2,886 research outputs found

    Optimal execution strategy with an uncertain volume target

    Full text link
    In the seminal paper on optimal execution of portfolio transactions, Almgren and Chriss (2001) define the optimal trading strategy to liquidate a fixed volume of a single security under price uncertainty. Yet there exist situations, such as in the power market, in which the volume to be traded can only be estimated and becomes more accurate when approaching a specified delivery time. During the course of execution, a trader should then constantly adapt their trading strategy to meet their fluctuating volume target. In this paper, we develop a model that accounts for volume uncertainty and we show that a risk-averse trader has benefit in delaying their trades. More precisely, we argue that the optimal strategy is a trade-off between early and late trades in order to balance risk associated with both price and volume. By incorporating a risk term related to the volume to trade, the static optimal strategies suggested by our model avoid the explosion in the algorithmic complexity usually associated with dynamic programming solutions, all the while yielding competitive performance

    Optimal Execution with Dynamic Order Flow Imbalance

    Full text link
    We examine optimal execution models that take into account both market microstructure impact and informational costs. Informational footprint is related to order flow and is represented by the trader's influence on the flow imbalance process, while microstructure influence is captured by instantaneous price impact. We propose a continuous-time stochastic control problem that balances between these two costs. Incorporating order flow imbalance leads to the consideration of the current market state and specifically whether one's orders lean with or against the prevailing order flow, key components often ignored by execution models in the literature. In particular, to react to changing order flow, we endogenize the trading horizon TT. After developing the general indefinite-horizon formulation, we investigate several tractable approximations that sequentially optimize over price impact and over TT. These approximations, especially a dynamic version based on receding horizon control, are shown to be very accurate and connect to the prevailing Almgren-Chriss framework. We also discuss features of empirical order flow and links between our model and "Optimal Execution Horizon" by Easley et al (Mathematical Finance, 2013).Comment: 31 pages, 8 figure

    An Optimal Execution Problem with S-shaped Market Impact Functions

    Get PDF
    In this study, we extend the optimal execution problem with convex market impact function studied in Kato (2014) to the case where the market impact function is S-shaped, that is, concave on [0,xˉ0][0, \bar {x}_0] and convex on [xˉ0,∞)[\bar {x}_0, \infty ) for some xˉ0≥0\bar {x}_0 \geq 0. We study the corresponding Hamilton-Jacobi-Bellman equation and show that the optimal execution speed under the S-shaped market impact is equal to zero or larger than xˉ0\bar {x}_0. Moreover, we provide some examples of the Black-Scholes model. We show that the optimal strategy for a risk-neutral trader with small shares is the time-weighted average price strategy whenever the market impact function is S-shaped.Comment: 22 pages, 2 figures, forthcoming in "Communications on Stochastic Analysis

    Optimal High Frequency Trading in a Pro-Rata Microstructure with Predictive Information

    Get PDF
    We propose a framework to study optimal trading policies in a one-tick pro-rata limit order book, as typically arises in short-term interest rate futures contracts. The high-frequency trader has the choice to trade via market orders or limit orders, which are represented respectively by impulse controls and regular controls. We model and discuss the consequences of the two main features of this particular microstructure: first, the limit orders sent by the high frequency trader are only partially executed, and therefore she has no control on the executed quantity. For this purpose, cumulative executed volumes are modelled by compound Poisson processes. Second, the high frequency trader faces the overtrading risk, which is the risk of brutal variations in her inventory. The consequences of this risk are investigated in the context of optimal liquidation. The optimal trading problem is studied by stochastic control and dynamic programming methods, which lead to a characterization of the value function in terms of an integro quasi-variational inequality. We then provide the associated numerical resolution procedure, and convergence of this computational scheme is proved. Next, we examine several situations where we can on one hand simplify the numerical procedure by reducing the number of state variables, and on the other hand focus on specific cases of practical interest. We examine both a market making problem and a best execution problem in the case where the mid-price process is a martingale. We also detail a high frequency trading strategy in the case where a (predictive) directional information on the mid-price is available. Each of the resulting strategies are illustrated by numerical tests

    Statistically validated network of portfolio overlaps and systemic risk

    Get PDF
    Common asset holding by financial institutions, namely portfolio overlap, is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and thus severe losses at the systemic level. In this paper we propose a method to assess the statistical significance of the overlap between pairs of heterogeneously diversified portfolios, which then allows us to build a validated network of financial institutions where links indicate potential contagion channels due to realized portfolio overlaps. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be in general applied to any bipartite network where the presence of similar sets of neighbors is of interest. We find that the proportion of validated network links (i.e., of statistically significant overlaps) increased steadily before the 2007-2008 global financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013, reaching levels not seen since 2007. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about financial institutions that are about to suffer (enjoy) the most significant losses (gains)
    • …
    corecore