5,290 research outputs found

    Optimal Rate Sampling in 802.11 Systems

    Full text link
    In 802.11 systems, Rate Adaptation (RA) is a fundamental mechanism allowing transmitters to adapt the coding and modulation scheme as well as the MIMO transmission mode to the radio channel conditions, and in turn, to learn and track the (mode, rate) pair providing the highest throughput. So far, the design of RA mechanisms has been mainly driven by heuristics. In contrast, in this paper, we rigorously formulate such design as an online stochastic optimisation problem. We solve this problem and present ORS (Optimal Rate Sampling), a family of (mode, rate) pair adaptation algorithms that provably learn as fast as it is possible the best pair for transmission. We study the performance of ORS algorithms in both stationary radio environments where the successful packet transmission probabilities at the various (mode, rate) pairs do not vary over time, and in non-stationary environments where these probabilities evolve. We show that under ORS algorithms, the throughput loss due to the need to explore sub-optimal (mode, rate) pairs does not depend on the number of available pairs, which is a crucial advantage as evolving 802.11 standards offer an increasingly large number of (mode, rate) pairs. We illustrate the efficiency of ORS algorithms (compared to the state-of-the-art algorithms) using simulations and traces extracted from 802.11 test-beds.Comment: 52 page

    Experimental Evaluation of Large Scale WiFi Multicast Rate Control

    Full text link
    WiFi multicast to very large groups has gained attention as a solution for multimedia delivery in crowded areas. Yet, most recently proposed schemes do not provide performance guarantees and none have been tested at scale. To address the issue of providing high multicast throughput with performance guarantees, we present the design and experimental evaluation of the Multicast Dynamic Rate Adaptation (MuDRA) algorithm. MuDRA balances fast adaptation to channel conditions and stability, which is essential for multimedia applications. MuDRA relies on feedback from some nodes collected via a light-weight protocol and dynamically adjusts the rate adaptation response time. Our experimental evaluation of MuDRA on the ORBIT testbed with over 150 nodes shows that MuDRA outperforms other schemes and supports high throughput multicast flows to hundreds of receivers while meeting quality requirements. MuDRA can support multiple high quality video streams, where 90% of the nodes report excellent or very good video quality

    Performance degradation due to multipath noise for narrowband OFDM systems: channel-based analysis and experimental determination

    Get PDF
    The performance of OFDM systems over a multipath channel can strongly degrade due to the propagation delay spread. The distortion of the received signal over the fast Fourier transform window is referred to as multipath noise. This work aims to analytically determine the performance loss due to multipath noise as a function of OFDM and channel parameters for narrowband OFDM systems. First, it is investigated whether it is possible to describe the multipath noise, varying over different OFDM packets due to the temporal variation of the channel, by an effective noise factor F-delay, from which the loss factor is directly determined. Second, the theory of room electromagnetics is applied to develop a closed-form expression for F-delay as a function of the OFDM and reverberation parameters. This analytical method is validated with excellent agreement. Finally, the loss factor is determined for IEEE 802.11 based on channel measurements in two large conference rooms, providing values up to 19 dB for an 800 ns cyclic prefix length

    On the Impact of Wireless Jamming on the Distributed Secondary Microgrid Control

    Full text link
    The secondary control in direct current microgrids (MGs) is used to restore the voltage deviations caused by the primary droop control, where the latter is implemented locally in each distributed generator and reacts to load variations. Numerous recent works propose to implement the secondary control in a distributed fashion, relying on a communication system to achieve consensus among MG units. This paper shows that, if the system is not designed to cope with adversary communication impairments, then a malicious attacker can apply a simple jamming of a few units of the MG and thus compromise the secondary MG control. Compared to other denial-of-service attacks that are oriented against the tertiary control, such as economic dispatch, the attack on the secondary control presented here can be more severe, as it disrupts the basic functionality of the MG

    Managed Exercise Monitoring: a Novel Application of Wireless On-Body Inertial Sensing

    Get PDF
    • 

    corecore