62,496 research outputs found

    Multiflow Transmission in Delay Constrained Cooperative Wireless Networks

    Full text link
    This paper considers the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of kk-flows, and formally prove that the problem is not only NP-hard but it is o(n1/7āˆ’Ļµ)o(n^{1/7-\epsilon}) inapproxmiable. To our knowledge*, these results provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and devise a polynomial time algorithm for jointly optimizing routing, scheduling and power control. We then use this algorithm to establish analytical upper and lower bounds for the optimal performance for the general case of kk flows. Furthermore, we propose a polynomial time heuristic for calculating the solution for the general case and evaluate the performance of this heuristic under different channel conditions and against the analytical upper and lower bounds.Comment: 9 pages, 5 figure

    Polyhedral restrictions of feasibility regions in optimal power flow for distribution networks

    Get PDF
    The optimal power flow (OPF) problem is one of the most fundamental problems in power system operations. The non-linear alternating current (AC) power flow equations that model different physical laws (together with operational constraints) lay the foundation for the feasibility region of the OPF problem. While significant research has focused on convex relaxations, which are approaches to solve an OPF problem by enlarging the true feasibility region, the opposite approach of convex restrictions offers valuable insights as well. Convex restrictions, including polyhedral restrictions, reduce the true feasible region to a convex region, ensuring that it contains only feasible points. In this work, we develop a sequential optimization method that offers a scalable way to obtain (bounds on) solutions to OPF problems for distribution networks. To do so, we first develop sufficient conditions for the existence of feasible power flow solutions in the neighborhood of a specific (feasible) operating point in distribution networks, and second, based on these conditions, we construct a polyhedral restriction of the feasibility region. Our numerical results demonstrate the efficacy of the sequential optimization method as an alternative to existing approaches to obtain (bounds on) solutions to OPF problems for distribution networks. By construction, the optimization problems can be solved in polynomial time and are guaranteed to have feasible solutions

    Adjustable Robust Two-Stage Polynomial Optimization with Application to AC Optimal Power Flow

    Full text link
    In this work, we consider two-stage polynomial optimization problems under uncertainty. In the first stage, one needs to decide upon the values of a subset of optimization variables (control variables). In the second stage, the uncertainty is revealed and the rest of optimization variables (state variables) are set up as a solution to a known system of possibly non-linear equations. This type of problem occurs, for instance, in optimization for dynamical systems, such as electric power systems. We combine tools from polynomial and robust optimization to provide a framework for general adjustable robust polynomial optimization problems. In particular, we propose an iterative algorithm to build a sequence of (approximately) robustly feasible solutions with an improving objective value and verify robust feasibility or infeasibility of the resulting solution under a semialgebraic uncertainty set. At each iteration, the algorithm optimizes over a subset of the feasible set and uses affine approximations of the second-stage equations while preserving the non-linearity of other constraints. The algorithm allows for additional simplifications in case of possibly non-convex quadratic problems under ellipsoidal uncertainty. We implement our approach for AC Optimal Power Flow and demonstrate the performance of our proposed method on Matpower instances.Comment: 28 pages, 3 table

    Polyhedral restrictions of feasibility regions in optimal power flow for distribution networks

    Full text link
    The optimal power flow (OPF) problem is one of the most fundamental problems in power system operations. The non-linear alternating current (AC) power flow equations that model different physical laws (together with operational constraints) lay the foundation for the feasibility region of the OPF problem. While significant research has focused on convex relaxations, which are approaches to solve an OPF problem by enlarging the true feasibility region, the opposite approach of convex restrictions offers valuable insights as well. Convex restrictions, including polyhedral restrictions, reduce the true feasible region to a convex region, ensuring that it contains only feasible points. In this work, we develop a sequential optimization method that offers a scalable way to obtain (bounds on) solutions to OPF problems for distribution networks. To do so, we first develop sufficient conditions for the existence of feasible power flow solutions in the neighborhood of a specific (feasible) operating point in distribution networks, and second, based on these conditions, we construct a polyhedral restriction of the feasibility region. Our numerical results demonstrate the efficacy of the sequential optimization method as an alternative to existing approaches to obtain (bounds on) solutions to OPF problems for distribution networks. By construction, the optimization problems can be solved in polynomial time and are guaranteed to have feasible solutions.Comment: 12 pages, 4 figure

    Uncertainty Quantification for Optimal Power Flow Problems

    Get PDF
    The need to deā€carbonize the current energy infrastructure, and the increasing integration of renewables pose a number of difficult control and optimization problems. Among those, the optimal power flow (OPF) problemā€”i.e., the task to minimize power system operation costs while maintaining technical and network limitationsā€”is key for operational planning of power systems. The influx of inherently volatile renewable energy sources calls for methods that allow to consider stochasticity directly in the OPF problem. Here, we present recent results on uncertainty quantification for OPF problems. Modeling uncertainties as secondā€order continuous random variables, we will show that the OPF problem subject to stochastic uncertainties can be posed as an infiniteā€dimensional L2_{2}ā€problem. A tractable reformulation thereof can be obtained using polynomial chaos expansion (PCE), under mild assumptions. We will show advantageous features of PCE for OPF subject to stochastic uncertainties. For example, multivariate nonā€Gaussian uncertainties can be considered easily. Finally, we comment on recent progress on a Julia package for PCE
    • ā€¦
    corecore