416 research outputs found

    A Coded Bit-Loading Linear Precoded Discrete Multitone Solution for Power Line Communication

    Get PDF
    Linear precoded discrete multitone modulation (LP-DMT) system has been already proved advantageous with adaptive resource allocation algorithm in a power line communication (PLC) context. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LP-DMT system is presented in the PLC context with a loading algorithm which ccommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the roposed algorithm is analyzed. Simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than classical coded discrete multitone

    Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-Part I: Nash Equilibria

    Full text link
    In this two-parts paper we propose a decentralized strategy, based on a game-theoretic formulation, to find out the optimal precoding/multiplexing matrices for a multipoint-to-multipoint communication system composed of a set of wideband links sharing the same physical resources, i.e., time and bandwidth. We assume, as optimality criterion, the achievement of a Nash equilibrium and consider two alternative optimization problems: 1) the competitive maximization of mutual information on each link, given constraints on the transmit power and on the spectral mask imposed by the radio spectrum regulatory bodies; and 2) the competitive maximization of the transmission rate, using finite order constellations, under the same constraints as above, plus a constraint on the average error probability. In Part I of the paper, we start by showing that the solution set of both noncooperative games is always nonempty and contains only pure strategies. Then, we prove that the optimal precoding/multiplexing scheme for both games leads to a channel diagonalizing structure, so that both matrix-valued problems can be recast in a simpler unified vector power control game, with no performance penalty. Thus, we study this simpler game and derive sufficient conditions ensuring the uniqueness of the Nash equilibrium. Interestingly, although derived under stronger constraints, incorporating for example spectral mask constraints, our uniqueness conditions have broader validity than previously known conditions. Finally, we assess the goodness of the proposed decentralized strategy by comparing its performance with the performance of a Pareto-optimal centralized scheme. To reach the Nash equilibria of the game, in Part II, we propose alternative distributed algorithms, along with their convergence conditions.Comment: Paper submitted to IEEE Transactions on Signal Processing, September 22, 2005. Revised March 14, 2007. Accepted June 5, 2007. To be published on IEEE Transactions on Signal Processing, 2007. To appear on IEEE Transactions on Signal Processing, 200

    On the Transport Capability of LAN Cables in All-Analog MIMO-RoC Fronthaul

    Full text link
    Centralized Radio Access Network (C-RAN) architecture is the only viable solution to handle the complex interference scenario generated by massive antennas and small cells deployment as required by next generation (5G) mobile networks. In conventional C-RAN, the fronthaul links used to exchange the signal between Base Band Units (BBUs) and Remote Antenna Units (RAUs) are based on digital baseband (BB) signals over optical fibers due to the huge bandwidth required. In this paper we evaluate the transport capability of copper-based all-analog fronthaul architecture called Radio over Copper (RoC) that leverages on the pre-existing LAN cables that are already deployed in buildings and enterprises. In particular, the main contribution of the paper is to evaluate the number of independent BB signals for multiple antennas system that can be transported over multi-pair Cat-5/6/7 cables under a predefined fronthauling transparency condition in terms of maximum BB signal degradation. The MIMO-RoC proves to be a complementary solution to optical fiber for the last 200m toward the RAUs, mostly to reuse the existing LAN cables and to power-supply the RAUs over the same cable

    A near-optimal linear crosstalk precoder for downstream VDSL

    Get PDF
    This paper presents a linear crosstalk precoder for VDSL that has a low run-time complexity. A lower bound on the data-rate of the precoder is developed and guarantees that the precoder achieves near-optimal performance in 99% of VDSL channels

    A Near-Optimal Linear Crosstalk Precoder for VDSL

    Get PDF
    Crosstalk is the major source of performance degradation in VDSL. In downstream transmission crosstalk precoding can be applied. The transmitted signal is predistorted, such that the predistortion annihilates with the crosstalk introduced in the binder. Several crosstalk precoders have been proposed. Unfortunately they either give poor performance or require non-linear operations, which results in a high complexity. In this paper we present a simple, linear diagonalizing crosstalk precoder with low run-time complexity. A lower bound on the performance of the DP is derived. This allows performance to be predicted without explicit knowledge of the crosstalk channels, which simplies service provisioning considerably. This bound shows that the DP operates close to the single-user bound. So the DP is a low complexity design with predictable, near-optimal performance. The combination of spectra optimization and crosstalk precoding is also considered. Spectra optimization in a broadcast channel generally involves a highly complex optimization problem. Since the DP decouples transmission on each line, the spectrum on each modem can be optimized through a dual decomposition, leading to a significant reduction in complexity

    Ordered Tomlinson-Harashima Precoding in G.fast Downstream

    Full text link
    G.fast is an upcoming next generation DSL standard envisioned to use bandwidth up to 212 MHz. Far-end crosstalk (FEXT) at these frequencies greatly overcomes direct links. Its cancellation based on non-linear Tomlinson-Harashima Precoding (THP) proved to show significant advantage over standard linear precoding. This paper proposes a novel THP structure in which ordering of successive interference pre-cancellation can be optimized for downstream with non-cooperating receivers. The optimized scheme is compared to existing THP structure denoted as equal-rate THP which is widely adopted in wireless downlink. Structure and performance of both methods differ significantly favoring the proposed scheme. The ordering that maximizes the minimum rate (max-min fairness) for each tone of the discrete multi-tone modulation is the familiar V-BLAST ordering. However, V-BLAST does not lead to the global maximum when applied independently on each tone. The proposed novel Dynamic Ordering (DO) strategy takes into account asymmetric channel statistics to yield the highest minimum aggregated rate.Comment: 7 pages, 11 figures, Accepted at the 2015 IEEE Globecom 2015, Selected Areas in Communications: Access Networks and Systems, 6-10 December, 201
    • …
    corecore