75 (2) 0.76 (1)
Glass2 0.85 (1) 0.78 (4) 0.78 (1) 0.79 (3) 0.82 (8) 0.63 (1) 0.65 (2)
Heart 0.81 (2) 0.77 (4) 0.76 (2) 0.78 (8) 0.80 (7) 0.83 (1) 0.83 (1)

Hepatitis 0.83 (2) 0.79 (4) 0.81 (2) 0.83 (2) 0.89 (8) 0.83 (2) 0.85 (2)
Ionosphere 0.89 (2) 0.89 (7) 0.87 (1) 0.89 (6) 0.93 (4) 0.82 (2) 0.88 (2)

Liver 0.67 (3) 0.65 (1) 0.63 (1) 0.65 (4) 0.66 (8) 0.55 (1) 0.58 (1)
Pima-Indians 0.77 (2) 0.73 (3) 0.71 (1) 0.74 (2) 0.74 (2) 0.75 (1) 0.77 (1)

Sonar 0.76 (3) 0.73 (2) 0.86 (1) 0.73 (7) 0.75 (9) 0.68 (2) 0.78 (1)
Wdbc 0.95 (3) 0.94 (1) 0.95 (1) 0.94 (2) 0.94 (3) 0.93 (1) 0.94 (1)
Wpbc 0.78 (4) 0.72 (3) 0.71 (2) 0.76 (7) 0.75 (3) 0.67 (1) 0.76 (1)

Table 7.25: Average accuracies obtained by various systems for ICL on the
propositional datasets. Standard deviation between brackets, where

+ % - stands
for

+ ? � ?0% - .

obtained better results. ECL generally outperforms IB1 as well. Only in two
cases IB1 obtained better accuracies. In particular, on the Sonar dataset, IB1
obtained by far the best result among those obtained by all the other systems.

The performance of ECL and GAssist are comparable. GAssist outper-
formed ECL in four cases, namely on the Breast, Crx, Hepatitis and the Iono-
sphere datasets, while ECL obtained better results than GAssist in nine cases.

In eight cases, ECL obtains better results than HIDER*. In three cases (Glass2,
Heart, Sonar) the difference is notable, while in the other cases the results are
comparable.

Naive Bayes outperforms ECL only in two cases (German, Heart), while
ECL obtains better results in eight cases, and in six of these cases (Australian,
Crx, Glass2, Ionosphere, Liver and Wpbc) the results obtained by ECL are
much better. On the opposite, in the cases where results obtained by Naive
Bayes are better, they are comparable.

SMO obtains better, but comparable results in four cases and worse results
in five cases. In three cases out of these five (Echocardiogram, Ionosphere and
Wpbc) the results are comparable, while in the remaining two cases (Glass2
and Liver), the results achieved by ECL are of superior quality.

From the experiments it emerges that generally ECL and GAssist obtain the
best performance, as far as accuracy is concerned, on the datasets used in these
experiments.

Solutions found by GAssist are generally simpler than the solution found
by ECL, while the simplicity of the solutions found by HIDER* is compara-
ble to the simplicity of the solutions obtained by ECL, while solutions found
by C4.5 are more complex than those found by ECL. It is difficult to compare
the simplicity of the solutions found by IB1, SMO and NaiveBayes with the
simplicity of the solutions found by ECL. This is because the systems do not

7.7. COMPARISON WITH OTHER SYSTEMS 121

produce rules, and there is not a straightforward way to obtain rules from the
models built by the systems.

As far as computational time is concerned, C4.5, IB1, GAssist, NaiveBayes
and SMO are faster than ECL, while HIDER* requires a computational time
comparable to the one required by ECL.

7.7.2 Relational Datasets

In this section we experimentally compare the performance of ECL with those
of Progol, described in chapter 2, and with the performance obtained by the
following two systems:

Tilde (Blockeel and De Raedt, 1997; Blockeel and Raedt, 1998) is an ILP system
that induces hypotheses in the form of first–order logical decision trees.
Tilde is an upgrade of C4.5 towards relational datamining. It builds deci-
sion trees that allow to predict the value of a certain attribute in a relation
from other information in the database.

ICL (De Raedt and Van Laer, 1995) represents an upgrade of CN2 (Clark and
Boswell, 1991) in order to learn first–order rules. CN2 is a propositional
learner, that combines the advantages of the rule learner AQ and of the
decision tree learner ID3 (Quinlan, 1986), i.e., it produces understandable
rules and can cope with noisy data.

Both Tilde and ICL are not EAs and are part of the ACE-ilProlog datamining
system (Blockeel et al., 2002).

Dataset ECL ICL Tilde Progol
Mutagenesis 0.90 (0.01) 0.88 (0.08) 0.86 (0.03) 0.88 (0.02)

Traffic 0.93 (0.02) 0.93 (0.04) 0.94 (0.04) 0.94 (0.03)
Biodegradability 0.55 (0.03) 0.55 (0.02) 0.52 (0.03) 0.53 (0.02)

Biodegradability2 0.74 (0.04) 0.75 (0.01) 0.74 (0.01) 0.71 (0.01)
Pyrimidines 0.77 (0.02) 0.77 (0.03) 0.76 (0.02) 0.75 (0.01)

Table 7.26: Average accuracy on relational datasets. Standard deviation be-
tween brackets.

In table 7.26 the average accuracies obtained by the various systems on the
relational datasets are presented. In chapter 9 results for the Traffic dataset are
discussed more extensively. Biodegradability2 is the Biodegradability dataset
where the 4 classes are reduced to 2 classed (either degrade or resistant). The
resulting dataset was first studied in (Van Laer, 2002).

ECL outperformed the other systems on the Mutagenesis dataset. On the
same dataset Progol and ICL obtained the same accuracy of 0.88, while Tilde
obtained the worst performance. On the Traffic datasets all the systems ob-
tained similar results, with Tilde and Progol being able to obtain a slightly
better accuracy.

122 CHAPTER 7. EXPERIMENTAL EVALUATION

All the systems obtained non satisfactory results on the Biodegradability
dataset, when four classes are considered. On this problem the best results are
obtained by ECL and ICL, but even these results are not satisfactory. When
the four original classes are reduced to two, in the Biodegradability2 dataset,
the performance of the systems improves evidently. In this case ICL obtained
the best accuracy, which is slightly higher than the accuracy obtained by ECL.
Progol, in this case, obtained the worst results. On the Pyrimidines dataset,
ECL and ICL were able to obtain results of a slightly better accuracy. Also in
this case the worst accuracy was obtained by Progol.

The simplicity of the solutions found by the four systems for the relational
datasets is comparable, with Tilde being able of finding slightly simpler solu-
tions.

Generally, all the systems obtained comparable results on all the datasets.
In table 7.26 no results concerning the computational time are reported. We can
however say that ICL and Tilde are much faster than ECL and Progol, with the
first two systems requiring some seconds while the last two systems requires
some minutes. ECL and Progol have comparable running times.

7.8 Conclusions

In this chapter we have experimentally evaluated various components of ECL.
Moreover, we have compared the best results obtained by ECL in the various
settings with the results obtained by other ICL systems, both in the proposi-
tional and in the relational setting.

A first set of experiments was aimed at evaluating the utility of using greedy
mutation operators and the utility of incorporating an optimization phase. We
have seen that including the optimization phase that follows the mutation
phase and a degree of greediness in the mutation operators is beneficial for
improving the accuracy of the found solutions. This is an important result,
since it confirms the expectations behind this thesis: a system incorporating
features of both standard GAs and of standard ICL systems can benefit from
the complementary qualities of the two approaches. The drawback of this solu-
tion is represented by the computational time, that increases with the inclusion
of greediness and of the optimization phase.

In section 7.3 we wanted to verify how using only a part of the available
background knowledge at each iteration for reducing the computational cost
of the learning process affects both the accuracy of the solution and the com-
putational time. As expected, to lower values of " P�¤ correspond lower com-
putational times. What is interesting to notice, is that using more background
knowledge does not necessarily imply obtaining solutions of higher quality.
This is due to the capacity of EAs of dealing with noncontinuous search spaces.
So even if little background knowledge on the problem domain is available,
ECL can find solutions of reasonably good accuracy, and in some cases the best
performance is obtained with low values of " P�¤ .

The aim of section 7.4 was verifying the effectiveness of the variants of the

7.8. CONCLUSIONS 123

US selection operator for promoting diversity in the population. The EWUS
selection operator obtains the best results in these terms. Also in terms of accu-
racy, the use of the EWUS selection operator generally leads to better results.
This means that having more diversity in the population has a positive effect
on the solution found by ECL.

Experiments for evaluating the three methods for extracting a final solu-
tion from the evolved population are presented in section 7.5. In chapter 5 we
presented some examples illustrating the problems afflicting the procedures
based on the heuristic for solving weighted set covering problems. From the
results it emerges that these problems are present also when dealing with real-
life ICL problems. The simple procedure based on precision is always capable
of extracting the best solutions from the population. And the difference in the
accuracy of the extracted solution is, in some cases, significant.

In section 7.6 results of experiments for evaluating the various discretiza-
tion methods presented in chapter 6 are reported. From the experiments it
emerges that ECL-LSDc is, on average, capable of finding solutions of better
quality, both for propositional and relational datasets. The problem that af-
flicts ECL-LSDf is overfitting. In fact it is the best performing setting on the
training sets, but the solutions found are too specific, and when applied to
the test sets the quality is not as good as for the solutions found by ECL-LSDc.
This is due to the fine grain initialization of inequalities in ECL-LSDf. In the fu-
ture we intend to investigate other kind of initializations, for instance one that
randomly chooses boundary points, in this way the overfitting phenomenon
that afflicts ECL-LSDf may be resolved. The incapability of using class infor-
mation on training examples negatively affects the performance of ECL-LUD.
A possible variant of ECL-LUD could be designed, by changing the way in
which the operators adopted for modifying inequalities act, in order to exploit
information on the class of examples, turning in this way ECL-LUD into a su-
pervised discretization method. This could be done, e.g., by estimating the
density distribution of positive and negative examples inside each cluster and
then use this information when modifying inequalities. An interesting result
is that for the relational datasets the best performance was always obtained by
either ECL-LSDc or by ECL-LSDf. This fact confirms what stated in chapter
6, i.e., that a global discretization method based only on entropy may not be
suitable for some ILP problems.

Greediness " P�¤ Selection Solution Extraction Numerical Values

ECL-Opt
domain

EWUS Precision ECL-LSDcdependent

Table 7.27: Summary of the results of the experiments aimed at assessing the
components of ECL.

In table 7.27 we summarize the results of the experiments aimed at veri-
fying the components of ECL. For each tested component, we report the best

124 CHAPTER 7. EXPERIMENTAL EVALUATION

setting of ECL.
In the last section of this chapter we have compared the results obtained by

ECL with those of other systems, both for the propositional setting and for the
relational setting. In both cases, ECL proved to be able to obtain performances
that are comparable or better to those of other systems, both evolutionary and
not evolutionary. The main drawback of ECL is the computational time re-
quired by the evaluation of individuals. In fact systems like C4.5 or GAssist for
the propositional setting and Tilde and ICL for the relational setting are much
faster that ECL. C4.5, Tilde and ICL are not EAs, and this is a reason why they
are much faster than ECL. Regarding GAssist, which is a GA, the reason why
it is faster than ECL is because ECL relies on Prolog for evaluating individ-
uals, and the way this is actually implemented is not efficient and has to be
improved.

On average, GAssist, C4.5, Tilde and ICL are about 20 order of magnitude
faster than ECL. However, in the problems that we have tackled in this chapter,
the most important aspect is the quality of the solutions found, and we have
seen that in this term, ECL obtained good results, and in a resonable amount of
time. Moreover, most machine learning tasks are offline. This means that speed
is not a very relevant issue in these problems. A solution does not have to be
provided in a small amount of time. We are interested mostly in the quality of
the solution.

Chapter 8

Parallelization of ECL

In chapters 5 and 6 we have addressed the objectives 1–6, listed in figure 1.1
proposed in the introduction of this thesis. More specifically, we have ad-
dressed all the objectives regarding the effectiveness of the system, and one
regarding the efficiency, i.e. the sampling of the background knowledge. In
this chapter we address the last objective listed in figure 1.1, i.e. the paral-
lelization of ECL. For more details about the implementation of the parallel
version of ECL the reader can refer to (Staicu, 2003). The parallelization of ECL
belongs to the objectives that regard the efficiency of the system, however we
would also like to improve the effectiveness of ECL. Thus we can say that the
parallelization of ECL has two aims:

1. reduce the computational cost of the learning process;

2. improve the accuracy of the found solutions.

With the parallelization of ECL, we expect to improve the accuracy of so-
lutions because we intend to migrate individuals among different populations
evolved in parallel. This should increment the diversity of the populations
evolved, and, as we have seen in chapter 7, more diversity in the population
generally corresponds to higher accuracy.

The first thing to be done is to decide how ECL can be parallelized. We have
individuated two natural ways in which ECL can be parallelized. In a first
way, the cost of performing several iterations of ECL is highly reduced, while
in the second way the cost of evaluation when mutation and optimization are
performed is reduced. In the following of this chapter we describe how this
two parallelizations have been implemented. More precisely, in section 8.1, we
begin by describing the island model, a popular method for parallelizing GAs.
Section 8.2 describes the two parallelizations of ECL and the way in which
processors can exchange individuals. Finally in section 8.3 an experimental
evaluation is performed.

125

126 CHAPTER 8. PARALLELIZATION OF ECL

8.1 Island Model

There are various ways for parallelizing a GA, e.g., the farming or the island
model (Whitley et al., 1997; Goldberg, 1989).

The farming model is centralized. A master process (the farmer) selects
the best individuals from the population, and distributes them to a number of
slave nodes (workers or slaves). Each slave applies genetic operators to the
individuals it receives and then returns the evaluated individuals. In this way
evaluation is parallelized, thus computational time is reduced.

ê�ë
ê�ì

êzí êzî
ê�ï

ê�ð
Figure 8.1: Example of ring topology for the island model.

In the island model, the population is divided into semi-isolated subpop-
ulations, called demes. Each subpopulation is evolved in a node (an island),
independently from other subpopulations. Islands can exchange individuals
with a given frequency, e.g., at each generation. Usually the number of ex-
changed individuals is a small percentage of the size of the subpopulations.
Typically the best individuals are migrated. When a node receives individuals,
they are inserted into the receiving population. The most common replacement
policy is to replace the worst ¤ individuals in the receiving population with the¤ received individuals.

There are different topologies for implementing the island model, being
the simplest a ring topology. In this topology every node has a right and a left
neighbor. A node receives individuals from its left neighbor and sends individ-
uals to its right neighbor. An example of ring topology is shown in figure 8.1.
There are six nodes in this example, identified by Þ { , =w~2�Z~ ±

. The commu-
nication between nodes takes place in the direction indicated by the arrows.
For example node Þ � sends individuals to node Þ�N and receives individuals
from node Þ · . Another example of topology is to organize the nodes in a grid
with wrap around. In this way each node has four neighbors, with which it
exchanges individuals.

The communication among nodes can be synchronous or asynchronous. In
the former case, when a processor has to migrate individuals, it sends some
individuals of its population and waits for receiving individuals sent to them

8.2. PARALLELIZING ECL 127

by another processor. In this way all processors involved in the model are
synchronized with the exchange steps. In the asynchronous case, each node
is independent from the others. At each migration step, a node sends its in-
dividuals, but does not wait for receiving individuals. It simply checks if in-
dividuals have been received, and in this case they will be processed. If no
individual has been received the processor continues with its tasks. If at the
next exchange step individuals from the previous exchange step and from the
current exchange step are received, only the newer individuals are considered.
This is because it is assumed that they are better than their predecessors (they
have evolved for a longer time). The second method is generally faster, since
no time is spent waiting for receiving individuals. It is also fault tolerant, be-
cause even if a node is down, its neighbors can continue without having to
wait for receiving individuals.

ALGORITHM
+ � 	 � -

1
...

2 repeat
3 Evolve Population
4 Store Population into Final Population
5 until max iter is reached

6
...

Figure 8.2: The first parallelization scheme acts on the main repeat statement
of ECL.

8.2 Parallelizing ECL

We adopt an island model for a parallelization of ECL. A standard way of par-
allelizing a GA is to adopt an island model with a ring topology. The pop-
ulation is equally divided into a number of demes. Demes are then divided
among the nodes that constitute the island model. So if the population size is" ' " á �U
 � and the number of nodes is

�
, each deme will have a size of

ä � ä r {¦� �4 .
If the sequential GA performs " ' " á ��
 � evaluations per generation, each node
performs

ä � ä r {����4 evaluations per generation. This because in standard GAs
the entire population is evaluated at the end of each generation, thus dividing
the population into subpopulations reduces the computational cost of evaluat-
ing individuals, which is the most time consuming operation performed by a
GA.

For ECL dividing the population among the nodes will not reduce signifi-
cantly the computational time, because at each generation only the individuals
that are mutated are evaluated, and not the entire population. In figure 8.2 the
main repeat statement of ECL is represented. In this cycle, a final population is

128 CHAPTER 8. PARALLELIZATION OF ECL

built as the union of max iter populations. If we want to reduce the computa-
tional time of ECL, it is natural to parallelize the construction of these max iter
populations.

In the first parallelization of ECL, we divide the
� MS% � � c iterations of the

main repeat statement among the nodes. Thus each node executes
4�� # {�����ñ4

iterations. In the case that
� A � MS% � � c , then

� MS% � � c is set to
�

and each
node executes one iteration. It can be seen that the computational time is in
this way reduced, especially in cases where

� MS% � � c is set to high values.
In our implementation, the island model is made of

�
nodes, where

�
is a

user-tunable parameter, with default value equal to nine. We have chosen this
default value because the parallel computer on which the parallel version of
ECL is implemented, imposes a limit on the number of nodes that can be used
by a single process, and because typical values of

� MS% � � c are lower than nine.

ê�ë
ê�ì

êzí êzî
ê�ï

ê�ð
Master Node

Figure 8.3: Final migration. All the nodes send individuals to the master node.

When a node has completed the iterations assigned to it, it will select and
send a number of individuals from its evolved population to a master node.
The master node performs a number of iterations, like the other nodes. The
only difference is that it receives the individuals sent by all the other nodes
when they have completed their iterations. The master stores the received indi-
viduals in a final population, together with the best individuals it has evolved.
From this final population a solution is extracted. In order to extract the final
solution, the master node applies the same procedure as the one applied in the
sequential version of ECL, described in chapter 5. The situation is represented
in figure 8.3, where the master node, in this case Þ � , receives from the other five
nodes a number of individuals.

The second way of parallelizing ECL we consider parallelizes the evalua-
tions performed during mutation and optimization of individuals. Figure 8.4
shows how these operations are performed in the sequential version of ECL. &
individuals are selected at each generation. Selected individuals are then mu-
tated and optimized. These operations are performed sequentially and are time
consuming. It is natural to parallelize these operations with a farming model.

8.2. PARALLELIZING ECL 129

ALGORITHM
+ � 	 � -

1
...

2 for each selected chromosome �
3 do Mutate �
4 Optimize �
5 Insert � in Population

6
...

Figure 8.4: For statement in which mutation and optimizations are performed.

Each node of the island model is assigned a number of slave processors. At
every generation, the selected individuals are not mutated sequentially, but in
parallel, by distributing them to the slaves. The farmer distributes the selected
individuals among the slaves, and waits for receiving all the mutated and op-
timized individuals. The slaves perform mutation and optimization of the in-
dividuals they have received, and once these operations are performed, return
the changed individuals to the farmer. In this way all the evaluations required
by mutation and optimization are parallelized. Once received, the farmer in-
serts the individuals into the current population. In our implementation every
node is assigned the same number of slaves. Typically each node is assigned
four slaves. All the slaves use the same background knowledge assigned to
their common farmer. The number of individuals assigned to each slave can
be different. This happens when the number of individuals is not exactly di-
vidable by the number of slaves. In this case some slaves will be assigned more
individuals to mutate.

The original ECL implements a steady-states algorithm. This means that at
each generation, individuals are selected, mutated and inserted in the popula-
tion sequentially, one after the other. Thus there is the possibility that a already
mutated individual is selected again in the same generation. In this second
parallelization, if we want to reduce the computational time, this solution can
not be adopted. Selected individuals have to be distributed among slaves, and
for obtaining an improvement in computational time, all the mutations and
optimizations have to be carried out in parallel. Thus in this parallelization, at
each generation all the individuals are simultaneously selected and distributed
to the slaves. Once received back, individuals are simultaneously inserted in
the population. In this way an individual, once mutated cannot be selected
again.

A scheme of the second parallelization is illustrated in figure 8.5. In the
figure three slaves are assigned to each node. Slaves are denoted by

á {
, =Z~L�t~

= ´ .
We perform experiments on two parallel versions of ECL:

PECL 1 implements only the parallelization of the main loop;

130 CHAPTER 8. PARALLELIZATION OF ECL

ê ë
ê�ì

ê�í ê�î
ê�ï

êzð
ò ëò ìò í

ò îò ï ò ð
ò�ó ò�ô ò�õ ò ë�ö ò ë�ë ò ëBì

ò ë�í ò ë�îò ëBïò ë�ðò ë óò ë ô
Figure 8.5: The second parallelization of ECL. Each node is assigned a number
of slaves for performing mutation and optimization.

PECL 2 implements also the second parallelization we have just described.

8.2.1 Migrating Individuals

Individuals are exchanged between nodes at the end of each generation. Each
node sends a number of individuals to its right neighbors and receives the
same number of individuals from its left neighbors. This situation can be seen
in figure 8.5, where, for instance, the node Þ N receives individuals from node
Þ � and sends individuals to the node Þ � . It is assured that the individuals sent
by a node to its neighbor are all different from each other. Few parameters are
needed for the migration of individuals.

Two parameters are used for setting the number of individuals that are mi-
grated. Individuals with higher fitness and with higher precision are migrated
at each generation. The number of individuals with higher fitness to migrate is
supplied by the user by means of a parameter,

� � . Another parameter,
� ä , is

used for determining the number of individuals with higher precision that are
migrated. Thus the total number of individuals migrated at each generation is� � ñ � ä .

When a node receives individuals from its left neighbor, the received indi-
viduals are evaluated. This is necessary because typically the received indi-
viduals were evolved using a different portion of the background knowledge.
This means that individuals that were good in one node may not be good in
another node. Individuals are then inserted into the population, in the same
way as new created individuals are, so by means of a tournament of size 4.

8.3. EXPERIMENTS 131

At the end of each generation each node performs the following operations:

1. select the best distinct individuals for migration;

2. move the selected individual to the right neighbor;

3. receive individuals from the left neighbor;

4. evaluate the received individuals;

5. insert the received individuals into the population.

Other two parameters,
;,� � and

;,� ä , are used in the same way for control-
ling the final migration. So at the end of the process, the master node receives
from each node

;,� � ñ ;,� ä distinct individuals.

Dataset pop size gen sel max iter Ni lc pbk
;,� � ;,� ä

Australian 50 10 15 1 (4,4,4,4) 4 0.2 2 1
Breast 50 5 5 1 (3,3,3,3) 5 0.2 8 0
Glass2 150 15 20 3 (2,8,2,9) 5 0.2 0 2
Heart 50 10 15 1 (4,4,4,4) 6 1.0 3 0

Hepatitis 50 10 10 5 (4,4,4,4) 7 0.2 0 4
Ionosphere 50 10 15 6 (4,8,4,8) 6 0.2 2 1

Mutagenesis 50 10 15 2 (4,8,2,8) 3 0.2 4 0
Pima-Indians 60 10 7 5 (2,5,3,5) 4 0.2 2 1
Pyrimidines 50 15 10 10 (4,2,2,2) 5 0.2 2 1

Table 8.1: Parameter settings used in the experiments.

8.3 Experiments

Both PECL 1 and PECL 2 are implemented and tested on the DAS2 distributed
supercomputer, where a network of high speed communication is used: Myrinet
2000 (Bhoedjang et al., 2003). The configuration of each node is the following:

é Two 1-Ghz Pentium-IIIs

é at least 1 GB RAM

é A Myrinet interface card

é A Fast Ethernet interface

All the experiments used a ring topology consisting of 9 nodes. In PECL 2,
each of these 9 nodes is assigned 4 slaves, resulting in total of 45 processors. All
the experiments were done using the ECL-LSDc method for treating numerical
attributes (see chapter 6). Table 8.1 reports the other parameter settings used

132 CHAPTER 8. PARALLELIZATION OF ECL

in the experiments. In the following we report also results obtained by ECL.
These results were obtained using the ECL-LSDc setting and the same param-
eter settings than the ones used for PECL 1 and PECL 2, and the runs were
executed on the same machine.

Figure 8.6: Times for the sequential and the two parallel versions of ECL.

The first aim of the parallelization of ECL was to reduce the computational
cost of the learning process. Figures 8.6 and 8.7 reports the average computa-
tional time required by the three versions of ECL for performing one run. The
three versions of ECL were run with the same parameter settings and on the
same machine.

From the figures, it can be seen that the amount computational time re-
quired by the two parallel versions is much smaller than the one required by
the sequential version of ECL, especially when the

� MS% � � c parameter is set to
high values. When

� MS% { � c is set to 1, like on the breast and the heart dataset,
the computational time required by ECL and PECL 1 is the same. The value of

Figure 8.7: Times for the sequential and the two parallel versions of ECL for
the Pyrimidines and the Ionosphere datasets.

� MS% � � c for the breast and the heart datasets was set to 1, thus it follows that

8.3. EXPERIMENTS 133

PECL 1 can not be faster than the sequential version of ECL. This was expected,
as we discussed in section 8.2. We have run these two experiments with this
value for

� MS% � � c for verifying the impact of migration on the computational
time. In fact the parallel version requires some extra time for migrating individ-
uals. However the time required for this operation is insignificant compared
to the time required for the evaluation of individuals. The time employed by
PECL 2 is always inferior to the time required by the two other versions. This
is explained by the fact that the time for executing mutation and optimization
is highly decreased in PECL 2. So as far as computational time is concerned,
PECL 2 obtained the best improvement.

Dataset ECL PECL 1 PECL 1m PECL 2
Australian 0.85 (0.01) 0.85 (0.02) 0.85 (0.02) 0.85 (0.01)

Breast 0.95 (0.02) 0.95 (0.02) 0.95 (0.03) 0.95 (0.01)
Glass2 0.85 (0.01) 0.83 (0.01) 0.81 (0.02) 0.83 (0.02)
Heart 0.80 (0.03) 0.82 (0.02) 0.81 (0.02) 0.82 (0.02)

Hepatitis 0.83 (0.02) 0.83 (0.01) 0.81 (0.02) 0.81 (0.02)
Ionosphere 0.89 (0.02) 0.87 (0.02) 0.86 (0.02) 0.87 (0.02)

Mutagenesis 0.88 (0.01) 0.88 (0.01) 0.89 (0.01) 0.85 (0.03)
Pima-Indians 0.76 (0.01) 0.76 (0.01) 0.76 (0.02) 0.74 (0.01)
Pyrimidines 0.74 (0.01) 0.75 (0.02) 0.75 (0.02) 0.72 (0.01)

Table 8.2: Average accuracies obtained by the various version of ECL. Standard
deviation between brackets.

The second objective stated at the beginning of this chapter, was to im-
prove the accuracy of the found solutions. Table 8.2 shows the average accu-
racy obtained by the three versions of ECL on the datasets. The column labeled
PECL 1m is relative to PECL 1 when migration between nodes is performed.
The most precise individual in the population is migrated at each generation.
We have conducted a number of experiments with different values of

� � and� ä and it emerged that the best results were obtained with
� � 1 ? and

� ä 1 = .
We compare here the results obtained by PECL 1 and PECL 2 with the re-

sults of the sequential ECL.
A ten–fold cross validation is performed on each dataset, and three runs

with different random seeds were performed on each fold. It can be seen that
the performance of the sequential ECL and the parallel versions are compara-
ble. It is interesting to notice that PECL 1m did not improve the performance
of PECL 1. This is due to the fact that migrating individuals decreased the di-
versity in the populations evolved in the nodes instead of incrementing it. So
as future work we plan to study different schemes of migrations, and differ-
ent communication topologies in order to overcome these problems. A reason
explaining the performance of PECL 2 is that in this variant, the algorithm im-
plemented is not a steady-state algorithm anymore.

134 CHAPTER 8. PARALLELIZATION OF ECL

From the experiments performed it can be seen that the main objective of
the parallelization has been achieved, since the parallel versions of ECL reduce
the computational cost of the learning process. As far as the second objective
is concerned, namely a better quality of the results, the parallelizations do not
achieve the hoped results.

8.4 Conclusions

In this chapter two parallel implementations of ECL were described. An is-
land model was used to this end, with individuals migrating among nodes.
The aims of the parallelizations were to reduce the computational time of the
learning process and to increase the accuracy of the found solutions.

As far as the first point is concerned, we can confirm that we have reached
the objective. The computational time is reduced in both parallel versions of
ECL. In particular in PECL 1 the computational time is reduced more and more
as the number of iterations performed by ECL increases. In fact the first par-
allelization regarded only the execution of each iteration on a different node.
With PECL 2 the computational time is always reduced, because in this case
also each generation is parallelized, having the selected individuals mutated
on a number of slaves assigned to each node.

Less successful was the achievement of the second objective, i.e., increasing
the accuracy. From the presented results, it emerges that generally the accura-
cies of the solutions does not increase with the parallel versions. This can be
due to the way in which individuals are sent to the master at the end of the
evolution. Moreover, when individuals are migrated among the nodes, only
the individuals are migrated, and no background knowledge is migrated. This
can cause the following situation. Suppose that Þ � and Þ N are two nodes, and
that � is an individual being migrated form Þ � to Þ N . In general the portion of
background knowledge used in Þ � is different from the one used in Þ N . This
can mean that � has a good fitness in Þ � but is considered rather poor in Þ N .
And this is because some part of the background knowledge needed for the
evaluation of � is not present in Þ�N . This can cause the elimination of � from
Þ\N . As already exposed, the reason for the poor performance of PECL 2 can be
that in PECL 2 the algorithm is not steady–state anymore.

In future work, we intend to evaluate the possibility to migrate also back-
ground knowledge facts among the nodes, along with individuals. Also we
want to evaluate different communication schemes among nodes. Another
point to investigate is to promote co–evolution among the nodes, by means
of a long term policy promoted by the master. For instance the master could
control what part of the background knowledge to assigned to each node. The
background knowledge assign to each node could be changed periodically, so
that the focus of the genetic search performed on a node could be shifted to-
ward other regions of the hypothesis space.

Chapter 9

Two Case Studies

In this chapter we present two case studies, a propositional and a FOL one.
The first case regards the analysis of data about doctor–patient relationship
and is a propositional case. In (Costa and Divina, 2003a) a preliminary study of
this problem is described, while in (Aguilar-Ruiz et al., 2004) a more extended
study is presented, and is here reported.

The motivations for carrying out this study is that the relationship between
doctors and their patients is gaining more and more importance in the health
care providing. It determines the compliance of the treatment and a part of
the curative process. In the psychiatry the therapeutic relationship has even
more power. Therefore having a general rule that could guide doctors towards
a good relation with their patients would be very useful.

This first case study describes experiments in automated acquisition of such
a rule by means of the application of ECL to the data. Moreover we apply three
other ICL systems in order to extract knowledge from the data and validate the
results of ECL.

In the second case study proposed in this chapter, we address the prob-
lem of automatic acquisition of knowledge about traffic problems. The task is
to detect critical road sections by using information on road geometry and on
data from sensor readings. A section is considered critical if an accident or a
congestion took place on that section at a given time. Each section of roads
have a number of sensors assigned to it. These sensors are used to measure a
number of factors, e.g., the average speed, the average saturation and the av-
erage occupancy of the section. Moreover, information about the kind of road
a section belongs to is available. For example, it is known if a section belongs
to an highway, or to an in–ramp. All this information can be represented in a
propositional way. However information about the geometry of the road re-
quires a first–order logic representation. The geometry of the road network
is given by information about what sections follow a given section. This is a
many to many relation, since more sections can follow a single section.

For both problems, we report the best results obtained with the applica-
tion of a system on all the available data, and then we perform other exper-

135

136 CHAPTER 9. TWO CASE STUDIES

iments for validating the results as estimated by ten–fold cross validation, as
it is done, e.g., in (Dolšak et al., 1994; Džeroski et al., 1998a; Džeroski et al.,
1998b). We want to point out that in this kind of study, where the acquired
knowledge is used by experts, the most important results are the best results
obtained (Eiben and Smith, 2003a). Also the computational time needed for
the acquisition of knowledge is not the most important factor in these kind of
studies. For instance, in the second case study, we want to acquire knowledge
for the automatic detection of critical sections. This knowledge will be then
used in an expert system for traffic management. So the quality of the acquired
knowledge is the most important factor, even if the computational time for the
acquisition is high.

9.1 Analysis of Doctor–Patient Relationship

In the health care providing, satisfaction is earning more and more importance.
Patients are nowadays better informed about their rights and the advances in
medicine. They ask more from the doctor; the time when the patient believed
everything that the doctor said is over. The traditional doctor–patient rela-
tionship is becoming a client–provider relationship. The way in which doctors
approach patients becomes this way an important factor. In every branch of
the medicine, the relation between doctor and patient is of great importance. It
determines the compliance of the treatment and a part of the curative process.
In the psychiatry the therapeutic relationship is even more critical. Therefore
having a general rule that could guide doctors towards a good relation with
their patient would be very useful. The communication between doctor and
patient would be better and that would lead to more satisfaction, better com-
pliance with the treatments and better prevention (Barker et al., 1996). That
means an optimal use of health care services.

For these reasons we have decided to collect opinions from different pa-
tients with an interview questionnaire. The objective was to measure what the
features of the doctor–patient relationship in different wards are and how dif-
ferent patients perceive it. In addition, the degree of satisfaction among the
patients and the determinant factors for satisfaction were included in our ob-
jective. In our study we have taken two kinds of patients: psychiatric patients
and non-psychiatric patients (belonging to the internal medicine and general
surgery wards). The reason for these two groups is the special character of the
doctor–patient relationship in the psychiatry. All the collected information has
been organized in a dataset (Costa and Divina, 2003b).

In order to analyze the two problems, we use the following systems: C4.5,
See5.0rules, HIDER* and ECL. A brief overview of the main features of C4.5
and HIDER* was given in chapter 7. See5.0rules (Quinlan, 2001) is the succes-
sor of C4.5, and can output if–then rules. It uses the same criterion to split the
search space, although has been speeded up. The rules produced by See5.0rules
are shorter than those obtained by the decision tree found with C4.5.

9.1. ANALYSIS OF DOCTOR–PATIENT RELATIONSHIP 137

9.1.1 The Dataset

The data was collected between November 2000 and June 2001 in the psychia-
try ward of the Hospital Gil Casares, Santiago de Compostela, Spain, and in the
internal medicine and general surgery wards of the Hospital Xeral, Vigo, Spain.
The same interviewer collected all data. Ninety patients were interviewed at
the hospitals following an interview questionnaire.

The interview questionnaire was specially designed for this research project.
The reason is that this questionnaire measures the satisfaction only from the
doctor–patient relation point of view. Other questionnaires published in the
medical literature, e.g., the Verona service satisfaction scale (VSSS) (Ruggeri
and Dall’Agnola, 1993), take more elements into account. Our questionnaire
is based on the VSSS, with less items to facilitate the recruitment of admitted
patients and focusing on the doctor–patient relationship as a satisfaction deter-
minant factor. The questionnaire consists on ten variables referred to patient’s
demographic data and twenty–six items that feature the relation between the
doctor and the patient. Therefore, each patient is described by thirty–six at-
tributes.

The ten demographic attributes include the sex, the age, the marital status
(single, married...), the number of children, the place of residence, the educa-
tion level, the working situation (if the patient is working or not, if the patient
is retired...), the kind of profession and in which environment the patient lives
(alone, with parental or own family).

The other twenty–six attributes include the satisfaction level of the relation
between the interviewed patient and the doctor, the way the doctor gives infor-
mation to the patient (the clearness of the language that the doctor uses with
the patient), the frequency of the contact between doctor and patient, the de-
gree of personal involvement of the doctor and so on. All this attributes are
nominal.

A list of the attributes describing each patient, together with a brief expla-
nation is given in table 9.1.

It was possible to answer to these twenty–six items with five different grades,
according to the Likert’s scale (Likert, 1932).

All this data, but the age of the patient, are discrete. The age of the patient is
considered a continuous attribute. However when analyzing the dataset with
ECL we have considered the attributes as continuous, and treated them with
ECL-LSDf. This choice was made because in this way it is possible to have
clauses that can assume the form of

_ M á � + � - � E) M c In= + ���`� - � ? � Cç~ � ~¿H � C ,
which is equivalent to say that the value for the attribute

) M c In= can assume the
values = and H . In this way ECL have the possibility of letting an attribute as-
suming more values, as it happens, e.g., in HIDER*. For including new values
in the description of an attribute ECL must include one value at a time, since
the BP intervals are relative to just one attribute value. In the following we
write that an attribute can assume a set of values as

x�) �.���������) � z
. For example

the previous clause is written as
_ M á � + � - � E) M c Iu= + �e� x = � H z - .

For privacy reasons each patient is identified by an unique code. So ex-

138 CHAPTER 9. TWO CASE STUDIES

servicio: ward the patient belongs to
diagno: diagnosis made for the patient
sexo: sex of the patient
ec: marital status of the patient
edad: age of the patient
hijos: number of sons
SEPAR: if the patient is separated from the partner, where do the sons live
LUGAR: environment in which the patient live (city, village, village on the sea)
ESTUDIO: education level
LABORAL: working situation
PROFES: kind of profession
CONVIV: with whom the patient lives
VAR13: does the patient know the first and last name of his doctor
VAR14: sex of the doctor
VAR15: how many times the patient has been treated by his actual doctor
VAR16: how many time the patient has admitted in a hospital
VAR17: is the patient seen by the same doctor
VAR18: would the patient like to be seen by the same doctor
VAR19: has the doctor spoken with the patient’s family
VAR20: would the patient like his doctor to speak with his family
VAR21: does the doctor speak of themes that are not related to the treatment
VAR22: would the patient like his doctor to speak of such themes
VAR24: would the patient like to change doctor
VAR25: does the doctor use words that are comprehensible to the patient
VAR26: would the patient like his doctor to speak in a clearer way
VAR27: does the doctor smile
VAR28: would the patient like his doctor to smile
VAR29: does the patient think his doctor understands the patient’s problems
VAR30: would the patient like that his doctor would try to be in the patient’s situation
VAR31: has the doctor explained to the patient in what the disease consists and its consequences
VAR32: would the patient like the doctor to explain him his disease
VAR33: has the doctor seen the patient outside office hours
VAR34: would the patient like to be seen outside office hours
VAR35: does the patient trust his doctor
VAR36: does the doctor let the patient wait
VAR37: if so how often does that happen
VAR38: would the patient like that the doctor apologizes when the patient is let to wait

Table 9.1: Description of the attributes of the doctor–patient relation dataset.

amples have the following form:
_ M á � + � Q � - ��_ M á � + � Q N - ����� , where � Q � and � Q N are

different patients.
The background knowledge contains facts of the following form: sex(� Q � ,m),

age(� Q � ,30), satisfied(� Q � ,y), trust(� Q � ,1)
�����

, saying that the patient identified by
� Q � is a male of thirty years, satisfied with his relation with his doctor and that
he considers that he can trust his doctor with a degree equal to 1, and so on.

9.1.2 Analysis of the Data

Each system is first applied to the entire dataset. The so produced rules were
shown to domain experts and will be discussed in the following sections.

Table 9.2 shows the quality of the solutions found by the four systems. Pre-

9.1. ANALYSIS OF DOCTOR–PATIENT RELATIONSHIP 139

Satisfaction Problem Service Problem
System Accuracy Precision Recall Accuracy Precision Recall

ECL 0.90 0.88 0.98 0.89 0.84 0.95
C4.5 0.72 0.78 0.82 0.56 0.53 0.58

See5.0 0.89 0.89 0.95 0.83 0.82 0.84
HIDER* 0.98 0.97 0.97 0.98 0.95 0.97

Table 9.2: Accuracies, precisions and recall of the solutions found for the two
problems.

cision, recall and accuracy are defined in chapter 5. Precision measures the
proportion of examples that are correctly classified, while recall measures the
proportion of positive examples that are correctly classified. Recall and pre-
cision are important, because these measures give information on how well a
solution covered the positive examples (recall) and of how “noisy” this solu-
tion was (precision). Recall and precision are measures commonly used for
evaluating information retrieval systems (Witten and Frank, 2000a).

In the following next to each rule information about the number of exam-
ples covered is given in the following form

3 "vè 5 &Rè 6 . For example, in figure 9.1
the second rule correctly classifies 28 positive examples and makes only one
mistake, so it incorrectly classifies as positive one negative example.

1: satisfied(X) ÷ var21(X, ø 0,1 ù),var35(X, ø 3,4 ù),ec(X, ø 3,4 ù). [8/0]
2: satisfied(X) ÷ var24(X,0),var31(X, ø 3,4 ù). [28/1]
3: satisfied(X) ÷ var29(X, ø 3,4 ù),var18(X, ø 2,3,4 ù). [44/4]
4: satisfied(X) ÷ var29(X,3). [14/1]
5: satisfied(X) ÷ hijos(X, ø 2,3,4 ù),var24(X, ø 2,3 ù),var29(X,0). [2/1]
6: satisfied(X) ÷ var35(X, ø 3,4 ù),sexo(X,2). [23/4]

Figure 9.1: Results for the satisfaction problem obtained by ECL.

Satisfaction Problem

Patient satisfaction is related to the quality of the patient care. However, it is
not the only parameter to consider in the measure of quality care (Weingarten
et al., 1995). Satisfaction with health care is a multidimensional concept. It
includes availability, financial aspects, convenience, staff’s professional skills,
among others. One of the determinant factors is the relation between doctor
and patient (Mira, 2001).

In this problem positive examples are patients that are completely satisfied
with their relation with their doctors, and negative examples are those patients
who are not satisfied. For this problem there are 61 positive examples and 29
negative examples. The background knowledge contains 3274 facts.

Figure 9.1 shows the solution obtained by ECL for the satisfaction problem.

140 CHAPTER 9. TWO CASE STUDIES

var29 = 0: n [9/1]
var29 = 1
| var33 = 0
| | var32 = 0: y [0/0]
| | var32 = 1: y [3/0]
| | var32 = 2: y [5/0]
| | var32 = 3: n [6/2]
| | var32 = 4: y [0/0]
| var33 = 1: n [4/0]
| var33 = 2: y [1/0]
| var33 = 3: y [0/0]
var29 = 2
| var25 = 0: y [3/0]
| var25 = 1: n [2/0]
| var25 = 2: y [0/0]
| var25 = 3: y [0/0]
| var25 = 4: y [0/0]
var29 = 3: y [14/1]
var29 = 4
| var18 = 0: y [1/0]
| var18 = 1: n [3/0]
| var18 = 2: y [0/0]
| var18 = 3: y [2/1]
| var18 = 4: y [29/2]

Figure 9.2: Decision tree obtained by C4.5 for the satisfaction problem. Next
to each leaf the number of examples that reaches the leaf and among those the
number of example not belonging to the class predicted are shown.

If one clause is fulfilled then it means that the patient is satisfied. Some of the
found clauses are interesting. For example, the second clause states that if a
patient does not want to change doctor (var24) and if the doctor explains what
the disease of the patient consists in (var31), then the patient is satisfied by the
relation he has with the doctor. One can easily imagine that a patient wants to
stay by the same doctor if he is satisfied with him. But it is not so evident how
much the patient appreciates an explanation about his illness. We can assume
that doctors in general always explain the diagnosis and its consequences to
their patients. Nevertheless, the way patients perceive how this information
is given to them can vary, and it can, according to this clause, have influence
on the satisfaction of the doctor–patient relationship. The third clause is also
interesting. It means that if the patient thinks that the doctor understands his
problems (var29) and if the patient would like to be seen most of the times by
the same doctor (var18), then the patient is satisfied.

We find here another important aspect in the relation between doctor and
patient. A patient appreciates from a doctor not only his health advice, but
also that he understands what the illness means for the patient in his personal
circumstances.

The sixth clause states that female patients that trust their doctors (var35)
are likely to be satisfied. This may suggest that having confidence in the doctor

9.1. ANALYSIS OF DOCTOR–PATIENT RELATIONSHIP 141

is considered a more important factor for the satisfaction by women than by
men.

Rule 1: var18 = 4
var29 = 4 ú class y [29/2]

Rule 2: var29 = 3 ú class y [14/1]
Rule 3: var33 = 2 ú class y [6/0]
Rule 4: var29 = 1

var32 = 2 ú class y [6/0]
Rule 5: var29 = 1

var33 = 1 ú class n [4/0]
Rule 6: var29 = 0 ú class n [9/1]
Rule 7: var18 = 1

var29 = 4 ú class n [3/0]
Rule 8: var29 = 1

var32 = 3 ú class n [7/2]
Default class: y

Figure 9.3: Decision rules obtained by See5.0rules for the satisfaction problem.

R1:
diagnoIS NOT 10
ec IS NOT 4
var16 IS NOT 2
var17 IS NOT 1
var19 IS NOT 4
var29 IS NOT 3
var35 IS NOT 3 ú class n [18/1]

ELSE R2:
var17 IS NOT 0
var18 IS NOT 1
var24 IS NOT 3
var26 IS NOT 2
var35 IS NOT 2 ú class y [52/1]

ELSE R3:
diagnoIS NOT 6
hijos IS NOT 4
var13 IS NOT 2
var20 IS NOT 1 ú class y [7/0]

ELSE ú class n [10/1]

Figure 9.4: Decision rules obtained by HIDER* for the satisfaction problem.

Figure 9.2 shows the decision tree obtained by C4.5 for the satisfaction prob-
lem. From the depicted tree, a decision rule can be obtained following each
branch of the tree. For example, if we follow the path individuated by the
branches [var29=1,var33=0,var32=2] we reach a leaf labeled with a y,
which stands for satisfied. We obtain in this way a decision rule with three con-
ditions (on the attributes var29, var33 and var32) that if fulfilled by an
example classifies the example as a satisfied patient. This rule correctly clas-

142 CHAPTER 9. TWO CASE STUDIES

sifies 5 positive examples and makes no mistakes. This information can be
found next to each leaf of the tree. In the same way we can follow the other
branches and obtain a set of decision rules. Notice that some leaves cover no
examples at all (such leaves have a [0/0] next to them). These branches are
present because C4.5 adds a branch for every value the attribute that individ-
uates a subtree can assume. An interesting rule that can be derived from the
path [var29=4,var18=4], that states that if a patient thinks his doctor un-
derstands his problems and if the patient wants to be seen by the same doctor
then he is satisfied. We can derive from the tree a set of rule that is similar to
the third rule found by ECL. We can also derive the fourth clause of figure 9.1
from the tree obtained by C4.5.

Figure 9.3 represents the rules obtained by See5.0rules. In these rules the
conditions on the attributes are on the left of the ->. For example the first
rule is exactly the same rule that the one we have derived from the decision
three obtained by C4.5 following the path [var29=4,var18=4]. These rules
also confirms the fact that the belief of the patient that his doctor understands
his problems (var29) is an important factor for the satisfaction of the patient.
Another aspect that seems to be important for a good relation doctor–patient
is the frequency with which the patient is seen by the same doctor (var18).
Patients that are seen most of the times by the same doctor tends to be more
satisfied. This could be because satisfied patients go always to the same doctor,
or because the continuity in the care leads to satisfaction of the patient.

The output of HIDER* is shown in Figure 9.4. Decision rules provided by
HIDER* presents an original feature: they are hierarchical, so the application
of each one must be in specific order. The confidence inspired by the doctor
(var35) and whether the patient visits often the same doctor (var17) seem to
have relevance in this rule set. In addition, the fact that the same doctor treats
always the patient and that the patient would not like to change to another
doctor have influence on the classification.

Service Problem

In this problem we want to induce rules to distinguish psychiatric patients
from non–psychiatric patients. Psychiatric patients differ from other kind of
patients in demographic features. Disorders as schizophrenia, alcohol and
drugs abuse are more frequent in the population with a lower social status.
Bipolar disorder type I (DSM-IV, 2000) is more frequent among people with
lower educational level. Dementia is more frequent among the elderly (Kaplan
et al., 1994).

Perhaps these differences go further than the demographic data. Thus it
would be interesting to know if psychiatric patients perceive the doctor–patient
relation differently than others.

For this problem there are 43 positive examples (psychiatric patients) and
47 negative examples (non–psychiatric patients). The background knowledge
is made of 3198 facts. The class of each example is determined by the unit
to which a patient belong. There are less facts in the background knowledge

9.1. ANALYSIS OF DOCTOR–PATIENT RELATIONSHIP 143

because some attributes were excluded from this problem, e.g., the diagnosis
for the disease of the patient was excluded, for obvious reasons. The quality of
the solutions found are shown in table 9.2.

1: case(X) ÷ var18(X, ø 0,1 ù), var31(X, ø 0,1 ù). [9/0]
2: case(X) ÷ var19(X,4),var27(X, ø 0,1,2,3 ù). [8/0]
3: case(X) ÷ edad(X,Y),var25(X, ø 0,1 ù),(32.5 û Y ü 36.5). [4/0]
4: case(X) ÷ var15(X, ø 1,2 ù),var33(X,0). [10/1]
5: case(X) ÷ laboral(X, ø 0,1 ù),var30(X,3). [11/2]
6: case(X) ÷ var31(X,0),var32(X, ø 0,1,2 ù). [17/2]
7: case(X) ÷ laboral(X, ø 2,3 ù). [12/4]
8: case(X) ÷ var14(X,2),var15(X, ø 0,1,2 ù). [8/2]
9: case(X) ÷ var17(X,4),satisfecho(X, ø 0,1 ù). [6/2]

Figure 9.5: Results for the service problem obtained by ECL.

The solution induced by ECL for the service problem is shown in figure 9.5.
The first and the second clauses are interesting. The first clause states that if a
patient does not like to be visited by the same doctor (var18) and if the patient
affirms that he has not be given explanations about his illness (var31) then he
is likely to be a psychiatric patient. This rule will be discussed in the following.
The second clause considers also if the doctor smiles. However the values this
attribute can assume are almost all the possible ones, so we can consider this
feature as not important for this clause. Thus we can say that this clause states
that if the doctor has contacted the member of the patient’s family (var19), than
the patient is a psychiatric patient. This can be explained by the fact that psy-
chiatrists often need extra information from the patient’s environment in order
to make a diagnosis: behavioral changes are usually better perceived by the
family than by the patient himself. Information about patient’s development
as a child can sometimes be provided only by his mother. If the patient is con-
fused, his family could explain what has been really happening to the patient
in the last time. On the other hand, in other medical specialties, environmental
information is not so crucial for the diagnosis.

The decision tree depicted in figure 9.6 represents the solution found by
C4.5, while the solution obtained by See5.0rules is given by the rules shown in
figure 9.7. In both C4.5 and See5.0rules cases the class predicted by the rules
can be either p for psychiatric patients or n for non psychiatric patients. It can
be seen that the two systems found a rule that states that if a patient is not given
any explanations about his disease (var31) then he is likely to be a psychiatric
patient. This rule is found in the first branch of the tree shown in figure 9.6 and
in the second rule of figure 9.7. It correctly classifies 26 psychiatric patients but
makes 7 mistakes. The first clause found by ECL is similar to this one.

From these rules it emerges that explanations given by the doctor to the
patient regarding his disease is an important factor for distinguishing between
psychiatric and non psychiatric patients. If a patient is not given any explana-
tion then he is likely to be a psychiatric patient. This rule could be explained by
the fact that psychiatric patients are sometimes confused, or have little insight

144 CHAPTER 9. TWO CASE STUDIES

var31 = 0: p [26/7]
var31 = 1
| var25 = 0: n [9/1]
| var25 = 1: p [2/0]
| var25 = 2: n [0/0]
| var25 = 3: n [0/0]
| var25 = 4: n [1/0]
var31 = 2: n [8/1]
var31 = 3
| ec = 0: n [0/0]
| ec = 1: p [2/0]
| ec = 2: n [3/0]
| ec = 3: n [0/0]
| ec = 4: n [0/0]
| ec = 5: n [0/0]
var31 = 4
| var27 = 0: n [0/0]
| var27 = 1
| | var38 = 0: p [1/0]
| | var38 = 1: n [3/0]
| | var38 = 2: p [0/0]
| | var38 = 3: p [0/0]
| | var38 = 4: p [4/0]
| var27 = 2
| | var19 = 0: p [0/0]
| | var19 = 1: p [2/0]
| | var19 = 2: n [2/0]
| | var19 = 3: p [0/0]
| | var19 = 4: p [0/0]
| var27 = 3: p [2/1]
| var27 = 4: n [12/0]

Figure 9.6: Decision tree obtained by C4.5 for the service problem.

(realistic conception of their illness). That could mean that even if the doctor
has given the patient explanations about their diagnosis, the patient does not
perceive it as a valid one and thinks that nobody has informed him.

Figure 9.8 shows the results of HIDER* for the service problem. The level
of education (estudio) is relevant to know whether an example is positive or
not. When the patient has university degree (rule 1) or high school studies
(rule 2) is more likely to not be a psychiatric patient. The number of times the
patient has been treated by the doctor (var15) is important in rule 2, as well
as the will of the patient to have his doctor to talk to his family. Interestingly,
the doctor does not apologize when the patient is not a psychiatric one, which
suggests that doctors are more concerned about their relation towards patients
in a psychiatric ward.

Validation

In order to validate the results obtained by the four systems, a ten–fold cross
validation is used. Ten runs with different random seeds are performed on

9.1. ANALYSIS OF DOCTOR–PATIENT RELATIONSHIP 145

Rule 1: var27 = 1
var38 = 4 ú class p [8/0]

Rule 2: var31 = 0 ú class p [26/7]
Rule 3: var27 = 1 ú class p [22/10]
Rule 4: ec = 1 ú class p [22/12]
Rule 5: var31 = 1 ú class n [10/3]
Rule 6: ec = 2 ú class n [30/13]
Rule 7: var31 = 4 ú class n [19/10]
Default class: n

Figure 9.7: Decision rules obtained by See5.0rules for the service problem.

R1:
estudio IS NOT 4
laboral IS NOT 4
var24 IS NOT 1
var27 IS 0,1,3
var29 IS NOT 3
var37 IS NOT 3 ú class p [29/1]

ELSE R2:
estudio IS NOT 3
laboral IS NOT 2
conviv IS 0,1,2
var15 IS NOT 0
var20 IS NOT 2
var37 IS NOT 4 ú class p [12/0]

ELSE ú class n [46/2]

Figure 9.8: Decision rules obtained by HIDER* for the service problem.

each fold.

Table 9.3 reports the results obtained by the four systems on unseen cases,
as estimated by ten–fold cross validation. Standard deviations are shown be-
tween brackets. The column label “Rules” reports the average number of rules
forming the solution found.

C4.5 obtained the worst performance on both problems. Especially for the
service problem the performance of C4.5 are much worse than the ones ob-
tained by the other systems. ECL and HIDER* obtained the best accuracy for
the satisfaction problem, and for the service problem the accuracy of ECL and
HIDER* are comparable to the one obtained by See5.0.

The computational cost is the main drawback of ECL and HIDER*, as they
are evolutionary–based techniques, being the C4.5 and See5.0 much faster.
However, in this sort of problems, the computational cost is not a determi-
nant aspect, the quality of the solution found is the most important factor. Re-
garding the simplicity of the solutions found, ECL and HIDER* obtained very
simple solutions.

146 CHAPTER 9. TWO CASE STUDIES

Satisfaction Problem Service Problem
System Accuracy Time Simplicity Accuracy Time Simplicity

ECL 0.78 (0.04) 357.1 4.3 (0.67) 0.71 (0.04) 388.91 6.2 (0.98)
C4.5 0.72 (0.05) 0.26 18.12 (1.73) 0.55 (0.03) 0.10 24.93 (1.34)

See5.0 0.76 (0.03) 0.06 6.33 (0.26) 0.73 (0.02) 0.06 4.29 (0.03)
HIDER* 0.77 (0.13) 1734 4.2 (0.4) 0.76 (0.11) 1221 4.0 (0.6)

Table 9.3: Results for ten–fold cross validation. Time is expressed in seconds. In
the column labeled simplicity the average number of rules forming the solution
is given.

9.1.3 Conclusion for the First Case

In this first case study, we have analyzed a new real life dataset regarding the
relation doctor–patient. We have derived two problems from this dataset: the
satisfaction of the patient from his relation with the doctor and the problem
of identifying psychiatric patients. This last problem is important because an-
alyzing the induced rules, experts can check what the differences are in the
doctor–patient relationship with psychiatric patients.

For the satisfaction problem the systems performed at roughly the same
level as far as accuracy is concerned. From the obtained results we can con-
clude that determining factors for satisfaction with the doctor–patient relation-
ship are the feeling of being understood by the doctor and hearing from the
doctor what the diagnosis and its implications are. It seems that other aspects,
such as demographic features of the patients, waiting time and the language
the doctor uses with the patients, do not determine the satisfaction level.

For the service problem, the found rules are not easily explainable. This
could mean that psychiatric patients are not so different from other kind of
patients in their expectations towards the therapeutic relationship. According
to one system, only the level of studies seems to be a differentiating aspect
between these types of patients.

In this study it was important to apply more than one technique in order to
analyze the data. This is because in this way we have the possibility to check if
the rules found by a system are in some way complementary to the rules found
by the other systems. In our case we have seen that the systems estimated
as important the same set of attributes for classification in both the problems
addressed. The two evolutionary techniques (ECL and HIDER*) used in this
study found better solutions than the others, based on entropy measures.

Knowledge models, as those presented in this section, provide important
insight to medical researchers in order to better understand psychiatric aspects
from patients. In general, these techniques are useful to predict the type of
patient and to understand which features become relevant for psychiatric pa-
tients, which could be analyzed in detail by doctors to improve the health care.

9.2. DETECTING TRAFFIC PROBLEMS 147

9.2 Detecting Traffic Problems

The second case study we address was first proposed in (Džeroski et al., 1998a;
Džeroski et al., 1998b). This problem has an application in expert systems for
decision support in road transport management. The goal of such systems is
to advise traffic management center operators by proposing control actions to
eliminate or reduce traffic problems according to the global state of traffic. In
order to assess the global state of traffic, the system periodically receives read-
ings from sensors that are distributed on the road network. The sensors mea-
sure magnitudes such as speed, flow (the number of vehicles on that section
per hour) and occupancy (percentage of time that the sensor is occupied by ve-
hicles), and other information about the current state of control devices, such
as traffic lights. The system then interprets the received signals, detects a pos-
sible traffic problem, gives the possible cause and proposes recommendations
on how to solve or reduce the problem.

The usual approach to building traffic expert systems is to use knowledge
based architectures that support the strategies of reasoning followed by oper-
ators. This approach requires, among other things, the use of knowledge for
detecting traffic problems. Knowledge about different traffic scenarios, e.g., ac-
cidents or congestions, can be used to generate or improve the knowledge base
for problem detection of the expert system.

In this case study we address the problem of acquiring such knowledge
for detecting traffic problems. In particular the problems that we consider are
accidents and congestions.

In the following we first describe the dataset, and then we compare the
rules extracted by ECL with the rules extracted by Progol and ICL. This dataset
has been used in chapter 7 for both assessing the effectiveness of the various
discretization methods that can be used by ECL and for assessing the global
effectiveness of ECL.

Progol was described in chapter 2, and ICL was briefly introduced in chap-
ter 7. Both Progol and ICL can produce rules that are easy to interpret, as are
the rules induced by ECL. On the opposite, the trees induced by Tilde are rather
difficult to interpret, and so they will not be presented in this study.

9.2.1 The Dataset

The dataset subject of this study was generated with the AIMSUN (Advanced
Interactive Microscopic Simulator for Urban and Non-Urban Networks) sys-
tem (Ferrer and Barcelo, 1993), a software able to reproduce the real traffic
conditions of any urban network on a computer. A model of the urban-ring of
Barcelona was developed using this simulator. The model includes the same
variables that the real information system TRYS (Cuena et al., 1995) records us-
ing sensors and was calibrated using information from the real system. TRYS
is an expert system for traffic management developed for the cities of Madrid
and Barcelona.

148 CHAPTER 9. TWO CASE STUDIES

The road network is represented in an object oriented way, where sections
are the basic objects. A number of sensors are associated to each section. Sev-
eral kind of sections are defined, e.g., off–ramp, on–ramp or highway. The
geometry of the road network is described by relations, that describe when a
section follows or precedes another section. The information about the sections
and the kind of section is a static information. The sensors associated to each
section provide a continuous stream of information, sending five readings per
minute. Information about the flow (defined as the number of cars that passed
the sensor in the last minute), the occupancy (defined as the proportion of time
the sensor is occupied, in thousandths) and the average speed of the cars that
passed the sensor during the last minute are provided. Saturation is a derived
quantity defined as the ratio between the flow and the capacity of the section.
The capacity of a section depends on the number of lanes of the section.

Section3Section1

Section2

Section4

speed(1,40)
occupancy(1,132)
saturation(1,100)

Figure 9.9: An example of highway divided in three sections and with another
section that represent an on–ramp. A number of sensors is associated to each
section. These sensors provide readings regarding different magnitudes, as
shown for the third section.

A graphical example of how information describing the road network is
represented is shown in figure 9.9. In the figure a highway and an on–ramp
(Section4) are represented. Four sections are shown in the picture, and are
identified by vertical dashed lines. For each section sensors provide readings
regarding different magnitudes, such as speed, occupancy and saturation. For
instance, we know that, at minute one on section Section3, the average speed
was 40 Km/h, the occupancy rate was 132 and the average saturation was 100.

The created dataset consists of 66 examples of congestions, 62 examples of
accidents and 128 examples of sections where no problem took place. The last
sections are called non-critical sections. Each example describes the situation
at a given time on a given section. For instance accident(Section1,Time)
means that there was an accident on Section1 at time Time. In a similar
way congestion(Section2,Time) states that there was a congestion on
Section2 at time Time.

Each section has a type associated to it, which can be highway, off-ramp,

9.2. DETECTING TRAFFIC PROBLEMS 149

on-ramp. This information is represented by a predicate of the following form:

tipo(Section,Type).

where Type can assume the following values: carretera (highway), ram-
pa incorporacion (on–ramp) and rampa abandono (off–ramp). The rela-
tional structure of the road network is described by the following predicate:

secciones posteriores(Section1,Section2).

that states that Section2 follows Section1, as it happens, e.g., in figure
9.9. This is a many to many relation, as more than one section can follow
another section. For instance, in figure 9.9 Section2 and Section4 follow
Section1. All this information forms part of the background knowledge.

The background knowledge contains also facts relative to sensor readings,
which are in the form:

é velocidad(Time,Section,Value) this predicate describes the aver-
age speed, expressed by Value, on section Section at time Time;

é ocupacion(Time,Section,Value) this predicate describes the the
average occupancy, expressed by Value, of section Section at a given
time Time;

é saturacion(Time,Section,Value) this predicate describes the av-
erage saturation, expressed by Value, of section Section at time Time.

Reading relative to 144 minutes were produced, thus Time Y 3 ? � = I 6 .
Speed Occupancy Saturation

low 3�MO» T � ~ C 3:MS» T � ~B=@HDC 3:MS» T � ~ H � C
medium

 CW<à3:MS» T � ~ ² C =*H0CW<ý3ZMO» T � ~ÇH ² C H � <ý3�MO» T � ~ ²0²O� C
high 3�MO» T � A ² C 3:MS» T � AðH ² C 3:MS» T � A ²0²7� C

Table 9.4: Values for discretization used in the original study.

In the original study the argument Value of the three predicates was dis-
cretized in three values: high, medium and low. The ranges of values used for
the discretization are given in table 9.4, for example speed was considered to
be low if the value was lower than 45 Km/h.

The use of ILP for this dataset is justified by the presence of information
about road geometry. A propositional learner can not exploit this information.

9.2.2 Analysis of the Data

ECL was first applied to the entire dataset in order to induce rules for identify-
ing traffic problems. Then the system is validated using ten–fold cross valida-
tion, and its performance are compared to those obtained by other systems.

150 CHAPTER 9. TWO CASE STUDIES

accident(þ , ÿ) ÷ saturacion(ÿ , þ , ���),velocidad(ÿ , þ , ���),
� � ü ����� �

, � � ü	� � . [31,0,0]
accident(þ , ÿ) ÷ velocidad(ÿ ,
 , ���),tipo(þ ,carretera),

saturacion(ÿ , þ , � �),secciones posteriores(
 , þ),
���oü ���� ���

, � � ü �����â�����
. [28,0,0]

accident(þ , ÿ) ÷ saturacion(ÿ , þ , ���),ocupacion(ÿ , þ , ���),
� � ü �����â�����

, � � ü ��� ��� ��� . [16,0,3]
accident(þ , ÿ) ÷ ocupacion(ÿ , þ , � �),saturacion(ÿ , þ , � �),

� � ü � � �â������� , � ��� �@����� ����� . [36,0,3]

Figure 9.10: The logic program obtained by ECL for describing accidents.

In this section we present and compare the rules obtained by ECL, Progol
and ICL on the entire dataset.

In this case study we use ECL-LSDc (see chapter 6), so where the discretiza-
tion is not a global discretization, as in (Džeroski et al., 1998a), but is the result
of a local supervised discretization described in chapter 6. Only for the speed
values utilized when learning rules for the congestion class the discretized val-
ues given by experts were used. This is because it was not possible to deter-
mine the BP and DP intervals in this case, since speed reading are not associ-
ated to sections where a congestions occurred. In fact if there is a congestion
on a section the speed is zero or very low. In all the other cases BP and DP
intervals were utilized in the local supervised discretization.

accident(þ , ÿ) ÷ velocidad(ÿ , þ ,baja),
saturacion(ÿ , þ ,baja). [27,0,0]

accident(þ , ÿ) ÷ secciones posteriores(
 , þ),tipo(þ ,carretera),
velocidad(ÿ ,
 ,baja). [29,0,0]

accident(þ , ÿ) ÷ ocupacion(ÿ , þ ,alta),saturacion(ÿ , þ ,baja),
secciones posteriores(þ ,
),
velocidad(ÿ ,
 ,alta). [36,0,0]

Figure 9.11: Rules for the accident class induced by Progol.

As explained in chapter 5, the input of ECL consists of a set of positive
and negative examples and a background knowledge. In this problem there
are three classes of examples: accident, congestion and noncs (for non–
critical section). A set of rules is induced for each class. Positive examples of
one class are treated as negative examples of the other classes. For instance
when learning a theory for the class congestion, the positive examples for
accident and for noncs are used as negative examples. Results are evaluated
as explained in chapter 5.

Figure 9.10 shows the clauses induced by ECL for describing sections where
an accident took place. The first rule states that there is an accident on a section�

at time � if the saturation reading is less than
 I � C and if the average speed

on the section is less than
± I Km/h. The second rule states that if the saturation

level at a given time � on a section
�

of highway is less than
(Íu� =*H0C and on a

9.2. DETECTING TRAFFIC PROBLEMS 151

class(accident) ÷ section(X),timemoment(T),tipo(X,carretera),
secciones posteriores(Y,X),
velocidad(T,Y,baja). [29,0,0]

class(accident) ÷ section(X),timemoment(T),ocupacion(T,X,alta),
saturacion(T,X,baja),velocidad(T,Y,alta),
secciones posteriores(X,Y). [36,0,0]

class(accident) ÷ section(X),timemoment(T),velocidad(T,X,baja),
secciones posteriores(Y,X),
ocupacion(T,Y,alta). [27,0,0]

class(accident) ÷ section(X),timemoment(T),ocupacion(T,X,alta),
saturacion(T,X,baja),secciones posteriores(X,Y),
tipo(Y,carretera),secciones posteriores(Y,Z),
ocupacion(T,Z,baja). [22,0,0]

Figure 9.12: Rules generated by ICL for the accident class.

previous section
�

the reading of the speed at time � is less than
 ? � ² C then

there is an accident on section
�

.
The last two rules cover also examples of the non–critical class. However 2

of the negative examples covered by the last clause are covered also by the third
rule, so the two clauses cover four examples that belong to the non–critical
class.

congestion(þ , ÿ) ÷ velocidad(ÿ ,
 , ���),secciones posteriores(
 , þ),
tipo(þ ,rampa abandono),ocupacion(ÿ , þ , ���),
���oü ���

), � ���â����� û	� � ü�� ����� ��� . [0,30,0]
congestion(þ , ÿ) ÷ ocupacion(ÿ , þ , � �),tipo(þ ,rampa incorporacion),

saturacion(ÿ , þ , � �), ������ ��� û�� � ü ������� ��� ,� � � � û����çü ����� � ��� . [0,27,0]
congestion(þ , ÿ) ÷ saturacion(ÿ ,
 , ���),secciones posteriores(þ ,
),

ocupacion(ÿ , þ , � �),tipo(þ ,rampa incorporacion),
��� � ����� ��� , � � û�� � ü ������� ��� . [0,32,4]

Figure 9.13: Rules obtained by ECL for congestion.

Figure 9.11 shows the rules induced by Progol. It can be seen that the first
rule imposes conditions on the same measures as the first rule induced by ECL.
The conditions are different however, because the rule found by Progol require
an average speed lower than 45 Km/h and a saturation lower than 42.5. In this
case, the rule obtained by ECL without the discretization covers more cases
of accidents. The second rule recalls the second rules induced by ECL. The
rule induced by Progol imposes less conditions namely it does not impose any
condition on the measurement of the saturation for section

�
. Besides, the

condition on speed imposed by ECL requires an average speed value lower
than the one imposed by Progol.

Figure 9.12 shows the rules induced by ICL. The first and the second rules
obtained by ICL are equal to the second and the third rules found by Progol,
respectively. The rules obtained by ICL and Progol are more precise than the

152 CHAPTER 9. TWO CASE STUDIES

congestion(X,T) ÷ tipo(X,rampa abandono),velocidad(T,Y,baja),
secciones posteriores(Y,X). [0,30,0]

congestion(X,T) ÷ secciones posteriores(X,Y),
saturacion(T,Y,alta),secciones posteriores(Z,Y),
velocidad(T,Z,baja). [0,31,0]

Figure 9.14: Rules induced by Progol for the congestion class.

ones obtained by ECL.
Figure 9.13 shows the rules obtained by ECL for detecting congestions on

sections of road. The first rule states that there is a congestion on a section
�

at
time � , if

�
is a off–ramp, the occupancy rate on

�
at time � is between

± u� =@HDC
and

± H ´ �¨² C and if on a previous section
�

the speed was less that
 C Km/h, so

it was low. The range for the occupancy level includes almost all the possible
values, so in this rule the most important factor is the average speed on the
previous section. The second rule states that there is a congestion on section�

if the section is an on–ramp and the saturacion and the occupancy rates are
those shown in the rule.

class(congestion) ÷ section(X),timemoment(T),
tipo(X,rampa incorporacion),
secciones posteriores(X,Y),
saturacion(T,Y,alta),
secciones posteriores(Z,Y),
velocidad(T,Z,baja). [0,31,0]

class(congestion) ÷ section (X),timemoment(T),
tipo(X,rampa abandono),
secciones posteriores(Y,X),
velocidad(T,Y,baja). [0,30,0]

Figure 9.15: Rules for the congestion class obtained by ICL.

The rules obtained by Progol for describing the congestion class are shown
in figure 9.14. It can be seen that the first rule is almost the same as the first
rule obtained by ECL. The only difference is that the rule obtained by Progol
does not impose any condition on the occupancy rate of the section being de-
scribed. However, as already stated, the accepted range of values of the rule
obtained by ECL include almost all the possible values, thus the two rules can
be considered as equivalent.

Figure 9.15 shows the rules for detecting congestions induced by ICL. The
second rule is the same rule found by Progol, while the first one imposed con-
dition on three different sections of road. Also in this case the rules obtained by
Progol and ICL are more precise than the rules obtained by ECL, but the recall
is lower.

Figure 9.16 shows the rules for non–critical sections found by ECL. The first
rule imposes conditions on all the three readings regarding the sections being
described. The second rule imposes a condition also on the level of saturation

9.2. DETECTING TRAFFIC PROBLEMS 153

noncs(þ , ÿ) ÷ velocidad(ÿ , þ , ���),saturacion(ÿ , þ , ���),
ocupacion(ÿ , þ , � �), � ��� ���� �����

, � ��� � ���â����� ,
� � ü ������� � ��� . [0,0,34]

noncs(þ , ÿ) ÷ velocidad(ÿ , þ , � �),saturacion(ÿ ,
 , ���),
saturacion(ÿ , þ , � �),secciones posteriores(
 , þ),
� � � � � � ��� ��� � ���� ���

, ���¾ü ����� ����� . [0,0,14]
noncs(þ , ÿ) ÷ ocupacion(ÿ ,
 , � �),velocidad(ÿ , þ , � �),

ocupacion(ÿ , þ , � �),secciones posteriores(
 , þ),
� � ü ��� � � ����� , � �!� ���� �����

, � � ü �������â����� . [1,0,72]
noncs(þ , ÿ) ÷ ocupacion(ÿ , þ , ���),tipo(þ ,rampa incorporacion),

saturacion(ÿ , þ , � �),
� � ü ������� ��� , � � ü ����� ��� . [0,1,15]

noncs(þ , ÿ) ÷ ocupacion(ÿ ,
 , � �),velocidad(ÿ ,
 , ���),
ocupacion(ÿ , þ , � �),secciones posteriores(
 , þ),
< � � ü � ��� � ��� , � � � ���� �����

, ���çü � ��� � ��� . [1,3,100]
noncs(þ , ÿ) ÷ saturacion(ÿ ,
 , ���),velocidad(ÿ ,
 , ���),

tipo(þ ,rampa abandono),saturacion(ÿ , þ , � �),
ocupacion(ÿ , þ , � �),secciones posteriores(
 , þ),
� � ü ����� ����� , ���� ��� û�� � ü ������� �

,
� � ü ����� ��� , � � ü ������� ��� . [0,2,11]

Figure 9.16: Rules for the non–critical class obtained by ECL.

of a previous section. In all the cases where the speed is involved, the average
values imposed by the rules is high. This is confirmed by the rules obtained by
Progol and ICL, shown in figure 9.17 and 9.18, respectively.

noncs(X,T) ÷ velocidad(T,X,alta),saturacion(T,X,media). [0,0,32]
noncs(X,T) ÷ saturacion(T,X,alta),tipo(X,carretera). [0,0,30]
noncs(X,T) ÷ secciones posteriores(Y,X),ocupacion(T,X,baja). [0,0,25]
noncs(X,T) ÷ ocupacion(T,X,baja), saturacion(T,X,baja),

tipo(X,rampa incorporacion). [0,0,8]
noncs(X,T) ÷ ocupacion(T,X,baja),secciones posteriores(X,Y),

saturacion(T,Y,media). [0,0,5]
noncs(X,T) ÷ ocupacion(T,X,baja),secciones posteriores(Y,X),

saturacion(T,Y,alta). [0,0,11]
noncs(X,T) ÷ ocupacion(T,X,baja),saturacion(T,X,baja),

secciones posteriores(Y,X),ocupacion(T,Y,media). [0,0,11]
noncs(X,T) ÷ secciones posteriores(Y,X),saturacion(T,Y,alta),

secciones posteriores(Y,Z),velocidad(T,Z,media). [0,0,12]

Figure 9.17: The set of rules generated by Progol for non–critical sections.

Validation

In this section we present the performance of the three systems as estimated by
ten–fold cross validation. We also present the results obtained by Tilde and by
C4.5.

The trees produced by Tilde were not included in the previous section be-

154 CHAPTER 9. TWO CASE STUDIES

cause they are too difficult to interpret. We also include the results of C4.5 for
veryfing if relational information was really needed in this problem. Being C4.5
a propositional system, it was run using only the sensor value for the focused
section, and could not access values of neighboring sections.

Table 9.5 reports the results obtained by the various systems. In the last row
of the table, results obtained by ECL using the global discretization proposed
in the original study are reported. The reason for including these results is to
verify if ECL can take advantage of the discretization established by experts or
if the local supervised discretization method can find discretization intervals
that yield better results in ECL.

class(noncs) ÷ section(X),timemoment(T),velocidad(T,X,alta),
secciones posteriores(Y,X),velocidad(T,X,alta). [0,0,46]

class(noncs) ÷ section(X),timemoment(T),ocupacion(T,X,baja),
secciones posteriores(Y,X),velocidad(T,Y,alta),
secciones posteriores(Z,Y),velocidad(T,Z,alta). [0,0,17]

class(noncs) ÷ section(X),timemoment(T),tipo(X,carretera),
secciones posteriores(X,Y),ocupacion(T,Y,alta),
secciones posteriores(Y,Z),ocupacion(T,Z,alta). [0.0,26]

Figure 9.18: An incomplete listing of the rules for non–critical sections obtained
by ICL.

System Accuracy Simplicity Time
ICL 0.93 (0.04) 18 82s

Progol 0.94 (0.03) 13 27min
Tilde 0.94 (0.04) 12 28s
C4.5 0.88 (0.05) 14 20ms

ECL-LSDc 0.93 (0.02) 15 25min
ECL 0.90 (0.03) 20 24min

Table 9.5: Performance of the systems as estimated by ten–fold cross validation.

The first thing that can be notice is that C4.5 obtained the worst results in
term of accuracy. This is explained by the fact that information about the road
geometry was needed in this problem. Being this information relational, C4.5
could not exploit it. This also confirms that for some classes of problems an ILP
approach is needed in order to obtain good results.

As far as the accuracy is concerned, the performance of the ILP systems
are comparable. Progol and Tilde obtained a higher accuracy than the one
obtained by ECL-LSDc but the standard deviation is higher too. Also the sim-
plicity of the solutions found is comparable, being the solutions obtained by
Tilde the simplest and the solution of ICL the one containing more rules. In
this case the simplicity is defined as the average number of rules induced for
the three classes.

9.2. DETECTING TRAFFIC PROBLEMS 155

The main drawback of ECL-LSDc and Progol is their computational cost. In
fact ICL and Tilde are much faster. C4.5 is the best performing system in terms
of computational time.

Another interesting result is that for ECL, the discretization estrablished by
experts is not the best way for dealing with numerical values in this problem.
Better results are obtained with a local discretization.

An important aspect in this kind of study is represented by the compre-
hensibility of the induced rules. In fact rules induced by Tilde could not be
interpreted easily, while the rules induced by ICL, Progol and ECL are easy to
understand, since expressed by Horn clauses.

9.2.3 Conclusion for the Second Case

In this second case study we have addressed a problem regarding the auto-
matic acquisition of knowledge about traffic problems. Data describing differ-
ent situations that can happen on a road network has been used in order to
induce rules for idenfing critical sections of road, i.e., sections in which an ac-
cident or a congestion took place. Background knowledge on road geometry
is present, requiring the use of ILP for this task. The data used was generated
using a simulator, however it should be noted that the simulator is capable of
producing very realistic data and has been calibrated using real–world infor-
mation.

The first objective of the second case study was to demostrate with a prac-
tical application that the use of ILP is needed for some class of problems. The
performance of C4.5 confirmed this. In fact the performance obtained by C4.5
was the worst. This is justified by the fact that C4.5 can not take advantage of
relational information.

With this second case study we also wanted to analyze more thoroughly an
example of real life application of ECL to a relational problem, and show the
ability of ECL to exploit relational information for building good rules. An-
other reason that lead us to choose this particular problem, is that the problem
is charachterized by the presence of both numerical and relational information,
and both these features are important in order to solve the problem. This is
proved by the fact that C4.5 could not find good solutions for this problem, as
already discussed, and by the fact that when ECL used different discretizations
for dealing with numerical values, it obtained results of different quality.

ECL obtained better results when the numerical values were treated with
a local discretization rather than using a global discretization established by
experts in the field. This suggest that also the other systems could benefit from
a different discretization.

From the studies presented in this chapter, it emerged that the main draw-
back of ECL is the computational time required by the evolutionary process.
However, computational time is not the most important factor in the kind of

156 CHAPTER 9. TWO CASE STUDIES

problems tackled in this chapter (Eiben and Smith, 2003a). In fact the knowl-
edge extracted from the datasets is then used by either human experts or other
expert systems. Thus it does not matter if the amount of time employed for
extracting this knowledge is high. What matters the most is that the rules ex-
tracted are accurate. The opposite case, where computational time is an impor-
tant factor, is represented by repetitive problems. In these problems a solution
to a particular problem has to be found many times. An example of repetitive
problem is to estrablish a daily schedule for a domestic transportation firm.
Such a schedule should contain a pick-up and delivery plan plus a route de-
scription. This schedule has not to be the best schedule, but must be obtained
in a small amount of time, and has to be reasonably good.

Chapter 10

Conclusions

With this thesis we wanted to design a hybrid EA for solving ILP problems. To
this aim, we introduced the hybrid evolutionary system ECL.

The objectives of this thesis were discussed in section 1.3 of the Introduc-
tion, and illustrated in figure 1.1. In the following, for each point listed in
section 1.3, we describe what has been achieved.

Effectiveness

1. We wanted to incorporate an optimization phase based on ILP op-
erators for optimizing individuals of the current population. To this
end, we incorporated an optimization phase in ECL that follows the
mutation phase. In this phase individuals can be refined by means
of the repeated application of mutation operators. Mutation oper-
ators perform ILP like operations, e.g., changing a variable into a
constant. We have experimentally established that the incorpora-
tion of the optimization phase increases the exploitation power of
ECL, allowing the system to achieve better results.

2. In order to perform ILP like operations, we wanted to adopt a rep-
resentation close to the Prolog syntax. ECL adopts a high level rep-
resentation language, similar to the one adopted by SIA01. Clauses
are encoded in ECL as a list of predicate symbols, variables and con-
stants. This representation not only makes it possible to apply ILP
oriented mutation operators, but has also another appealing aspect:
with such a representation clauses are not required to follow a fixed
form, given, e.g., as a user supplied template. The shape of each
clause is determined by the example used as seed.

3. We wanted to develop genetic operators that bias the search toward
better hypotheses. Four mutation operators are used to this end.
These mutation operators are greedy because they consider a num-
ber of mutation possibilities. Each possibility is tested, and the one

157

158 CHAPTER 10. CONCLUSIONS

yielding the best improvement in the fitness of the individual is ap-
plied. Results of experiments confirm that the use of greedy muta-
tion operators is beneficial in order to achieve better results, both in
terms of accuracy and simplicity.
No crossover operator is used. The reason behind this choice is that
it is difficult to design an effective crossover operator with the high
level representation adopted by ECL. Some experiments were con-
ducted with a uniform crossover, but the results of such experiments
did not justify its use.

4. We wanted to develop some mechanisms for promoting diversity
in the population as well as good coverage of positive examples.
Maintaining diversity is a key factor in the system, because the use
of greedy mutation operators and the optimization phase can cause
the population to converge to a number of super individuals.
To this end, we use a selection operator that incorporates knowl-
edge, by means of a weight assigned to each example. This weight
determines the difficulty of the example. Weights are adjourned at
each generation, and depend on the number of individuals cover-
ing the examples. Individuals are selected in two steps: first a num-
ber of positive examples are selected, then one individual for each
selected example is selected for being mutated. The probability of
selection of each example depends on its estimated difficulty. Diffi-
cult examples have a greater chance of being selected. In this way
diversity in the population is promoted, as well as a good coverage
of the examples.
In this thesis, we have experimentally shown that having a good
diversity in the population is positively reflected in the quality of
the found solutions.
We believe that maintaining a good diversity in the population is
an important aspect in all EAs for ICL. We have seen that parallel
systems, like REGAL and G–NET, promote diversity by means of a
co–evolution policy promoted by a supervisor node. Our proposed
method for promoting diversity relies only on the selection operator,
and does not use any distance measure, which renders this strategy
efficient. The method can be applied to any non-parallel EAs for
ICL. This method recalls in some ways boosting (Schapire, 1990). In
boosting what is done is to call several times a learning algorithm
on a given subset of the training examples. At first, this subset co-
incides with the entire training set. After each call of the learner
the composition of the subset is changed, and depends on the esti-
mated difficulty of each example. This procedure is repeated until a
theory (consisting of an ensemble of learners) of satisfactory quality
has been found.

5. We wanted to introduce methods for handling numerical values.
To this aim, we have introduced three methods for handling nu-

159

merical values in ECL. Many ICL problems are characterized by the
high presence of numerical values. This holds also for ILP prob-
lems, therefore having a good method for dealing with numerical
values becomes a key aspect. We believe that a global discretization
does not represent the optimal solution in ICL, and in particular in
ILP. A local supervised discretization seems to be a more appealing
way for dealing with numerical values. The methods proposed in
this thesis are successful in helping ECL achieving better results in
problems characterized by a high presence of numerical values.

Efficiency

1. Incorporating knowledge in the system by means of greedy muta-
tion operators implies an increment of the computational time re-
quired by the evolutionary process. This time increases again with
the incorporation of the optimization phase. For this reason we have
introduced a simple stochastic sampling of the background knowl-
edge in reducing the computational effort required by evaluation of
clauses. This method is different from other sampling methods that
typically rely on a sampling of the training examples. Experiments
show that even if a small amount of the background knowledge is
used, ECL can find results of satisfactory quality.

2. We wanted to exploit the natural parallelism of GAs in order to re-
duce the computational time. To this end, we have implemented
two parallel versions of ECL. We have shown that the two paral-
lelizations are effective in order to reduce the computational time
required by the learning process carried out by ECL. The parallel
versions of ECL are less successful for improving the accuracy of
the found solutions.

As far as effectiveness is concerned, we can state that we were successful
in achieving our objectives. The performance of ECL is comparable or supe-
rior to the performance of other state of the art systems for ICL, both in the
propositional and in the relational setting.

The two solutions adopted for incrementing the efficiency of ECL achieved
their objectives. We can state that the efficiency of ECL represents its main
weakness. However, for the kind of problems tackled in this thesis, compu-
tational time is not the main issue. In fact all the kind of problems we have
tackled are not repetitive problems, where a solution of satisfactory quality has
to be found very often and in a small amount of time (Eiben and Smith, 2003c).

Instead, in the class of problems addressed by ECL, the main issue is the
effectiveness of the system. We want to obtain a solution that is as accurate as
possible. Of course we would like to have our system to be as fast as possible.
However, we are mainly interested in the accuracy of the results. Computa-
tional time can be reduced by having faster hardware, and hardware is becom-
ing faster and faster everyday. The knowledge that is acquired is then used

160 CHAPTER 10. CONCLUSIONS

by experts for some purposes, e.g., for the design of a expert system for con-
trolling the traffic situation on a network of roads, as it happens in the second
case study proposed in chapter 9. In such cases we are interested mainly in
the quality of the solutions found: we prefer to have an accurate solution ob-
tained with a high computational time rather then a solution of lower quality
obtained in a small amount of time.

10.1 Future Work

Several parameters are used, and must be tuned, for controlling various as-
pects of the evolutionary process performed by ECL. In order to find a good
setting of these parameters, many preliminary runs on training examples have
to be executed with different values of the parameters. This is a time con-
suming operation. Besides it is not guaranteed that in this way the optimal
setting of parameters is found. In the future a line of research that we intend
to address, regards the development of some self tuning methods for the au-
tomatic tuning of some of these parameters. For instance, the parameters

� {
used for controlling each mutation operators can be varied during the evolu-
tionary process. Low degrees of greediness can be used when the individual
to be mutated is characterized by a poor fitness, while more greediness can be
used when the fitness of the individual is considered good. In this way we
give more exploration “power” to the operators when the individuals are not
good, while individuals will be refined when they are considered to be already
good. Another parameter that may be self adapted is " P�¤ , used for sampling
the background knowledge. Different iterations may use different values of" P�¤ in order to use more or less background knowledge. The values of " P�¤
could be determined considering the quality of the population evolved in the
previous iteration.

In the version of ECL introduced by this thesis, no crossover operator is
used. Another future development is to design an effective crossover opera-
tor that can be used with the high level representation adopted by ECL. This
would help the system in maintaining diversity in the population.

In the actual version of ECL the background knowledge consists of a set
of ground facts, so it is an extensional background knowledge. An extensional
background knowledge can be generated from an intensional background

8W9 ß
by generating all ground facts derivable from

8:9 ß
in at most

Å
resolution

steps, where the value of
Å

can be provided by the user. This has the limi-
tation of allowing the system to use only facts that can be obtained with at
most

Å
derivation steps. Another limitation is the fact that in this way the

background knowledge is not as compact as an intensional background knowl-
edge. Having an intensional background knowledge allows to exploit some a
priori known structural properties. In the future we intend to extend ECL in
this direction, thus allowing the system to use also theories in the background
knowledge.

Another limitation of ECL is its incapability of directly addressing multi-

10.1. FUTURE WORK 161

class problems. At the moment, these problems are tackled by learning a theory
for each class, using the positive examples of other classes as negative exam-
ples of the class subject to the learning process. In the future, we also intend to
extend ECL in order to render it able to deal with this kind of problems.

We have seen that ECL-LUD can not exploit class information of examples,
and this renders the method less successful than the supervised discretization
methods. A possible variant of ECL-LUD could be designed, by changing the
way in which the operators adopted for modifying inequalities act, in order to
exploit information on the class of examples, turning in this way ECL-LUD into
a supervised discretization method. This could be done, e.g., by estimating the
density distribution of positive and negative examples inside each cluster and
then use this information when modifying inequalities.

An interesting development of ECL would be its extension to Constraint
Logic Programming (CLP) (Cohen, 1996; Jaffar and Maher, 1994). CLP pro-
grams are LP programs in which unification is replaced by constraint solving
in various domains. Constraints are special predicates whose satisfiability can
be established for various domains using different algorithms. Unification can
be seen as a particular type of constraint. As a result, CLP is more powerful
than LP. It would be interesting to extend ECL in order to induce CLP programs
instead of LP programs.

The parallel version of ECL needs many developments. The present im-
plementation is successful in reducing the computational time required by the
learning process, but it is less successful for what concerns the accuracy of the
solution found. As a future development in this direction, we intend to in-
vestigate a way of migrating portion of the background knowledge among the
nodes by means of a co-evolution policy promoted by a supervisor node. By
changing the portion of the background knowledge assigned to each node, the
genetic search performed on the node is shifted toward other regions of the
hypothesis space. Other lines of investigations may regard different commu-
nication topologies.

162 CHAPTER 10. CONCLUSIONS

Acknowledgments

This thesis is the results of four years of “hard” work at the Vrije Universiteit
of Amsterdam. I really enjoyed my time here. If I look back in these years, I
can think of a lot of people I want to thank. I want to thank people for support-
ing and helping me in my research project, for their friendship, for the moral
support they provided me and for simply being there.

I am grateful to Elena Marchiori, my academic supervisor. In these four
years you thought me valuable lessons on how to do research and writing sci-
entific articles. Not only this, you also gave me a sense of direction and focus
whenever I needed it.

During my second year of Ph.D., Maarten Keijzer started to work in our
group. Maarten, you have really helped me a lot in my Ph.D., you gave me a
big push for finishing this thesis. Many thanks go to my promotor, Gusz Eiben.
It was a pleasure and a honor to work in your group. I also want to thank
Wojtek Kowalczyk and Bart Craenen. You gave a great contribution to render
my stay at the VU very pleasant. Thanks go to Sandjai Bhulai. Whenever I had
some questions you were always willing to help me out. Thanks to Auke Pot
as well, I really enjoyed sharing the office with you.

Then I would like to thank Raquel. I really liked my work here, but I can
affirm that meeting you was the best thing that could have occured to me. Even
in the cloudiest day you could bring the sun light in my life: ẽre-lo meu sol e o
meu ceo.

I also want to thank my family. Vi ringrazio tutti, mamma, Paola, Nadia,
Fulvio, Remo, Paolo, Bepi, Claudia, Roberta grande e Roberta piccola, Simone,
Marco, Chiara, Martina e Giovanni. Potete anche essere lontani in distanza,
ma siete sempre vicini a me nel mio cuore. Voglio anche ringraziare mio padre.
Papá, so che tu mi guardi sempre da lassú. Un ringraziamento va anche a Gino
Dalle Fratte per avermi consigliato di iniziare il dottorato.

Since my arrival in the Netherlands I met many people that became my
friends. I would like to thank all these people for their precious friendship.
Alessandro, your friendship has been, and is, very important to me. We really
had a good time, and many beers at the Belgian pub. They should, at least,
dedicate a table to us there. Radu, you have been one of the first friends I
made here, and a very good one, I must say. Giovanni, you are such a good
friend, and such a great cook! I also want to thank for their friendship Bogdan,

163

164 ACKNOWLEDGMENTS

Spyros, Carmelo, Luca , Aarno, Sonia, Berenice, Idoia, Jota, Cora, Maria and
Marta. Other friends are in Italy, but are nonetheless important to me: Ivan,
Annarita, Andrea, Roy, Erika, Fritz, Fabrizio and Luigi.

I am also grateful to Sophie Kain, Dawids Edward and Peter Bentley for
evolving with me nice flying objects.

I am grateful to Jesús Aguilar-Ruiz and Jaume Bacardit, for the nice work
we have done together. Thanks also to Raúl Giráldez for his help in running
some experiments contained in this thesis. I also remember with pleasure the
nice discussion with Michèle Sebag.

Many thanks to Ioan Staicu for his work regarding the parallelization of
ECL.

I have some many people to be grateful to, that I have probably forgotten
to mention some of them. All of you have really helped me a lot in these four
years: grazie!

Samenvatting

Dit proefschrift heeft als onderwerp “Hybride Evolutionaire Computatie voor
Inductief Leren”. Het centrale thema van dit proefschrift is het gebruik van
hybride Evolutionaire Computatie (EC) voor Inductief Logisch Programmeren
(ILP).

EC is een stochastische methode, gebaseerd op een populatie, voor het
oplossen van optimalisatie problemen. EC is in beginsel gebaseerd op de evo-
lutietheorie van Darwin. Kandidaat-oplossingen worden door selectie, kruis-
ing en mutatie geëvolueerd. Het idee is dat na elke stap betere oplossingen
worden verkregen.

ILP bevindt zich op de doorsnede van inductief leren en logisch program-
meren. ILP erft haar belangrijkste doelstelling van het inductief leren, namelijk
het leren van theorieën aan de hand van voorbeelden. Van logisch program-
meren wordt het formalisme van kennisrepresentatie overgenomen: Horn
clause logica. De klassieke oplossingsmethode voor ILP problemen is het ge-
bruik van local-search technieken, de zogeheten gretige zoektechnieken. Deze
technieken kunnen snel redelijk goede oplossingen verbeteren, maar hebben
als nadeel dat ze in lokale optima kunnen blijven steken.

EC is een techniek om goede oplossingen te vinden, maar werkt minder
goed om deze te verbeteren. De combinatie van klassieke methoden met EC
kan profiteren van de goede kenmerken van beide technieken. Dit is dan ook
de belangrijkste motivatie voor de introductie van het ECL systeem.

Het eerste hoofdstuk bevat de introductie van dit proefschrift. Hoofdstuk
2 bevat een introductie tot de basisbegrippen van ILP. De eerste secties van dit
hoofdstuk gaan over de representatie in Horn clause logica. Het hoofdstuk
sluit af met een beschrijving van twee systemen voor ILP, namelijk FOIL en
Prolog.

Hoofdstuk 3 gaat over de basisbeginselen van EC. Alle EC aspecten die
nodig zijn voor het begrijpen van dit proefschrift worden hierin beschreven.
De noodzaak om diversiteit wordt te handhaven in de populatie uitgelegd.
Het hoofdstuk eindigt met een beschrijving van hybride EC.

Hoofdstuk 4 bevat een beschrijving van vijf evolutionaire systemen voor
ILP, namelijk REGAL, G-NET, DOGMA, SIA01 en GLPS. Deze systemen hebben
uiteenlopende kenmerken: ze gebruiken allemaal selectie, kruising, mutatie,
een fitness functie en representatie. Deze worden in het hoofdstuk beschreven.

165

166 SAMENVATTING

Het hoofdstuk sluit af met een discussie over de kenmerken van de vijf syste-
men.

ECL wordt in hoofdstuk 5 beschreven. Eerst wordt de motivatie voor de in-
troductie van ECL gegeven. Daarna worden de kenmerken van ECL beschre-
ven. De belangrijkste kenmerken van ECL zijn het gebruik van een optimal-
isatie fase welke de mutatie fase opvolgt, het gebruik van intelligente mutatie
operatoren en een selectie operator die de diversiteit in de populatie bevordert.

De methoden die door ECL worden gebruikt voor numerieke attributen
worden in hoofdstuk 6 beschreven. Drie methoden worden geı̈ntroduceerd.
De eerste methode kan informatie over de aard van de voorbeelden niet ge-
bruiken, terwijl de andere twee methoden dat wel kunnen. Het hoofdstuk sluit
af met een beschrijving van andere methoden om met numerieke attributen om
te gaan.

Een experimentele evaluatie van de componenten van ECL wordt in hoofd-
stuk 7 gepresenteerd. In dit hoofdstuk wordt er ook een vergelijking van ECL
met andere systemen gegeven. Het resultaat van deze evaluatie is dat ECL
vergelijkbare of betere resultaten behaalt dan andere systemen.

Twee parallelle versies van ECL worden in hoofdstuk 8 beschreven. Deze
versies zijn geschikt om de benodigde tijd voor het evolutionaire proces te ver-
minderen. Ze zijn minder geschikt om de nauwkeurigheid van de oplossingen
te verbeteren.

Hoofdstuk 9 gaat over de beschrijving van twee case studies. De eerste case
studie gaat over de relatie tussen artsen en patiënten. De tweede case studie
gaat over het opsporen van verkeersproblemen, zoals files.

Conclusies worden tenslotte in hoofdstuk 10 gegeven.

Bibliography

Aguilar-Ruiz, J. S., Costa, R., and Divina, F. (2004). Knowledge discovery from
doctor-patient relationship. In Proceedings of the 2004 ACM symposium on
Applied computing, pages 280–284. ACM Press.

Aguilar-Ruiz, J. S., Riquelme, J. C., and Toro, M. (2003). Evolutionary learn-
ing of hierarchical decision rules. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 33(2):324–331.

Aguilar-Ruiz, J. S., Riquelme, J. C., and Valle, C. D. (2002). Improving the
evolutionary coding for machine learning tasks. In European Concefence on
Artificial Intelligence, ECAI’02, pages 173–177, Lyon, France. IOS Press.

Aha, D. W., Kibler, D., and Albert, M. (1991). Instance-based learning algo-
rithms. Machine Learning, 6:37–66.

Anglano, C., Giordana, A., Bello, G. L., and Saitta, L. (1998). An experimental
evaluation of coevolutive concept learning. In Proc. 15th International Conf.
on Machine Learning, pages 19–27. Morgan Kaufmann, San Francisco, CA.

Augier, S., Venturini, G., and Kodratoff, Y. (1995). Learning first order logic
rules with a genetic algorithm. In Fayyad, U. M. and Uthurusamy, R.,
editors, The First International Conference on Knowledge Discovery and Data
Mining, pages 21–26, Montreal, Canada. AAAI Press.

Bacardit, J. and Garrel, J. M. (2002). Evolution of multi-adaptive discretiza-
tion intervals for a rule-based genetic learning system. In Proceedings of
the 7th Iberoamerican Conference on Artificial Intelligence (IBERAMIA2002),
pages 350–360.

Bacardit, J. and Garrel, J. M. (2003). Evolving multiple discretizations with
adaptive intervals for a pittsburgh rule-based genetic learning classifier
system. In GECCO 2003: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 1818–1831. Springer.

Bacardit, J. and Garrell, J. M. (2003). Bloat control and generalization pressure
using the minimum description length principle for a pittsburgh approach
learning classifier system. In Proceedings of the 6th International Workshop on
Learning Classifier Systems. (in press), LNAI, Springer.

167

168 BIBLIOGRAPHY

Bäck, T., Fogel, D. B., and Michalewicz, Z. (2000a). Evolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing.

Bäck, T., Fogel, D. B., and Michalewicz, Z. (2000b). Evolutionary Computation 2:
Advance Algorithms and Operators. Institute of Physics Publishing.

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In
Grefenstette, J. J., editor, Proceedings of the First International Conference on
Genetic Algorithms and Their Applications. Lawrence Erlbaum Associates,
Publishers.

Barker, D. A., Shergill, S. S., Higginson, I., and Orrel, M. W. (1996). Patients’
views towards care received from psychiatrists. British Journal of Psychia-
try, 168:641–646.

Bentley, P. J. (1999). Evolutionary Design by Computers. Morgan Kaufmann Pub-
lishers Inc.

Bentley, P. J. and Corne, D. W. (2001). Creative evolutionary systems. Morgan
Kaufmann Publishers Inc.

Bhoedjang, R., Ruhl, T., and Bal, H. (2003). User-level network interface proto-
cols. IEEE Computer, 31(11):53–60.

Blake, C. and Merz, C. (1998). UCI repository of machine learning databases.

Blickle, T. and Thiele, L. (1995). A comparison of selection schemes used in
genetic algorithms. Technical Report 11, Swiss Federal Institute of Tech-
nology (ETH), Gloriastrasse 35, 8092 Zurich, Switzerland.

Blockeel, H. and De Raedt, L. (1997). Lookahead and discretization in ilp.
In Džeroski, S. and Lavrač, N., editors, Proceedings of the 7th International
Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes in
Artificial Intelligence, pages 77–84. Springer-Verlag.

Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Mon, J., and Vandecas-
teele, H. (2002). Improving the efficiency of inductive logic programming
through the use of query packs. Journal of Artificial Intelligence Research,
16:135–166.

Blockeel, H. and Raedt, L. D. (1998). Top-down induction of first-order logical
decision trees. Artificial Intelligence, 101(1-2):285–297.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987). Occam’s
razor. Information Processing Letters, 24(6):377–380.

Cantu-Paz, E. and Kamath, C. (2003). Inducing oblique decision trees with
evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
7(1):54–68.

BIBLIOGRAPHY 169

Catlett, J. (1991). On changing continuous attributes into ordered discrete at-
tributes. In Kodratoff, Y., editor, European Working Session on Learning.
Springer-Verlag. LNAI 482.

Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent im-
provements. In Proc. Fifth European Working Session on Learning, pages
151–163, Berlin. Springer.

Cohen, J. (1996). Logic programming and constraint logic programming. ACM
Comput. Surv., 28(1):257–259.

Corne, D., Ross, P., and Fang, H.-L. (1994). Fast practical evolutionary
timetabling. In Lecture Notes in Computer Science, vol 865 (Evolutionary
Computing AISB Workshop, Leeds, UK, April 1994), pages 251–263. Springer-
Verlag.

Costa, R. and Divina, F. (2003a). Application of inductive concept learning to
doctor–patient relation data. In BNAIC 2003: Proceedings of the Belgian-
Dutch Conference on Artificial Intelligence, pages 67–74.

Costa, R. and Divina, F. (2003b). Doctor-patient relation dataset
(http://www.cs.vu.nl/ " divina).

Cuena, J., Hernandez, J., and Molina, M. (1995). Knowledge-based models
for adaptive traffic management systems. Transportation Research: Part C,
3(5):311–337.

Darwin, C. (1859). On the origin of the species by means of natural selection,
or the preservation of favoured races in the struggle for life.

Davis, L. (1985). Job shop scheduling with genetic algorithms. In Proceedings
of the Second International Conference on Genetic Algorithms, pages 136–140,
Mahawah, NJ. Lawrence Eribaum Associates.

De Jong, K. (1975). An Analysis of the Behaviour of a Class of Genetic Adaptive
Systems. PhD thesis, Dept. of Computer and Communication Sciences,
University of Michigan, Ann Arbor, MI.

De Jong, K., Spears, W., and Gordon, D. (1993). Using Genetic Algorithms for
Concept Learning. Machine Learning, 13(1/2):155–188.

De Mántaras, R. L. (1991). A distance-based attribute selection measure for
decision tree induction. Machine Learning, 6(1):81–92.

De Raedt, L. and Van Laer, W. (1995). Inductive constraint logic. In Proceedings
of the 6th Conference on Algorithmic Learning Theory, volume 997 of Lecture
Notes in Artificial Intelligence. Springer-Verlag.

170 BIBLIOGRAPHY

Debnath, A., de Compadre, R. L., Debnath, G., Schusterman, A., and Han-
sch, C. (1991). Structure-Activity Relationship of Mutagenic Aromatic and
Heteroaromatic Nitro Compounds. Correlation with molecular orbital en-
ergies and hydrophobicity. Journal of Medical Chemistry, 34(2):786–797.

DeJong, K. A. and Spears, W. M. (1991). Learning concept classification rules
using genetic algorithms. Proceedings of the International Joint Conference on
Artificial Intelligence, pages 651–656.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of the the Royal Statis-
tical Society, 39:1–38.

Divina, F. (2001a). Evolutionary concept learning in first order logic. Technical
Report IR-494, Vrije Universiteit Amsterdam.

Divina, F. (2001b). Knowledge based evolutionary computing for inductive
learning in first-order logic. In Proceedings of the Brussels Evolutionary Algo-
rithms Day (BEAD-2001), Workshop on EAs, pages 10–15, Brussels.

Divina, F., Edwards, D., and Kain, S. (2003a). Creative evolution of flying ob-
jects. In Proceedings of CCIA, pages 276–285, Palma de Mallorca. IOS-Press.

Divina, F., Keijzer, M., and Marchiori, E. (2002). Non-universal suffrage se-
lection operators favor population diversity in genetic algorithms. In
Benelearn 2002: Proceedings of the 12th Belgian-Dutch Conference on Ma-
chine Learning (Technical report UU-CS-2002-046), pages 23–30, Utrecht, The
Netherlands.

Divina, F., Keijzer, M., and Marchiori, E. (2003b). Evolutionary concept learning
with constraints for numerical attributes. In BNAIC 2003: Proceedings of the
Belgian-Dutch Conference on Artificial Intelligence, pages 107–114, Nijmegen,
The Netherlands.

Divina, F., Keijzer, M., and Marchiori, E. (2003c). A method for handling nu-
merical attributes in GA-based inductive concept learners. In et al., E.
C.-P., editor, Genetic and Evolutionary Computation – GECCO-2003, volume
2723 of LNCS, pages 898–908, Chicago. Springer-Verlag.

Divina, F. and Marchiori, E. (2001). Knowledge based evolutionary program-
ming for inductive learning in first-order logic. In et al., L. S., editor,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), page 173. Morgan Kaufmann.

Divina, F. and Marchiori, E. (2002). Evolutionary concept learning. In GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference,
pages 343–350, New York. Morgan Kaufmann Publishers.

BIBLIOGRAPHY 171

Divina, F. and Marchiori, E. (2004a). Handling continuous attributes in an evo-
lutionary inductive learner. IEEE Transactions on Evolutionary Computation,
to appear.

Divina, F. and Marchiori, E. (2004b). Knowledge–based evolutionary search
for inductive concept learning. In Knowledge Incorporation in Evolutionary
Computation, chapter III, pages 237–254. Springer-Verlag.

Dolšak, B., Bratko, I., and Jezernik, A. (1994). Finite element mesh design: An
engineering domain for ILP application. In Wrobel, S., editor, Proceedings
of the 4th International Workshop on Inductive Logic Programming, volume 237
of GMD-Studien, pages 305–320. Gesellschaft für Mathematik und Daten-
verarbeitung MBH.

Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised
discretization of continuous features. In International Conference on Machine
Learning, pages 194–202.

DSM-IV (2000). Diagnostic criteria from DSM-IV TR. American Psychiatric As-
sociation, Washington DC.

Džeroski, S., Blockeel, H., Kompare, B., Kramer, S., Pfahringer, B., and Laer,
W. V. (1999). Experiments in predicting biodegradability. In International
Workshop on Inductive Logic Programming, pages 80–91.

Džeroski, S., Jacobs, N., Molina, M., and Moure, C. (1998a). ILP experiments
in detecting traffic problems. In European Conference on Machine Learning,
pages 61–66.

Džeroski, S., Jacobs, N., Molina, M., Moure, C., Muggleton, S., and Laer, W. V.
(1998b). Detecting traffic problems with ILP. In International Workshop on
Inductive Logic Programming, pages 281–290.

Eiben, A. E. and Smith, J. E. (2003a). Introduction to Evolutionary Computing.
Springer-Verlag.

Eiben, A. E. and Smith, J. E. (2003b). What is an evolutionary algorithm? In
Introduction to Evolutionary Computing, chapter 2, pages 15–35. Springer-
Verlag.

Eiben, A. E. and Smith, J. E. (2003c). Working with evolutionary algo-
rithms. In Introduction to Evolutionary Computing, chapter 14, pages 243–
262. Springer-Verlag.

Fayyad, U. and Irani, K. (1992). On the handling of continuous-valued at-
tributes in decision tree generation. Mach. Learn., 8:87–102.

Fayyad, U. and Irani, K. (1993). Multi-interval discretization of continuos at-
tributes as pre-processing for classification learning. In Proceedings of the
13th International Join Conference on Artificial Intelligence, pages 1022–1027.
Morgan Kaufmann Publishers.

172 BIBLIOGRAPHY

Ferrer, J. and Barcelo, J. (1993). AIMSUN2: Advanced Interactive Microscopic
Simulator for Urban and non-urban Networks. Technical report, Departa-
mento de Estad istica e Investigacion Operativa, Facultad de Informatica,
Universitat Politecnica de Catalynya.

Fogel, D. B. (1988). An evolutionary approach to the traveling salesman prob-
lem. Biological Cybernetics, 6:2:139–144.

Fogel, D. B. (1993). Evolving behavious in the iterated prisoner’s dilemma.
Evolutionary Computation, 1(1):77–97.

Fogel, L. J., Owens, A. J., and Walsh, M. (1966). Artificial Intelligence through
Simulated Evolution. Wiley.

Freitas, A. (2002). Data Mining and Knowledge Discovery with Evolutionary Algo-
rithms. Spinger-Verlag, Berlin.

Freitas, A. and Lavington, S. (1998). Mining very large databases with parallel
processing. Kluwer.

Gehlhaar, D. K., Verkhivker, G. M., Rejto, P. A., Sherman, C. J., Fogel, D. B.,
Fogel, L. J., , and Freer, S. T. (1995). Molecular recognition of the inhibitor
ag-1343 by hiv-1 protease: conformationally flexible docking by evolution-
ary programming. Chemistry and Biology, 2(5):317–324.

Giordana, A. and Neri, F. (1996). Search-intensive concept induction. Evolu-
tionary Computation, 3(4):375–416.

Giordana, A. and Saitta, L. (2000). Phase Transitions in Relational Learning.
Machine Learning, 41(2):217–251.

Giráldez, R. (2004). Mejoras en Eficiencia y Eficacia de Algoritmos Evolutivos para
Aprendizaje Supervisado. PhD thesis, Universidad de Sevilla.

Giráldez, R., Aguilar-Ruiz, J. S., and Riquelme, J. C. (2003). Natural coding: A
more efficient representation for evolutionary learning. In Genetic and Evo-
lutionary Computation – GECCO-2003, volume 2723 of LNCS, pages 979–
990, Chicago. Springer-Verlag.

Giráldez, R., Aguilar-Ruiz, J. S., and Riquelme, J. C. (2004). Knowledge-based
fast evaluation for evolutionary learning. IEEE Transactions on Systems,
Man & Cybernetics: Part C – Special Issue on Knowledge Extraction and Incor-
poration in Evolutionary Computation, (in press).

Giráldez, R., Aguilar-Ruiz, J. S., Riquelme, J. C., Ferrer-Troyano, F., and Ro-
driguez, D. (2002). Discretization oriented to decision rules generation.
Frontiers in Artificial Intelligence and Applications, 82:275–279.

Glover, R. and Sharpe, P. (1999). Efficient GA based techniques classification.
Applied Intelligence, 11(3):277–289.

BIBLIOGRAPHY 173

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley.

Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection
schemes used in genetic algorithms. In Rawlins, G. J. E., editor, Founda-
tions of Genetic Algorithms, pages 69–93. Morgan Kaufmann Publishers.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing
for multimodal function optimization. In Proc. of 2nd Int’l Conf. on Genetic
Algorithms, pages 41–49. Morgan Kaufmann Publishers.

Goldberg, D. E. and Robert, L. (1985). Alleles, loci and the travelling salesman
problem. In Grefenstette, J. e., editor, Proceedings of 1st Int. Conf. on Genetic
Algorithms, pages 154–159. Lawrence Erlbaum Associates, Hillsdale.

Hekanaho, J. (1996). Background knowledge in GA-based concept learning. In
International Conference on Machine Learning, pages 234–242.

Hekanaho, J. (1998). DOGMA: a GA based relational learner. In Page, D.,
editor, Proceedings of the 8th International Conference on Inductive Logic Pro-
gramming, LNAI 1446, pages 205–214. Springer Verlag.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI.

Holland, J. H. (1987). Genetic algorithms and classifier systems: foundations
and future directions. In Grefenstette, J. J., editor, Proceedings of the Sec-
ond International Conference on Genetic Algorithms. Lawrence Erlbaum As-
sociates, Publishers.

Holte, R. C. (1993). Very simple classification rules perform well on most com-
monly used datasets. Mach. Learn., 11(1):63–90.

Jaffar, J. and Maher, M. J. (1994). Constraint logic programming: A survey.
Journal of Logic Programming, 19/20:503–581.

Jakob, W., Gorges-Schleuter, M., and Blume, C. (1992). Application of Genetic
Algorithms to task planning and learning. In Mánner, R. and Mander-
ick, B., editors, Parallel Problem Solving from Nature, 2nd Workshop, Lecture
Notes in Computer Science, pages 291–300, Amsterdam. North-Holland
Publishing Company.

Janikow, C. (1993). A knowledge intensive genetic algorithm for supervised
learning. Machine Learning, 13:198–228.

John, G. H. and Langley, P. (1995). Estimating continuous distributions in
bayesian classifiers. In 11th Conference on Uncertainty in Artificial Intelli-
gence, pages 338–345.

Kaplan, H. I., Sadock, B. J., and Grebb, J. A. (1994). Synopsis of Psychiatry.
Williams and Wilkins.

174 BIBLIOGRAPHY

Keijzer, M. (2002). Scientific Discovery Using Genetic Programming. PhD thesis,
Danish Technical University, Lyngby, Denmark.

Kerber, R. (1992). ChiMerge: discretization of numeric attributes. In Proceedings
of the Tenth National Conference on Artificial Intelligence (AAAI-92), pages
123–127. AAAI Press.

King, R. D., Sternberg, M. J. E., and Srinivasan, A. (1995). Relating chemical
activity to structure: An examination of ILP successes. New Generation
Computing, 13(3&4):411–433.

Kohavi, R. and Sahami, M. (1996). Error-based and entropy-based discretiza-
tion of continuous features. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining, pages 114–119.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by
Natural Selection. MIT Press, Cambridge, MA.

KrishnaKumar, K. and Goldberg, D. E. (1990). Genetic algorithms in control
system optimization. AIAA Guidance, Navigation and Control Conference,
Portland.

Kubat, M., Bratko, I., and Michalski, R. (1998). A review of Machine Learn-
ing Methods. In Michalski, R., Bratko, I., and Kubat, M., editors, Machine
Learning and Data Mining. John Wiley and Sons Ltd., Chichester.

Kwedlo, W. and Kretowski, M. (1999). An evolutionary algorithm using mul-
tivariate discretization for decision rule induction. In Principles of Data
Mining and Knowledge Discovery, pages 392–397.

Likert, R. (1932). Technique for the Measurement of Attitudes. PhD Thesis of
Columbia University.

Liu, H., Hussain, F., Tan, C., and Dash, M. (2002). Discretization: An enabling
technique. Journal of Data Mining and Knowledge Discovery, 6(4):393–423.

Llorá, X. and Garrell, J. M. (2001a). Inducing partially-defined instances with
evolutionary algorithms. In Proceedings of the Eighteenth International Con-
ference on Machine Learning, pages 337–344. Morgan Kaufmann Publishers
Inc.

Llorá, X. and Garrell, J. M. (2001b). Knowledge-independent data mining with
fine-grained parallel evolutionary algorithms. In et al., L. S., editor, Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001), pages 461–468. Morgan Kaufmann.

MacQueen, J. (1967). Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the Fifth Berkeley Symposium on Math-
ematical Statistics and Probability, volume I, pages 281–297. University of
California Press, Berkeley and Los Angeles.

BIBLIOGRAPHY 175

Marchiori, E. and Steenbeek, A. (2000). An Evolutionary Algorithm for Large
Scale Set Covering Problems with Application to Airline Crew Scheduling.
In Real World Applications of Evolutionary Computing. Springer, pages 367–
381. Springer-Verlag.

Michalski, R., Carbonell, J., and Mitchell, T. (1983). A theory and methodol-
ogy of inductive learning. In Machine Learning: An AI Approach, volume I,
pages 83–134. Morgan Kaufmann, Los Altos, CA.

Michalski, R., Mozetic, I., Hong, J., and Lavrač, N. (1986). The multi-purpose
incremental learning system AQ15 and its testing application to three
medical domains. In Proc. Fifth National Conference on Artificial Intelli-
gence, pages 1041–1045. American Association for Artificial Intelligence
(Philadelphia, PA).

Mira, J. J. (2001). La satisfaccion del paciente.

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 18:203–226.

Mitchell, T. (1997). Machine Learning. Series in Computer Science. McGraw-
Hill.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical report, Caltech Con-
current Computation Program, Californian Institute of Technology, U.S.A.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Comput-
ing, Special issue on Inductive Logic Progra mming, 13(3-4):245–286.

Muggleton, S. (1996). Learning from positive data. In Muggleton, S., editor,
Proceedings of the 6th International Workshop on Inductive Logic Programming,
pages 225–244. Stockholm University, Royal Institute of Technology.

Muggleton, S. (1999). Inductive logic programming: issues, results and the
challenge of learning language in logic. Artificial Intelligence, 114:283–296.

Muggleton, S. and Buntine, W. (1988). Machine invention of first order predi-
cates by inverting resolution. In Proceedings of the Fifth International Machine
Learning Conference, pages 339–351. Morgan Kaufmann.

Muggleton, S. and Raedt, L. D. (1994). Inductive logic programming: Theory
and methods. Journal of Logic Programming, 19-20:669–679.

Neri, F. and Saitta, L. (1995). Analysis of genetic algorithms evolution under
pure selection. In Proceedings of the Sixth International Conference on Genetic
Algorithms, pages 32–39. Morgan Kaufmann, San Francisco, CA.

Platt, J. C. (1999). Fast training of support vector machines using sequential
minimal optimization. Advances in kernel methods: support vector learning,
pages 185–208.

176 BIBLIOGRAPHY

Quinlan, J. (1990). Learning logical definition from relations. Machine Learning,
5:239–266.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Machine Learning.
Morgan Kaufmann.

Quinlan, J. R. (1986). Induction of decision trees. In Shavlik, J. W. and Di-
etterich, T. G., editors, Readings in Machine Learning. Morgan Kaufmann.
Originally published in Machine Learning 1:81–106, 1986.

Quinlan, J. R. (1998-2001). See5.0 (http://www.rulequest.com).

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Friedrich Frommann.

Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific,
River Edge, NJ.

Roosen, P. and Meyer, F. (1992). Determination of chemical equilibria by means
of an evolution strategy. In Männer, R. and Manderick, B., editors, Parallel
problem solving from nature 2, pages 411–420, Amsterdam. North-Holland.

Ruggeri, M. and Dall’Agnola, R. (1993). Verona service satisfaction scale (vsss-
54).

Russel, S. and Norvig, P. (1995). Artificial Intelligence - A modern approch. Engle-
wood Cliffs, NJ: Prentice-Hall.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning,
5:197–227.

Sebag, M. and Rouveirol, C. (1997). Tractable induction and classification in
first-order logic via stochastic matching. In Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, pages 888–893. Morgan Kauf-
mann.

Spencer, G. F. (1993). Automatic generation of programs for crawling and walk-
ing. In Forrest, S., editor, Proceedings of the 5th International Conference on
Genetic Algorithms, ICGA-93, page 654, University of Illinois at Urbana-
Champaign. Morgan Kaufmann.

Staicu, I. (2003). A parallel genetic algorithm used for inductive concept learn-
ing. Master’s thesis, Vrije Universiteit, Amsterdam.

Stone, C. and Bull, L. (2003). For real! xcs with continuous-valued inputs.
Evolutionary Computation Journal, 11(3):298–336.

Tanaka, Y., Ishiguro, A., and Uchikawa, Y. (1993). A genetic algorithms’ ap-
plication to inverse problems in electromagnetics. In Forrest, S., editor,
Proc. of the Fifth Int. Conf. on Genetic Algorithms, page 656, San Mateo, CA.
Morgan Kaufmann.

BIBLIOGRAPHY 177

Teller, A. and Andre, D. (1997). Automatically choosing the number of fitness
cases: The rational allocation of trials. In Koza, J. R., Deb, K., Dorigo,
M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic
Programming 1997: Proceedings of the Second Annual Conference, pages 321–
328, Stanford University, CA, USA. Morgan Kaufmann.

Van Laer, W. (2002). From Propositional to First Order Logic in Machine Learning
and Data Mining - Induction of first order rules with ICL. PhD thesis, De-
partment of Computer Science, K.U.Leuven, Leuven, Belgium. 239+xviii
pages.

Weingarten, S. R., Stone, E., Green, A., Pelter, M., Nessim, S., Huang, H.,
and Kristopaitis, R. (1995). A study of patient satisfaction and adherence
to preventive care practice guidelines. The American Journal of Medicine,
99:590–595.

Whitley, D., Rana, S. B., and Heckendorn, R. B. (1997). Island model genetic
algorithms and linearly separable problems. In Evolutionary Computing,
AISB Workshop, pages 109–125.

Wilson, S. W. (1998). Generalization in the XCS classifier system. In Koza,
J. R. and et. al., editors, Genetic Programming 1998: Proceedings of the Third
Annual Conference, pages 665–674, University of Wisconsin, Madison, Wis-
consin, USA. Morgan Kaufmann.

Witten, I. H. and Frank, E. (2000a). Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann Publishers.

Witten, I. H. and Frank, E. (2000b). WEKA Machine Learning Algorithms in Java,
chapter 8, pages 265–320. Morgan Kaufmann Publishers.

Wong, M. L. and Leung, K. S. (1995). Inducing logic programs with genetic
algorithms: The genetic logic programming system. In IEEE Expert 10(5),
pages 68–76.

Yamada, T. and Nakano, R. (1992). A genetic algorithm applicable to large-
scale job-shop problems. In R. Männer and Manderick, B., editors, Parallel
Problem Solving from Nature, 2, Amsterdam. Elsevier Science Publishers, B.
V.

Yao, X. (2002). Evolutionary computation: A gentle introduction, chapter 2, pages
27–53. Kluwer Academic Publishers.

Index

#%$'&�(
, 65) Æ (+*�,-(+. , 65/10 ü32 �

, 82450 ü32 �
, 836

, 117 8
, 139

-subsumption, 18:
, 13ÆÈÇ�É , 58

arguments, 10
atom, 10

background knowledge, 14
biases, 30

language bias, 31
search bias, 31

boosting, 158
bottom-up, 15
boundary points, 82
BP interval, 82

C4.5, 118
ChiMerge discretization, 87
choosing value of ÆÈÇ É , 100
clause, 10

body, 10
declarative interpretation, 11
ground, 11
head, 10
procedural interpretation, 11

completeness, 14, 26
consistency, 26
constants, 10
crossover, 23, 29

one-point, 23
two-point, 29
uniform, 29

crowding, 32

DAS2, 131

discretization, 75, 83
global, 75
local, 75
multivariate, 75
supervised, 75
univariate, 75

weak point, 76
unsupervised, 75

diversity, 31
DOGMA, 42
DP interval, 84

EA, 21
EAs, 22
EC, 21

applied to ILP, 37
paradigms, 24
selection, 27

ECL, 53
biases, 58
clause construction, 64
encoding, 59
extract solution procedure, 70
Fitness, 59
graphical scheme, 57
hypothesis extraction, 68
input, 55
length of a clause, 59
motivations, 53
mutation operators, 65;=<

, 65
atom addition, 66
atom deletion, 65
constant in variable, 66
gain function, 65
variable into constant, 67

numerical values, 75
optimization, 67

scheme, 68
output, 55

178

INDEX 179

Representation, 59
scheme, 56
selection, 59

EWUS, 60
of background knowledge, 58
WUS, 60

ECL-GA, 91
ECL-GSD, 83
ECL-LSDc, 85

enlarge, 84
Operators, 84
shrink, 84

ECL-LSDf, 85
enlarge, 84
Operators, 84
shrink, 84

ECL-LUD, 78
Change Cluster, 79
Enlarge, 78
Ground, 80
Operators, 78
Shift, 79
Shrink, 79

ECL-NOT, 92
ECL-Opt, 92
EDRL-MD, 86
EM algorithm, 78
encoding, 26
EP, 24
ES, 24
evaluation for multiclass problems, 56
Evolution Strategies, 24
Evolutionary Algorithm, 21, 22
Evolutionary Computation, 21
Evolutionary Programming, 24
EWUS selection operator, 60

weight, 61
experimental evaluation, 89
experiments, 89

comparison with other systems, 117
on BK selection, 97
on discretization methods, 108
on greediness, 91
on selection, 101
on solution extraction, 105
settings, 90

exploitation, 33
exploration, 33

fact, 11

ground, 11
farming model, 126
Fayyad & Irani’s algorithm, 83
first–order logic, 10
fitness function, 26
FOIL, 16
function, 10

G-NET, 41
GA, 25
GALE, 87
GAssist, 86, 119
Genetic Algorithms, 25
Genetic Programming, 25
genotype, 22
GLPS, 45
GP, 25
greedy operators, 65

Hamming distance, 32
Herbrand model, 13

least, 13
HIDER*, 86, 119
Holte discretization, 87
Horn clause, 10
hybrid EC, 33
hypothesis extraction, 68
hypothesis space, 14

ordering, 15

IB1, 118
ICL, 121
ILP, 10

definition, 10
Inductive Concept Learning, 1
Inductive Logic Programming, 10
information gain, 27
intelligent operators, 34
inverse resolution, 16
island model, 126

left-good, 84
literal, 10

negative, 10
positive, 10

logic program, 10

MAs, 33
MDL, 27
medical problem, 136

180 INDEX

satisfaction, 139
service, 142
validation, 144

memetic algorithms, 2, 33
Michigan approach, 37
migration, 130
Minimal Description Length, 27
most general unifier,mgu, 12
motivations, 2
multiclass problems, 56
mutation, 23, 29
Mántaras discretization, 87

Naive Bayes, 119
niches, 31
notation, 5
numerical values, 75

objectives of the thesis, 3
Occam’s razor, 18, 27
offspring, 23
overview of thesis, 4

parents, 24
PECL 1, 129
PECL 2, 130
phenotype, 22
Pittsburgh approach, 37
precision, 70
predicate symbols, 10
Progol, 18
Prolog, 11
propositional representation, 8

query, 12
interpretation, 12

recall, 62
recombination, 29
REGAL, 38
representation language, 7, 26

first–order logic, 8
propositional, 8

resolution, 12
right-good, 84

See5.0, 136
selection, 27

ranking, 27
roulette wheel, 28

tournament, 28
selection rule, 12
sharing function, 32
SIA01, 43
simplicity, 27
SLD, 12

derivation, 12
derivation step, 12
tree, 13

SMO, 119
soundness, 13
species, 31
substitution, 11

application, 11
support vector machines, 119
SVMs, 119

ten–fold cross validation, 90
terms, 10
Tilde, 121
top-down, 16
traffic dataset, 147

unifier, 12
US selection, 39
USD, 86

variables, 10
variation operators, 29

crossover, 29
mutation, 29

WSCAf, 105
WSCAn, 105
WUS selection operator, 60

weight, 60

XCS, 87

SIKS Dissertatiereeks
1998

1998-1 Johan van den Akker (CWI) DEGAS -
An Active, Temporal Database of Auto-
nomous Objects

1998-2 Floris Wiesman (UM) Information Re-
trieval by Graphically Browsing Meta-In-
formation

1998-3 Ans Steuten (TUD) A Contribution to
the Linguistic Analysis of Business Con-
versations within the Language/Action
Perspective

1998-4 Dennis Breuker (UM) Memory versus
Search in Games

1998-5 E.W.Oskamp (RUL) Computeronderste-
uning bij Straftoemeting

1999
1999-1 Mark Sloof (VU) Physiology of Quality

Change Modelling; Automated model-
ling of Quality Change of Agricultural
Products

1999-2 Rob Potharst (EUR) Classification using
decision trees and neural nets

1999-3 Don Beal (UM) The Nature of Minimax
Search

1999-4 Jacques Penders (UM) The practical Art
of Moving Physical Objects

1999-5 Aldo de Moor (KUB) Empowering Com-
munities: A Method for the Legitimate
User-Driven Specification of Network In-
formation Systems

1999-6 Niek J.E. Wijngaards (VU) Re-design of
compositional systems

1999-7 David Spelt (UT) Verification support for
object database design

1999-8 Jacques H.J. Lenting (UM) Informed
Gambling: Conception and Analysis of a
Multi-Agent Mechanism for Discrete Re-
allocation.

2000
2000-1 Frank Niessink (VU) Perspectives on Im-

proving Software Maintenance

2000-2 Koen Holtman (TUE) Prototyping of
CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA) Sociaal-
organisatorische gevolgen van kenniste-
chnologie; een procesbenadering en ac-
torperspectief.

2000-4 Geert de Haan (VU) ETAG, A Formal
Model of Competence Knowledge for Us-
er Interface Design

2000-5 Ruud van der Pol (UM) Knowledge-ba-
sed Query Formulation in Information Re-
trieval.

2000-6 Rogier van Eijk (UU) Programming Lan-
guages for Agent Communication

2000-7 Niels Peek (UU) Decision-theoretic Plan-
ning of Clinical Patient Management

2000-8 Veerle Coup (EUR) Sensitivity Analyis
of Decision-Theoretic Networks

2000-9 Florian Waas (CWI) Principles of Prob-
abilistic Query Optimization

2000-10 Niels Nes (CWI) Image Database Man-
agement System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI) Scalable Distri-
buted Data Structures for Database Ma-
nagement

2001

2001-1 Silja Renooij (UU) Qualitative Approa-
ches to Quantifying Probabilistic Networ-
ks

2001-2 Koen Hindriks (UU) Agent Programming
Languages: Programming with Mental
Models

2001-3 Maarten van Someren (UvA) Learning
as problem solving

2001-4 Evgueni Smirnov (UM) Conjunctive and
Disjunctive Version Spaces with Instance-
Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU) Process-
ing Structured Hypermedia: A Matter of
Style

2001-6 Martijn van Welie (VU) Task-based User
Interface Design

2001-7 Bastiaan Schonhage (VU) Diva: Archi-
tectural Perspectives on Information Vi-
sualization

2001-8 Pascal van Eck (VU) A Compositional
Semantic Structure for Multi-Agent Sys-
tems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL) Towards Dis-
tributed Development of Large Object-
Oriented Models, Views of Packages as
Classes

2001-10 Maarten Sierhuis (UvA) Modeling and
Simulating Work Practice BRAHMS:
a multiagent modeling and simulation lan-
guage for work practice analysis and de-
sign

2001-11 Tom M. van Engers (VUA) Knowledge
Management: The Role of Mental Mod-
els in Business Systems Design

2002

2002-1 Nico Lassing (VU) Architecture-Level Mod-
ifiability Analysis

2002-2 Roelof van Zwol (UT) Modelling and sea-
rching web-based document collections

2002-3 Henk Ernst Blok (UT) Database Optimi-
zation Aspects for Information Retrieval

2002-4 Juan Roberto Castelo Valdueza (UU) The
Discrete Acyclic Digraph Markov Model
in Data Mining

2002-5 Radu Serban (VU) The Private Cyber-
space Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-6 Laurens Mommers (UL) Applied legal
epistemology; Building a knowledge-ba-
sed ontology of the legal domain

2002-7 Peter Boncz (CWI) Monet: A Next-Ge-
neration DBMS Kernel For Query-Inten-
sive Applications

2002-8 Jaap Gordijn (VU) Value Based Require-
ments Engineering: Exploring Innovati-
ve E-Commerce Ideas

2002-9 Willem-Jan van den Heuvel(KUB) Inte-
grating Modern Business Applications
with Objectified Legacy Systems

2002-10 Brian Sheppard (UM) Towards Perfect
Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU) Agent Ba-
sed Modelling of Dynamics: Biological
and Organisational Applications

2002-12 Albrecht Schmidt (Uva) Processing
XML in Database Systems

2002-13 Hongjing Wu (TUE) A Reference Ar-
chitecture for Adaptive Hypermedia Ap-
plications

2002-14 Wieke de Vries (UU) Agent Interaction:
Abstract Approaches to Modelling, Pro-
gramming and Verifying Multi-Agent
Systems

2002-15 Rik Eshuis (UT) Semantics and Verifi-
cation of UML Activity Diagrams for
Workflow Modelling

2002-16 Pieter van Langen (VU) The Anatomy
of Design: Foundations, Models and Ap-
plications

2002-17 Stefan Manegold (UVA) Understand-
ing, Modeling, and Improving Main-Me-
mory Database Performance

2003
2003-1 Heiner Stuckenschmidt (VU) Ontology-

Based Information Sharing in Weakly
Structured Environments

2003-2 Jan Broersen (VU) Modal Action Logics
for Reasoning About Reactive Systems

2003-3 Martijn Schuemie (TUD) Human-Com-
puter Interaction and Presence in Virtual
Reality Exposure Therapy

2003-4 Milan Petkovic (UT) Content-Based Vi-
deo Retrieval Supported by Database
Technology

2003-5 Jos Lehmann (UVA) Causation in Artifi-
cial Intelligence and Law - A modelling
approach

2003-6 Boris van Schooten (UT) Development
and specification of virtual environments

2003-7 Machiel Jansen (UvA) Formal Explora-
tions of Knowledge Intensive Tasks

2003-8 Yongping Ran (UM) Repair Based Sche-
duling

2003-9 Rens Kortmann (UM) The resolution of
visually guided behaviour

2003-10 Andreas Lincke (UvT) Electronic Busi-
ness Negotiation: Some experimental stu-
dies on the interaction between medium,
innovation context and culture

2003-11 Simon Keizer (UT) Reasoning
under Uncertainty in Natural Language
Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT) Dutch speech
recognition in multimedia information re-
trieval

2003-13 Jeroen Donkers (UM) Nosce Hostem -
Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN) Freezing
Language: Conceptualisation Processes
across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD) Plan Merg-
ing in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI) Feature
Grammar Systems - Incremental Mainte-
nance of Indexes to Digital Media Ware-
houses

2003-17 David Jansen (UT) Extensions of State-
charts with Probability, Time, and Stochas-
tic Timing

2003-18 Levente Kocsis (UM) Learning Search
Decisions

2004

2004-1 Virginia Dignum (UU) A Model for Or-
ganizational Interaction: Based on Agents,
Founded in Logic

2004-2 Lai Xu (UvT) Monitoring Multi-party Con-
tracts for E-business

2004-3 Perry Groot (VU) A Theoretical and Em-
pirical Analysis of Approximation in Sym-
bolic Problem Solving

2004-4 Chris van Aart (UVA) Organizational Prin-
ciples for Multi-Agent Architectures

2004-5 Viara Popova (EUR) Knowledge discov-
ery and monotonicity

2004-6 Bart-Jan Hommes (TUD) The Evaluation
of Business Process Modeling Techniques

2004-7 Elise Boltjes (UM) Voorbeeldig onderwijs;
voorbeeldgestuurd onderwijs, een opstap
naar abstract denken, vooral voor meis-
jes

2004-8 Joop Verbeek(UM) Politie en de Nieuwe
Internationale Informatiemarkt, Grensre-
gionale politiële gegevensuitwisseling en
digitale expertise

2004-9 Martin Caminada (VU) For the Sake of
the Argument; explorations into argument-
based reasoning

2004-10 Suzanne Kabel (UVA) Knowledge-rich
indexing of learning-objects

2004-11 Michel Klein (VU) Change Management
for Distributed Ontologies

2004-12 The Duy Bui (UT) Creating emotions
and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT) Using Multiple
Models of Reality: On Agents who Know
how to Play

2004-14 Paul Harrenstein (UU) Logic in Con-
flict. Logical Explorations in Strategic
Equilibrium

2004-15 Arno Knobbe (UU) Multi-Relational
Data Mining

