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Polyhedral restrictions of feasibility regions in
optimal power flow for distribution networks

M.H.M. Christianen, S. van Kempen, M. Vlasiou and B. Zwart

Abstract— The optimal power flow (OPF) problem is one
of the most fundamental problems in power system oper-
ations. The non-linear alternating current (AC) power flow
equations that model different physical laws (together with
operational constraints) lay the foundation for the feasibil-
ity region of the OPF problem. While significant research
has focused on convex relaxations, which are approaches
to solve an OPF problem by enlarging the true feasibility
region, the opposite approach of convex restrictions offers
valuable insights as well. Convex restrictions, including
polyhedral restrictions, reduce the true feasible region to
a convex region, ensuring that it contains only feasible
points. In this work, we develop a sequential optimization
method that offers a scalable way to obtain (bounds on)
solutions to OPF problems for distribution networks. To do
so, we first develop sufficient conditions for the existence
of feasible power flow solutions in the neighborhood of a
specific (feasible) operating point in distribution networks,
and second, based on these conditions, we construct a
polyhedral restriction of the feasibility region. Our numer-
ical results demonstrate the efficacy of the sequential opti-
mization method as an alternative to existing approaches to
obtain (bounds on) solutions to OPF problems for distribu-
tion networks. By construction, the optimization problems
can be solved in polynomial time and are guaranteed to
have feasible solutions.

Index Terms— Optimal Power Flow, Polyhedral Restric-
tion, Sequential Optimization

I. INTRODUCTION

The optimal power flow (OPF) problem aims to determine
power generations and demands (loads) in an electricity net-
work to meet certain objectives such as minimizing generation
cost, that are in the feasibility region. A set of loads are in the
feasibility region when they satisfy two sets of constraints.
First, the non-linear AC power flow equations that model
physical laws, and second, operational constraints, such as
capacity and security constraints on voltages and power flows.
Finding solutions to the first set of constraints is one of the
main hurdles in solving OPF problems, which has been one
of the most fundamental tasks in system operations [2], [6].
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Recently, the OPF problem has become more important
for distribution networks, due to the emergence of distributed
generation (e.g., solar panels) and controllable loads (e.g.,
electric vehicles (EVs)). Unexpected changes or variations in
generation or consumption of electric power make it difficult to
predict distributed generation, potentially leading to constraint
violations. To deal with these changes, solving the OPF
problem in real-time is required.

We introduce a scalable sequential optimization method for
obtaining (bounds on) solutions to OPF problems for distri-
bution networks. This method is based on two key compo-
nents. First, we develop sufficient conditions for the existence
of feasible power flow solutions around a specific feasible
operating point in distribution networks, and subsequently,
we construct a polyhedral restriction of the true feasibility
region using these conditions. Such a polyhedral restriction
has two desirable characteristics. First, by construction, all
points within the restriction are AC power flow feasible. This
is in contrast to approximations (linearizations) and convex
relaxations, which in general do not result in feasible solutions
to the AC power flow equations. Second, optimizing a certain
objective function of an OPF problem over a polyhedral
region is as computationally efficient as the alternative path of
linearizing power flow equations. Last, we compare the poly-
hedral restriction with existing convex restrictions and check
the validity of the sequential optimization method by various
numerical experiments on different distribution networks.

Finding solutions to the power flow equations is challenging
due to their non-linearity. Solutions may not exist, and if they
do, finding them is difficult [4].

For classical power flow algorithms there are only a few
theoretical guarantees for the convergence to solutions, if
they exist [8]. More recently, new algorithms based on fixed
point iterations have been introduced, since various fixed
point theorems can guarantee existence and/or uniqueness of
solutions to the power flow equations. In [22], an extension of
the work in [1], a fixed point load-flow method is presented
for radial distribution networks with a single slack bus. In
the same paper, sufficient conditions are given to guarantee
the existence and uniqueness of the solution. These sufficient
conditions are further improved in [19]. Furthermore, these
conditions control the power injections in order to enforce
the important voltage drop constraint in distribution networks.
While we are in the same setting as in the previous mentioned
works, a distinguishing factor of our work lies in the conditions
established. Our approach yields affine constraints in terms of
the loads, setting it apart from the work done in [1], [19], [22].
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Having conditions on the existence of feasible solutions
to the power flow equations in OPF problems is valuable,
but it does not solve OPF problems. Embedding the non-
linear power flow equations in optimization problems yield
difficulties in solving these problems due to nonconvexity.
In general, there are three ways to deal with this challenge:
(i) approximate (and in most cases, linearize) the power flow
equations, (ii) relax the feasibility region by making it convex
and (iii) restrict the feasibility region by making it convex.

The last type of OPF methods contrasts with convex relax-
ations, such as Semidefinite Programming (SDP) or Second-
Order Cone Programming (SOCP) relaxations [7], [10], since
the methods restrict the non-convex OPF feasible region to
become convex by removing feasible points. The solution
obtained through convex restrictions are always feasible with
respect to the AC power flow equations and are always a bound
on the solution for the original OPF problem.

The related literature on convex restrictions is different from
our work in two directions. It either lacks a guarantee on
feasibility of the power flow equations or, if this is guaranteed,
fails to yield affine constraints in terms of the loads.

In early work [21] on convex restrictions of power flow
equations, a “security” region is constructed. This set consists
of load demands and power generations for which the power
flow equations and the security constraints imposed by oper-
ating constraints are satisfied. However, this security region is
constructed with the use of approximations of the power flow
equations. In [20], a sequential convex optimization method
is proposed to solve OPF problems over radial networks.
However, the convex functions used to approximate the non-
convex parts are not necessarily restrictions of the feasible
region and therefore do no guarantee feasibility.

In [5], a new approach for the construction of convex
regions where the AC power flow equations are guaranteed to
have feasible solutions is introduced. The construction is based
on solving SDP problems. The resulting regions, polytopes or
ellipsoids, can be efficiently used for assessment of system
security in the presence of uncertainty. Similar work has been
done by the authors in [11], [12], [13]. In [11], a framework
of constructing convex restrictions is built and applied to the
power flow feasibility problem. The convex restrictions are
used for the identification of a feasible path between two points
[12], and extended to a robust convex restriction that accounts
for uncertainty in the power injections [13].

To summarize, the main contributions of this paper are:
1) We restrict the feasibility region of the AC-OPF problem

to a feasible region with only affine constraints. The formu-
lation guarantees that there exists at least one solution to the
non-linear power flow equations that also satisfies operational
constraints, including the important voltage drop constraints.

2) Using the polyhedral restriction in different OPF prob-
lems, we propose a sequential optimization method which in
each iteration (i) constructs a polyhedral restriction around a
feasible point and (ii) solves an OPF problem to obtain a better
feasible point (in view of the objective function).

3) We show the conservativeness of the polyhedral re-
striction and the applicability of the sequential optimization
method using numerical experiments on different test cases.

This paper is organized as follows. Section II introduces
the model for a distribution network. Section III derives
the sufficient conditions for the existence of at least one
feasible solution to the power flow equations and operational
constraints which can be used to construct a polyhedral restric-
tion of the true feasible region, and extends this polyhedral
restriction to develop a sequential optimization method to
solve OPF problems. Section IV demonstrates the use of this
method in different scenarios. Section V concludes the paper.

II. MODEL DESCRIPTION

A. Notation
We consider a distribution network modeled by a rooted tree

G = (N , E) with N = {0} ∪ {1, 2, . . . , N} nodes (or buses),
where the root node 0 is the main feeder (or slack bus) and
the remaining nodes are load nodes (or PQ buses). An edge
(or distribution line) (j, k) ∈ E connects nodes j and k.

Let V0 denote the complex voltage, I0 the complex current,
and s0 the complex power injected of the slack bus, let V =
(V1, V2, . . . , VN )T denote the vector of complex voltages, I =
(I1, I2, . . . , IN )T the vector of complex currents, and s =
(s1, s2, . . . , sN )T the vector of complex powers injected into
the PQ buses (a positive value in the real or the imaginary
part means that power is consumed).

Moreover, for a bus j ∈ N\{0}, power can be exclusive
generation, consumption, both, or neither. The complex power
consumption of node j ∈ N is scj = pcj+iqcj , where pcj and qcj
denote the active and reactive power consumption. Similarly,
the complex power generation is given by sgj = pgj + iqgj . We
use the term load for power consumption minus generation
and injection for its logical counterpart.

For a line (j, k) ∈ E , the admittance yjk and impedance
zjk are given by zjk = rjk + ixjk = 1/yjk, where rjk ≥
0, xjk ≥ 0 are the resistance and reactance of line (j, k) ∈ E ,
respectively. Note that yjk = ykj and zjk = zkj . We introduce
the admittance bus matrix Y ∈ C(N+1)×(N+1) as

Y =

(
Y00 Y0L

YL0 YLL

)
, (1)

with Y00 ∈ C, Y0L ∈ C1×N , YL0 ∈ CN×1,YLL ∈ CN×N

where all elements Yjk of the matrix Y are defined by

Yjk =

{
−yjk, if j ̸= k,∑

m=0,m̸=j yjm, if j = k,

and yjk = 0 if (j, k) /∈ E .
We define the impedance bus matrix Z as the inverse of the

reduced admittance matrix YLL, proven to be non-singular
for a broad range of distribution networks [19]; i.e.,

Z := Y−1
LL. (2)

Due to general disadvantages of matrix inversion, we provide
a different formulation of the Z-matrix [17],

Zjk =
∑

(m,l)∈P(j)∩P(k)

zml, (3)

where P(j) is the unique path from node j to the main feeder.
Efficient methods for the construction of the Z-matrix exist
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[14]. By splitting the real and imaginary parts in Z = R+iX,
we define the elements in the resistance bus matrix R and the
reactance bus matrix X similar as in (3), except for replacing
elements zml by rml and xml, respectively. For a complex
number w = a + bi, we use Re(w) for its real part, Im(w)
for its imaginary part, w∗ for its complex conjugate, |w| =√
a2 + b2 for its magnitude, and for a matrix W of complex

elements, |W| denotes the same operation applied per element.

B. Fixed point equation for the voltages
As known [19], the powers and currents can be expressed

in matrix form as

−
(
s∗0
s∗

)
=

(
V0 0
0 diag(V∗)

)(
I0
I

)
, (4)(

I0
I

)
= Y

(
V0

V

)
. (5)

Equating both representations of I in (4) and (5), keeping
in mind (2) and solving for V yields

V = −V0ZYL0 − Zdiag(V∗)−1s∗. (6)

Remark 1: The radial network structure implies

−V0ZYL0 = V01
N , (7)

which is the load profile in case there is no power consumption
nor generation in the network. This can be seen by consid-
ering the definition of the admittance bus matrix Y in (1):
[YL0 YLL]1

N+1 = YL0 + YLL1
N = 0, or equivalently

−Y−1
LLYL0 = −ZYL0 = 1N , if the reduced admittance

matrix Y−1
LL exists. Multiplying both sides by V0 yields (7).

By using (7), the power flow equations in (6) can be
rewritten as fixed-point equations:

V = G(V) := V01
N − Zdiag(V∗)−1s∗. (8)

Given a load profile s, we perform the corresponding iterations

V(k+1) = V01
N − Zdiag(V∗(k))−1s∗

of (8), to compute the corresponding voltage V.
Remark 2: Whenever we talk about a solution to the power

flow equations, we actually talk about the pair (V, s) that
satisfies the power flow equations in (8).

Similarly, equating both representations of I0, and solving
for s∗0 yields

s∗0 = −V0Y00V0 − V0Y0LV. (9)

Thus, after using (8), the power injection at the slack bus can
be computed.

C. OPF formulation
In this paper, we consider a traditional AC-OPF-like for-

mulation defined by the following equations and inequalities:

Power flow equations in (8), (10a)

Vj ≤ |Vj | ≤ Vj , j ∈ N , (10b)

sj ∈ Sj , j ∈ N . (10c)

In addition to the power flow equations in (10a), inequalities
(10b) provide the voltage drop constraints. The inequalities in
(10b) imply that the magnitude of any voltage Vj falls between
the lower bound Vj and the upper bound Vj . Last, Equation
(10c) restricts the complex powers to some admissible set.

More constraints might be enforced in (10) regarding other
physical limitations. We refer to [18] for a review of OPF
requirements in real-life grids.

In what follows, we restrict the feasible region of (10) to
another set of equations and inequalities for which we can
guarantee a solution to the power flow equations in (10a). To
do so, we introduce a subset of all voltages Vj that satisfy the
inequalities (10b) and reformulate the equations (10c).

Inequalities (10b) assure that the voltage magnitudes are
within a certain range. We allow a ∆% voltage deviation from
the nominal voltage V̂0, denoted by pre-specified bounds (1−
∆)|V̂0| and (1 + ∆)|V̂0|. The choice of ∆ can adhere to safe
operating regimes of appliances or law [6].

In the complex plane, inequalities (10b) define a disk. This
implies that, for a feasible voltage, the vector Vj must have
its endpoint in the disk. However, this does not necessarily
mean that the voltage angle differences are close to each other.
In distribution networks, it is known that the voltage angles
differences are small [3], [8].

To this end, we assume that we have the knowledge of
a pair (V̂, ŝ) that satisfies the power flow equations in (8)
and that the voltage angles differences between V and V̂ are
small. This means that, for ∆ ∈ [0, 1), we define the set of ∆-
stable voltage vectors as all vectors that satisfy the constraint
|Vk − V̂j | ≤ ∆|V̂j | for all k ∈ N\{0}, i.e.,

D := {V ∈ CN : ∥V − V̂∥∞ ≤ ∆|V̂|}. (11)

The set of ∆-stable voltage vectors D can also be repre-
sented in the complex plane. For all voltages Vj in the set D,
it means that the endpoint of the vector Vj is contained in the
ball centered around the endpoint of the vector V̂j with radius
∆|V̂j |. Notice that every voltage Vj that is in the set D satisfies
the inequalities in (10b), i.e., we have a subset of voltages
that satisfy the inequalities in terms of length, see inequalities
(10b), but satisfy extra constraints in terms of direction. We
make this more rigorous in Lemmas 3.2 and 3.3.

Having restricted the inequalities in (10b), we now turn
our attention to the equations in (10c). Constraints for power
consumption arise from physical properties of appliances and
constraints for power generation arise from renewable energy
resource capacity. For example, if sj represents a solar panel
with generation capacity pj and nominal capacity sj , then
Sj = {s ∈ C | −pj ≤ Re(s) ≤ 0, |s| ≤ sj}, or if sj represents
a controllable load with constant power factor η, whose real
power consumption can very from p

j
to pj , then Sj = {s ∈

C | p
j
≤ Re(s) ≤ pj , Im(s) = (

√
1− η2Re(s))/η}, [6], [15].

To reformulate the equations in (10c), we split the variable
sj into consumption scj and generation sgj explicitly, such that
for all j ∈ N ,

sj = scj − sgj , scj = pcj + iqcj , sgj = pgj + iqgj ,

pcj , p
g
j , q

c
j , q

g
j ≥ 0.
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Then, using the subset of inequalities in (10b) and splitting
of the variables sj in consumption and generation, we can
formulate the restriction of (10) as

Power flow equations in (8), (12a)

|Vj − V̂j | ≤ ∆|V̂j |, (12b)
pcj ∈ Pc

j , q
c
j ∈ Qc

j , p
g
j ∈ Pg

j , q
g
j ∈ Qg

j j ∈ N , (12c)

pcj , p
g
j , q

c
j , q

g
j ≥ 0, j ∈ N . (12d)

We define the feasibility region of (12) as

S := {s̃ ∈ R4N
+ : ∃V ∈ D that satisfies G(V) = V and has

sj ∈ Sj for all j ∈ N}, (13)

where s̃ = (pc,qc,pg,qg)T . This is a natural definition: the
existence of a voltage V ∈ D implies the inequalities in (12b),
the equality G(V) = V ensures the satisfaction of (12a), while
the equations sj ∈ Sj , j ∈ N are reformulated in (12c)–(12d).

Before we state the main results in Section III, we give an
overview of the setting. We assume knowledge of a load vector
ŝ and its corresponding voltage V̂ in the feasibility region S.
The conditions of the polyhedral restriction we develop are
formulated in terms of (V̂, ŝ) and a given s such that sj ∈ Sj

for all j ∈ N , and are used to guarantee the existence of at
least one solution V to (12a) which is “close” to V̂ (cf. the set
of ∆-stable voltage vectors in (11)). This setting is especially
relevant in situations where the operational constraints (12c)–
(12d), typically redundant, give way to the more stringent
constraints imposed by the power flow equations (12a).

III. MAIN RESULTS

In this section, we present two main results. The first main
result is the construction of a polyhedral restriction of the
feasibility region S, for which the power flow equations in
(12a) have at least one solution which satisfies all operational
constraints (12b)–(12d). Mathematically, the polyhedral re-
striction represents sufficient conditions for the existence of at
least one feasible solution that can be quickly checked or even
more importantly, enforced in optimization problems. Con-
sequently, the second main result leverages these polyhedral
restrictions to develop a sequential optimization approach to
obtain (bounds on) solutions to OPF problems.

The first main result is a polyhedral restriction of (13).
Theorem 3.1: Denote V̂min := minj |V̂j |. The set

P :=

{
s̃ ∈ R4N

+ : (A+∆B)s̃ ≤ ∆(1−∆)2V̂ 3
min1

4N+

+ (A−∆(B+ (1−∆)C))˜̂s

}
(14)

is a polyhedral restriction of S, where A,B,C ∈ R4N×4N

are given by

A =


−(R+X) −(−R+X) R+X −R+X
−(−R+X) −(−R−X) −R+X −R−X
−(R−X) −(R+X) R−X R+X
−(−R−X) −(R−X) −R−X R−X

 ,

(15)

B = J4 ⊗ (R+X), and C = J4 ⊗ |Z|, (16)

where J4 is a (4 × 4)- all-ones matrix and ⊗ denotes the
Kronecker-product.

The proof of Theorem 3.1 is structured along the same
lines as the proof of [19, Theorem 1], and makes use of
the following lemmas. First, in Lemma 3.1, we show that
for s̃ ∈ P , the operator G is a self-map on the metric
space D. To show that G is a self-map, we use inequalities
derived in Lemmas 3.2 and 3.3. Last, in Lemma 3.4, we show
that G is continuous on D. We then apply Brouwer’s fixed-
point theorem to conclude that for s̃ ∈ P , there exists a
voltage vector V that is ∆-stable and satisfies the power flow
equations (12a). We now formally state these lemmas.

Lemma 3.1: Let s̃ ∈ P and V ∈ D, then G is a self-map
on D.

Lemma 3.2: Let V ∈ D. Then, the magnitude of all
voltages at all nodes j ∈ N are bounded as follows:

(1−∆)|V̂j | ≤ |Vj | ≤ (1 + ∆)|V̂j |.
Lemma 3.3: Let V ∈ D. For all j ∈ N , denote the voltages

in their exponential form as Vj = |Vj | exp(iθj) and V̂j =
|V̂j | exp(iθ̂j). Then, the voltage angles at all nodes j ∈ N are
bounded as follows:

(1−∆)|V̂j | ≤|Vj | cos(θj − θ̂j) ≤ (1 + ∆)|V̂j |, (17)

−∆|V̂j | ≤|Vj | sin(θj − θ̂j) ≤ ∆|V̂j |. (18)
Lemma 3.4: Let s̃ ∈ P and V ∈ D, then G is a continuous

operator on D.
The proofs of Lemmas 3.1–3.4 are given in the appendix.

Proof: [Proof of Theorem 3.1] Let s̃ ∈ P and V ∈ D.
It is well-known that (CN , ℓ∞) is a Banach space. The disk
D is a compact subset of CN . Furthermore, from Lemmas
3.1 and 3.4, we have that G is a continuous self-map on D.
Then, from Brouwer’s fixed-point theorem, it follows that G
has a fixed-point V, i.e., there exists a vector V ∈ D such that
G(V) = V. This means that for all complex powers s̃ ∈ P
that can be represented by linear terms of consumption and
generation of power, there exists a voltage vector V that is
∆-stable and satisfies the power flow equations in (12a).

We allow that (V̂, ŝ) includes the pair (V01
N ,0), where

there is no consumption nor injection in the grid. In this case,
the result of Theorem 3.1 reduces to the following corollary.

Corollary 3.1: Observe that if (V̂, ŝ) = (V01
N ,0), then

from Theorem 3.1, we have that P reduces to{
s̃ ∈ R4N

+ : (A+∆B)s̃ ≤ ∆(1−∆)2|V0|314N

}
.

We have derived sufficient polyhedral conditions for AC
power flow feasibility. Now, we provide the second main
result: a sequential optimization method that solves OPF
problems. The method is described in Algorithm 1.

Given a current feasible point (V̂(k), ŝ(k)), each iteration of
the algorithm (i) constructs the polyhedral restriction around
the feasible point, (ii) solves an OPF problem subject to
the current polyhedral constraints, and (iii) updates the new
optimal (and feasible) points (V̂(k+1), ŝ(k+1)), and the voltage
drop parameter ∆ to ensure feasibility, accordingly. The output
of the algorithm is a sequence of variables (V̂(k), ŝ(k)), k =
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0, . . . ,K, that optimize the chosen objective function and
satisfy the power flow equations and operational constraints.

Algorithm 1 Sequential optimization method for solving OPF
with polyhedral restrictions.

1: Initialize: Set s(0) and V(0) as initial feasible point, and
∆(0) as desired voltage drop parameter.

2: while ∥(f(s(k+1))− f(s(k)))/f(s(k))∥2 > ϵ do
3: Construct polyhedral restriction using (14)–(16).
4: Solve

s(k+1) = argmin
s∈P

f(Re(s)). (19)

5: Solve power flow given s(k+1) to obtain V(k+1).
6: Update ∆(k+1) = ∆(0) − ∥V(k) −V(0)∥∞.
7: k := k + 1.
8: end while
9: Return s(1), . . . , s(K).

Depending on the problem setting, we might want to con-
sider a variety of functions f in (19). We provide an example
in classical optimal power flow: given the current state of
the network (V̂, ŝ), we want to find a lower-cost operating
point (V, s) while satisfying the power flow equations and
operational constraints. In the formulation in (19), the OPF
problem is solved by setting the objective to minimize the
generation of active load in the system. The algorithm solves
the OPF using the polyhedral restriction from Theorem 3.1
and iterates by setting the solution to the new feasible point.

IV. NUMERICAL EXPERIMENTS

This section conducts numerical experiments on different
networks outlined in Section IV-A. It compares the polyhe-
dral restriction and another approach that develops sufficient
conditions for the existence of feasible power flow solutions
in Section IV-B, and it shows the efficacy of Algorithm 1 on
the different test cases in Section IV-C.

A. Distribution network models
We validate our algorithm with three distribution network

test cases: the first two are small models (one and two
load buses) demonstrating theoretical concepts, and the third
models a real-life distribution network.

a) Two-node network: We consider a line network with
N = 2 nodes and line E = {(0, 1)}, with impedance z01.
Here, node 1 has power consumption sc1 and generation sg1.

b) Three-node network: We examine a line network with
N = 3 nodes and lines E = {(0, 1), (1, 2)}, with impedances
z01 and z12. The power consumption at node j is scj , the power
generation is sgj and the net load is sj = scj − sgj for j = 1, 2.

Here, we consider two different optimization problems: (i)
maximize the active power consumption and (ii) minimize
the active power generation in the network. For (i), the
optimal solution coincides with the solutions provided by the
SOCP relaxation and the polyhedral restriction. While, for
(ii), the SOCP relaxation gives an infeasible solution and the

polyhedral restriction provides a feasible solution, although not
optimal. The optimal solution can, for such a small network,
be computed using GloptiPoly [9].

c) SCE-47 network: This network is a model of a real-
life distribution grid obtained from the Californian electricity
supply company Southern California Edison. For details about
the SCE-47 network, we refer to [6].

For this network, we consider similar optimization problems
as in the three-node network. Here, we see that all solutions
obtained using the SOCP relaxation are infeasible, while the
polyhedral restriction provides feasible solutions and bounds
on the true optimal solutions.

B. Comparison of different feasibility regions

In this section, we compare the feasibility regions as they
emerge from the polyhedral restriction developed in this paper
and a similar technique in [19]. Specifically, observe that the
proof of the sufficient conditions for the existence of feasible
power flow solutions near a specific operating point in [19,
Theorem 1] is similar to the proof of Theorem 3.1. In what
follows, we highlight the differences in these two proofs,
the specific properties of both sets of sufficient conditions
resulting from them, and visually compare these sets.

In [19], the proof does not consider the complete feasibility
region as in (12), but manage to formulate the power flow
equations and the voltage drop constraint into a similar set
constraints as in (12a)–(12b). On the contrary, in the proof of
Theorem 3.1, we consider the complete set of equations in
(12), assuming that (12c)–(12d) are redundant.

The authors in [19] present explicit sufficient conditions
ensuring the existence and uniqueness of solutions to the
power flow equations. To do so, they reformulated the power-
flow equations as a fixed-point equation that act as a con-
traction mapping on a complete metric space. They apply
Banach’s fixed-point theorem to conclude the existence of a
unique fixed-point for this equation. In our case, while we
guarantee the existence of the fixed-point by Brouwer’s fixed-
point theorem, we do not guarantee its uniqueness.

In [19], the authors identify sufficient conditions without
leveraging them for a convex restriction. In contrast, we use
our sufficient conditions to construct a polyhedral restriction.

To show the qualitative differences between the polyhedral
restriction and the sufficient conditions in [19], we visually
have a look at both regions. We consider the three-node
network model in Section IV-A and analyze the feasibility
region S in (13), the convex region B that can be derived from
the sufficient conditions in [19], and the polyhedral restriction
P in (14), all around the feasible point (V01

N ,0). In what
follows, the regions are visually distinguished by color. The
feasibility region S is represented in red, the convex restriction
B in yellow, and the polyhedral restriction P is illustrated in
blue. The overlap between the polyhedral restriction P and
the convex restriction is indicated by a green color.

We take reactive power and reactance into account. We set
V0 = 1, r01 = r12 = r = 0.01, x01 = x12 = x = 0.001,
and ∆ = 0.1. In this case, we set a non-negative power gen-
eration with power factor 0.9, i.e. p1 = −3, q1 = −3

√
1−0.92

0.9 .
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(a) Wide shot on different regions. (b) Zoomed-in shot on regions.

Fig. 1: Feasible region, polyhedral restriction P, and convex
region for three-node model with r = 0.01, x = 0.001, p1 =

−3, q1 = −3
√
1−0.92

0.9 , and ∆ = 0.1.

In this scenario, the polyhedral restriction P is slightly shifted
to the right of the convex region B, with overlapping and
comparable sizes. In conclusion, the methods are comparable
but qualitatively different.

C. Polyhedral restriction in optimization problems

Here, we show the efficacy of Algorithm 1 on the three
networks described in Section IV-A. We start with a known
initial solution, iteratively construct a restriction, solve the
OPF with simplified affine constraints, and repeat the process
until convergence, i.e., if the difference in objective values
between sequentially found solutions is below some threshold.
While optimal solutions are known for the first two networks,
the optimal solution for the third network is unknown.

1) Two-node example: We study the two-node network
analytically. It is known that, for this simple system, the SOCP
relaxation is not always exact [10]. Therefore, we construct
an example where the SOCP relaxation is no longer exact by
imposing stricter voltage drop constraints [16].

Without any voltage drop constraints, the feasible region
reduces to the following equalities:

|V1|2 − |V0|2 = 2(rp1 + xq1)− |z|2ℓ, (20)
−q1 = q0 − xℓ, (21)
−p1 = p0 − rℓ, (22)

ℓ = p20 + q20 (23)

If s1 is a controllable load with a given power factor, the
variables are (p0, q0, |V1|2, ℓ), and the feasible set consists of
solutions to (20)–(23). Substituting (21)–(22) into (23) yields
a second-order equation in terms of the variable ℓ. Solving this
equation gives two solutions for ℓ corresponding to high- and
low-voltage solutions |V1|2 (according to (20)). In other words,
the feasible region consists of the two points of intersection
between the line defined by (21) and (22) with the convex
surface defined by (23), making it non-convex.

The SOCP relaxation replaces the equality in (23) by an
inequality, requiring ℓ ≥ p20 + q20 . Therefore, the relaxation
includes the interior of the convex surface and enlarges the
feasible set to the line segment joining these two points.

If the objective function of the optimization problem is
linear in the active power p0, then the optimal point over the

SOCP feasible set is the lower feasible point, corresponding
to the high-voltage solution, and hence, the relaxation is exact.

However, adding voltage drop constraints can result in
having a relaxation that is no longer exact. This can be
observed as follows. Rewriting (20) in terms of ℓ, using a
fixed voltage magnitude |V0| = 1 gives

ℓ =
1

z2
(
1 + 2(rp1 + xq1)− |V1|2

)
. (24)

Combining (24) and the voltage drop constraints (1−∆)2 ≤
|V1|2 ≤ (1 + ∆)2 gives a box constraint on the variable ℓ as

1

z2
(
1 + 2(rp1 + xq1)− (1 + ∆)2

)
≤ ℓ ≤

≤ 1

z2
(
1 + 2(rp1 + xq1)− (1−∆)2

)
. (25)

If constraints (25) exclude the lower point, the relaxation is
no longer exact, allowing us to compute the optimality gap.

In this example, bus 0 is the main feeder and has fixed
voltage magnitude |V0| = 1. The load bus consumes 0.1 real
power with a power factor of 10/

√
101 ≈ 1, resulting in a

reactive power consumption of 0.01. The line impedance is
defined by z = 0.7 + 0.1i. Recall that the objective is to
minimize the power generation p0.

Now, the OPF feasible region is summarized as follows:

ℓ |V1|2 p0 q0
High-voltage solution 0.0089 1.1376 -0.0938 -0.0091
Low-voltage solution 2.2751 0.0044 1.4926 0.2175

TABLE I: Feasible region of the specific two-node example.

Formally, the solution for the low-voltage solution meets
all constraints. However, it implies consumption instead of
generation at the main feeder, lacking a physical interpretation.

As discussed before, the feasibility of solutions in the OPF
and SOCP depends on the parameter ∆. We examine two
cases: ∆ = 0.1 corresponds to voltage drop constraints,
0.81 ≤ |V1|2 ≤ 1.21, while ∆ = 0.05 corresponds to
constraints of 0.9025 ≤ |V1|2 ≤ 1.1025.

• Suppose ∆ = 0.1. In our example, r = 0.7, x = 0.1, p1 =
0.1, q1 = 0.01 are given. Using (25) yields that −0.1360 ≤
ℓ ≤ 0.6640. Therefore, only the high-voltage solution, as
depicted in Table I, is feasible. The high-voltage solution is in
the feasible set of SOCP and, hence, the relaxation is exact.

• Suppose ∆ = 0.05. Using (25) yields that 0.0790 ≤
ℓ ≤ 0.4790. Therefore, also the high-voltage solution is no
longer feasible and the relaxation is not exact. Instead, the
SOCP relaxation obtains an infeasible solution, namely at the
intersection of the line defined by (21)–(22) and the lower
bound in (25) which yields p0 = −0.0447 with an optimality
gap of −0.0937 + 0.0447 = −0.0490.

In this specific example, using the polyhedral restriction of
Theorem 3.1 yields the following optimization problem:

min
pc
1,q

c
1,p

g
1 ,q

g
1

pc0 − pg0

s.t. (A+∆B)
(
pc1, q

c
1, p

g
1, q

g
1

)T ≤

∆14 + (A−∆(B+ (1−∆)C))
(
0, 0, 0.1, 0.01

)T
pc1 = 0, pg1 = 0.1, qc1 = 0, qg1 = 0.01, (26a)
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where the matrices A,B and C are given by (15)–(16).
For ∆ = 0.1, the only feasible point of (26) is s1 =

0.1+ 0.01i, aligning with constraints (26a). This immediately
yields the power generation at the main feeder by (9) as
s0 = −0.0938−0.0109i, resulting in p0 = −0.0938. However,
for ∆ = 0.05, there is no feasible point for (26).

2) Three-node example: In this example, we consider the
three-node model from Section IV-A. We set the voltage at
the root node to V0 = 1, and use equal resistances on the
lines, r01 = r12 = 0.01, and equal reactances, x01 = x12 =
0.001. This yields a relatively high resistance-to-reactance
ratio, which is usual in distribution networks. Additionally,
we define the voltage drop control parameter as ∆ = 0.1, and
we constrain power consumption and generation within the
bounds Pc

1 = Pc
2 = [0, 35] and Pg

1 = Pg
2 = [0, 35].

We address two optimization problems over these regions:
one maximizes the active load, and the other minimizes the
active generation in the network using Algorithm 1.

Irrespective of the objective function, Algorithm 1 follows
the same steps. For initialization, we choose the feasible point
(V, s) = (1,0), setting V(0) = 1 and s(0) = 0. We ensure a
maximum voltage deviation of 10% from the nominal voltage
magnitude |V̂0| = 1. This means that all voltage vectors that
satisfy the constraint |V (k)

j − 1| ≤ 0.1 for all j ∈ N\{0} and
every iteration k are allowed. In other words, we set ∆(0) =
0.1. In the first step, we construct a polyhedral restriction
around the feasible point (V(0), s(0)) using Theorem 3.1 (or
in the special case of (V, s) = (1,0) using Corollary 3.1). For
the second step, we solve the optimization problem defined in
(30) over the constructed polyhedral restriction. The outcome,
a new load vector s(1), maximizes the objective function in
(30) and is contained in the true feasible region. As a third step,
the new load vector s(1) is used to compute the corresponding
voltage vector V(1) via the power flow equations in (8). To
enforce the constraint |V (2)

j − V̂0| ≤ ∆(0) for all j ∈ N\{0}
for the second iteration, we allow the maximal difference
between corresponding elements of the vectors V(2) and V(1),
to be ∆(1) := ∆(0) − ∥V(1) − 1∥∞, such that,

∥V(2) − 1∥∞ ≤ ∥V(2) −V(1)∥∞ + ∥V(1) − 1∥ (27)

≤ ∆(1) + ∥V(1) − 1∥∞ ≤ ∆(0), (28)

as desired. For any iteration k, updating the parameter ∆(k)

to control the voltage drop as

∆(k) := ∆(0) − ∥V(k) − 1∥∞,

yields the desired inequality |V (k)
j − 1| ≤ ∆(0) for all

nodes j ∈ N\{0} and every iteration k, according to the
same logic as in (27)–(28) for any iterations k and k + 1
instead of iterations 1 and 2. Iterating this procedure of
constructing polyhedral restrictions around feasible points,
solving optimization problems with polyhedral constraints,
and updating new optimal feasible points while the relative
Eucledian distance between subsequent load flow solutions
s(k+1) and s(k) is larger than a predefined threshold ϵ = 0.01,
yield a sequence of optimal (with respect to each polyhedral
restriction) and feasible load flow solutions s(1), . . . , s(K).

Fig. 2: Accuracy of (30) for the three-node model.

We have discussed the sequential optimization method for
a general objective function in the three-node network. Now,
we discuss the case where we maximize the active load.

a) Maximize active load: We aim to solve the following
OPF problem, where the objective is to maximize the active
load on the network, subject to several constraints:

max
pc,pg

N∑
j=1

(pcj − pgj ) s.t. (10a)–(10c). (29)

For the polyhedral restriction, we substitute the constraints
in (10) by the constraints in (12), to obtain

max
pc,pg

N∑
j=1

(pcj − pgj ) s.t. (12a)–(12d). (30)

We compare the optimal solutions of the convex relaxation
(29) and the polyhedral restriction of (30). In this example, the
convex relaxation is exact [6, Theorem 4], meaning the optimal
solution of the convex relaxation matches the true optimal
solution. Meanwhile, the optimal solution of the polyhedral
restriction serves a lower bound on the true optimal solution.

In Figure 2, the left side displays the optimal values of
(29) and (30) as a function of the iteration count. Notably,
the optimal values of the polyhedral restrictions increase with
iterations, serving as a lower bound for the optimal value of
(29). On the right side of Figure 2, the relative error between
the optimal values of (29) and (30) is shown. The relative error
remains below 2% after the sequential optimization method
reached its predefined threshold.

So far, we have discussed the case where the resistance-to-
reactance ratio is the same throughout the network, and the
resistance and reactance of each cable are identical. Below,
we extend our discussion for a diverse range of the resistance-
to-reactance ratio, varying between the two lines. Given the
typically high resistance-to-reactance ratio in distribution net-
works, we set the reactance values at x01 = x12 = 0.001 and
vary the resistance values between 0.007 and 0.03, resulting
in a resistance-to-reactance ratio variation between 7 and 30.
By varying the resistance values, we obtain that the optimal
values by the sequential optimization method are close to
the true optimal values found by the SOCP relaxation. The
maximum relative difference between the objective values is
approximately 2%, because of the predefined threshold ϵ =
0.01 in Algorithm 1. For example, when we set ϵ = 0.001, the
maximum relative difference across the range of resistance and
reactance values decreases to 0.25%. The procedure appears
insensitive to the resistance-to-reactance ratio on the line that
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Fig. 3: Objective values found by the polyhedral restrictions,
the SOCP relaxation and GloptiPoly for different iterations.

is furthest away from the main feeder. This is due to the
marginal effect of the optimal power load on the second node;
to maximize the total power load in the network, it is optimal
to put approximately no load on the second node.

b) Minimize active load: In this example, we aim to solve
the OPF problem in (29) as before, but where the objective
is to minimize (instead of maximize) the active load on the
network, subject to the same constraints.

Similarly, for the polyhedral restriction, we substitute the
constraints in (10) by the constraints in (12), and change the
objective function from a maximizing to minimizing problem.

In Figure 3, the objective values according to the iterative
process are also visualized, next to the objective value found
by the SOCP relaxation and the true solution found by solving
the optimization problem in (29).

Now, similar to the maximization case, we discuss similar
results for a diverse range of the resistance over reactance
ratios. We fix the reactance values at x01 = x12 = 0.001 and
vary the resistance values between 0.007 and 0.03, such that
the resistance over reactance ratio varies between 7 and 30.

By varying the resistance values, we see that relative differ-
ence between the optimal values obtained by the procedure of
iteratively constructing polyhedral restrictions around feasible
points and the true optimal values obtained by GloptiPoly is
large. The maximum relative difference between the objective
values is approximately 30% when the predefined threshold
ϵ = 0.01 in Algorithm 1 is. Of course, when we set ϵ = 0.001,
the maximum relative difference decreases for the complete
range of resistance and reactance values, but not as much as
in the maximization case. Also in this case, the maximum
relative difference is around 30%.

3) SCE-47 network: We consider the SCE-47 network with
|V0| = 1 and set the parameter to control the voltage drop
at ∆ = 0.1. We distinguish between two different types
of customers in the network. We assume that the set of
nodes that can only generate electricity is given by S =
{12, 16, 18, 22, 23}. The other nodes can generate and con-
sume electricity. Therefore, we range the bound on the power
consumption and generation for pcj = pgj between 0.005 and
0.03 for j ∈ N\{0} and we set the bound on the power
generation at pgj = 0.01, and maximize and minimize the
active load in the network.

The results are shown in Figure 4. The maximal netto
active load is different for the SOCP relaxation and for the

(a) Maximization of active load. (b) Minimization of active load.

Fig. 4: Solutions of the SOCP relaxation and the final iteration
of the polyhedral restrictions.

polyhedral restriction. The relative error between the solutions
of the SOCP relaxation and the polyhedral restriction is larger
in the case of maximization of the active load than in the
case of minimization. However, the solutions obtained by the
SOCP relaxation are infeasible, i.e., the solutions do not satisfy
the power flow equations.The solutions obtained by the final
iteration of the polyhedral restriction are feasible and provide
at least bounds on the true optimal solutions.

V. CONCLUSION

We have shown how to construct a polyhedral restriction of
the feasibility region. The restriction can be built given net-
work parameters, such as the topology and admittance matrix,
and a feasible operating point. We have proposed a sequential
optimization method to compute (bounds on) solutions to OPF
problems, such that we can guarantee feasibility of the final
solution. The final solution can always be used as a bound
on the true optimal solution. Empirical studies have verified
that the polyhedral restriction can be used to assess whether
there exists a feasible solution that satisfies the power flow
equations and voltage drop constraint, and to compute (bounds
on) optimal power flow solutions for several test networks.

APPENDIX

In this section, we show that under the conditions of
Theorem 3.1, operator G is a self-map of the voltages V and
is continuous on the compact set D. To show that G is a
self-map, we need additional Lemmas 3.2 and 3.3.

A. Proof of Lemma 3.1

Proof: Let s̃ ∈ P and V ∈ D. Since (V̂, ŝ) satisfies the
power flow equations in (8), we have that

V̂ = G(V̂) = V01
N − Zdiag(V̂∗)−1ŝ∗. (31)

We have to show that G(V) ∈ D, i.e., or equivalently

∥G(V)− V̂∥∞ ≤ ∆|V̂|. (32)

Plugging in (31) in the left-hand side of (32) yields

∥G(V)− V̂∥∞ =

= ∥Z(diag(V̂∗)−1−diag(V∗)−1)̂s∗+Zdiag(V∗)−1(̂s∗−s∗)∥∞.
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Continuing the derivation, we have by the triangle inequality
that

∥G(V)− V̂∥∞ ≤

≤
∥∥∥∥Z
(

diag

(
V∗ − V̂∗

V̂∗V∗

))
ŝ∗
∥∥∥∥
∞
+

∥∥∥∥Zdiag(V∗)−1(̂s∗−s∗)

∥∥∥∥
∞
.

(33)

Consider both terms in (33) separately. For the first term in
(33), we have by the definition of the vector infinity norm and
the use of the triangle inequality,∥∥∥∥Z

(
diag

(
V∗ − V̂∗

V̂∗V∗

))
ŝ∗
∥∥∥∥
∞

≤

≤ max
j∈N\{0}

N∑
k=1

∣∣Zjk

∣∣∣∣ŝ∗k∣∣ |V ∗
k − V̂ ∗

k |
|V̂ ∗

k ||V ∗
k |

. (34)

Since V ∈ D, we have |V ∗
j − V̂ ∗

j | = |Vj − V̂j | ≤ ∆|V̂j | for
all j ∈ N\{0}. By the triangle inequality, we have |ŝk| =
|p̂k + iq̂k| ≤ |p̂k| + |q̂k|. Moreover, by construction, |p̂k| =
|p̂ck − p̂gk| = p̂ck + p̂gk, and similarly |q̂k| = |q̂ck − q̂gk| = qck + qgk .
Applying these inequalities and equalities in (34) yield∥∥∥∥Z

(
diag

(
V∗ − V̂∗

V̂∗V∗

))
ŝ∗
∥∥∥∥
∞

≤

≤ max
j∈N\{0}

N∑
k=1

∣∣Zjk

∣∣(p̂ck + p̂gk + q̂ck + q̂gk)∆

|V ∗
k |

. (35)

Finally, we use Lemma 3.2 in the denominator of (35) to bound
the first term in (33) as∥∥∥∥Z

(
diag

(
V∗ − V̂∗

V̂∗V∗

))
ŝ∗
∥∥∥∥
∞

≤

≤ max
j∈N\{0}

N∑
k=1

∣∣Zjk

∣∣(p̂ck + p̂gk + q̂ck + q̂gk)∆

(1−∆)|V̂k|︸ ︷︷ ︸
:=β1

. (36)

For the second term in (33), we have by definition∥∥∥∥Zdiag(V∗)−1(̂s∗ − s∗)

∥∥∥∥
∞

= max
j∈N\{0}

∣∣∣∣∣
N∑

k=1

Zjk
(ŝ∗k − s∗k)Vk

|Vk|2

∣∣∣∣∣ .
Using the definition of Vk to express each voltage as Vk =
|Vk| exp(iθk), and multiplying by exp(−iθ̂j) in the numerator
and denominator yields∥∥∥∥Zdiag(V∗)−1(̂s∗ − s∗)

∥∥∥∥
∞

=

= max
j∈N\{0}

∣∣∣∣∣∣∣∣∣
N∑

k=1

Zjk

(ŝ∗k − s∗k)(|Vk| cos(θk − θ̂j)+

+ i|Vk| sin(θk − θ̂j)))

|Vk|2

∣∣∣∣∣∣∣∣∣ .
(37)

since we have that |1/ exp(−iθj)| = 1.
We have Zjk = Rjk+iXjk for all j ∈ N\{0} and ŝ∗k−s∗k =

p̂k−pk−i(q̂k−qk) = p̂ck−p̂gk−(pck−pgk)−i(q̂ck−q̂gk−(qck−qgk)).

Using these notations and separating in sine and cosine terms,
we rewrite (37) to

∣∣∣∣∣
N∑

k=1

(Rjk(p̂
c
k − p̂gk − (pck − pgk))+

+Xjk(q̂
c
k − q̂gk − (qck − qgk)))|Vk| cos(θk − θ̂j)

|Vk|2
+

+ i

(−Rjk(q̂
c
k − q̂gk − (qck − qgk))+

+Xjk(p̂
c
k − p̂gk − (pck − pgk)))|Vk| cos(θk − θ̂j)

|Vk|2
+

+

(Rjk(q̂
c
k − q̂gk − (qck − qgk))−

−Xjk(p̂
c
k − p̂gk − (pck − pgk)))|Vk| sin(θk − θ̂j)

|Vk|2
+

+ i

(Rjk(p̂
c
k − p̂gk − (pck − pgk))+

+Xjk(q̂
c
k − q̂gk − (qck − qgk)))|Vk| sin(θk − θ̂j)

|Vk|2

∣∣∣∣∣ (38)

to apply the bounds in Lemma 3.3 later. First, we use the
triangle inequality to bound the expression in (38) to

∣∣∣∣∣
N∑

k=1

(Rjk(p̂
c
k − p̂gk − (pck − pgk))+

+Xjk(q̂
c
k − q̂gk − (qck − qgk)))|Vk| cos(θk − θ̂j)

|Vk|2︸ ︷︷ ︸
:=α1

∣∣∣∣∣+

+

∣∣∣∣∣
N∑

k=1

(−Rjk(q̂
c
k − q̂gk − (qck − qgk))+

+Xjk(p̂
c
k − p̂gk − (pck − pgk)))|Vk| cos(θk − θ̂j)

|Vk|2︸ ︷︷ ︸
:=α2

∣∣∣∣∣+

+

∣∣∣∣∣
N∑

k=1

((iRjk −Xjk)(p̂
c
k − p̂gk − (pck − pgk))+

+(Rjk + iXjk)(q̂
c
k − q̂gk − (qck − qgk))))

|Vk| sin(θk − θ̂j)

|Vk|2︸ ︷︷ ︸
:=β

∣∣∣∣∣.
(39)

Then, again by using the triangle inequality twice, we bound
the third term in (39), i.e. β, by

|β| ≤
N∑

k=1

(|iRjk −Xjk||p̂ck − p̂gk − (pck − pgk)|+
+|Rjk + iXjk||q̂ck − q̂gk − (qck − qgk)||)

|Vk| sin(θk − θ̂j)|
|Vk|2

.

(40)

Furthermore, notice that by definition, we have the equality
|iRjk − Xjk| = |Rjk + iXjk| = |Zjk|, and the inequalities
|p̂k − pk| ≤ |p̂k| + |pk|, and similarly |q̂k − qk| ≤ |q̂k| + |qk|
by the triangle inequality. Thus,

|β| ≤
N∑

k=1

|Zjk|(|p̂k|+ |pk|+ |q̂k|+ |qk|)||Vk| sin(θk − θ̂j)|
|Vk|2

.

(41)

In what follows, we use the following equalities: |pk| = |pck−
pgk| = pck + pgk and similarly, |qk| = |qck − qgk| = qck + qgk . We
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justify these in Remark 3 later on. From these equalities and
applying Lemma 3.3 in (41) then yields

|β| ≤
N∑

k=1

|Zjk|(pck + qck + pgk + qgk + p̂gk + q̂ck + p̂gk + q̂gk)∆

(1−∆)2|V̂k|︸ ︷︷ ︸
:=β2

.

(42)

Now, we focus on the terms α1 and α2 in (39). By definition
of absolute values, we have |α1| + |α2| = max(α1,−α1) +
max(α2,−α2). Then, by case distinction, we have

|α1|+ |α2|
= max(α1 + α2, α1 − α2,−α1 + α2,−α1 − α2), (43)

so it suffices to bound each of the four expressions in (43). We
have V ∈ D by assumption, so we can use the bounds from
Lemmas 3.2 and 3.3. Furthermore, recall that pck, q

c
k, p

g
k, q

g
k ≥

0 for all k ∈ N\{0}. Applying these bounds gives

α1 ≤
N∑

k=1

−Rjk(p
c
k − p̂ck)

(1−∆)2|V̂k|2
+
∆Rjk(p

c
k − p̂ck)

(1−∆)2|V̂k|2
+

2∆Rjkp̂
c
k

(1−∆)2|V̂k|2

−Xjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

∆Xjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

2∆Xjkq̂
c
k

(1−∆)2|V̂k|2
Rjk(p

g
k − p̂gk)

(1−∆)2|V̂k|2
+

∆Rjk(p
g
k − p̂gk)

(1−∆)2|V̂k|2
+

2∆Rjkp̂
g
k

(1−∆)2|V̂k|2
Xjk(q

g
k − q̂gk)

(1−∆)2|V̂k|2
+

∆Xjk(q
g
k − q̂gk)

(1−∆)2|V̂k|2
+

2∆Xjkq̂
g
k

(1−∆)2|V̂k|2
, (44a)

and

−α1 ≤
N∑

k=1

Rjk(p
c
k − p̂ck)

(1−∆)2|V̂k|2
+
∆Rjk(p

c
k − p̂ck)

(1−∆)2|V̂k|2
+

2∆Rjkp̂
c
k

(1−∆)2|V̂k|2

Xjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

∆Xjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

2∆Xjkq̂
c
k

(1−∆)2|V̂k|2
−Rjk(p

g
k − p̂gk)

(1−∆)2|V̂k|2
+

∆Rjk(p
g
k − p̂gk)

(1−∆)2|V̂k|2
+

2∆Rjkp̂
g
k

(1−∆)2|V̂k|2
−Xjk(q

g
k − q̂gk)

(1−∆)2|V̂k|2
+

∆Xjk(q
g
k − q̂gk)

(1−∆)2|V̂k|2
+

2∆Xjkq̂
g
k

(1−∆)2|V̂k|2
,

(44b)

Similarly,

α2 ≤
N∑

k=1

−Xjk(p
c
k − p̂ck)

(1−∆)2|V̂k|2
+
∆Xjk(p

c
k − p̂ck)

(1−∆)2|V̂k|2
+

2∆Xjkp̂
c
k

(1−∆)2|V̂k|2

Rjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

∆Rjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

2∆Rjkq̂
c
k

(1−∆)2|V̂k|2
Xjk(p

g
k − p̂gk)

(1−∆)2|V̂k|2
+

∆Xjk(p
g
k − p̂gk)

(1−∆)2|V̂k|2
+

2∆Xjkp̂
g
k

(1−∆)2|V̂k|2
−Rjk(q

g
k − q̂gk)

(1−∆)2|V̂k|2
+

∆Rjk(q
g
k − q̂gk)

(1−∆)2|V̂k|2
+

2∆Rjkq̂
g
k

(1−∆)2|V̂k|2
, (45a)

and

−α2 ≤
N∑

k=1

Xjk(p
c
k − p̂ck)

(1−∆)2|V̂k|2
+
∆Xjk(p

c
k − p̂ck)

(1−∆)2|V̂k|2
+

2∆Xjkp̂
c
k

(1−∆)2|V̂k|2

−Rjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

∆Rjk(q
c
k − q̂ck)

(1−∆)2|V̂k|2
+

2∆Rjkq̂
c
k

(1−∆)2|V̂k|2
−Xjk(p

g
k − p̂gk)

(1−∆)2|V̂k|2
+

∆Xjk(p
g
k − p̂gk)

(1−∆)2|V̂k|2
+

2∆Xjkp̂
g
k

(1−∆)2|V̂k|2
Rjk(q

g
k − q̂gk)

(1−∆)2|V̂k|2
+

∆Rjk(q
g
k − q̂gk)

(1−∆)2|V̂k|2
+

2∆Rjkq̂
g
k

(1−∆)2|V̂k|2
, (45b)

From the construction of the matrix A, combined with bounds
(36), (42), (44) and (45), we see that we can bound the sum
of every expression in (43) and β1 + β2 by ((A + ∆(B +
C))(s̃− ˜̂s))ij , for every i ∈ {1, 2, 3, 4} and j ∈ {1, . . . , 4N}.
By assumption s̃ ∈ P , so

((A+∆B)(s̃− ˜̂s)) + (∆(2B+ (1−∆)C)˜̂s) ≤
≤ ∆(1−∆)V̂ 3

min1
4N ,

and rewriting gives (A+∆B)s̃ ≤ ∆(1−∆)2V̂ 3
min1

4N +(A−
∆(B+ (1−∆)C)˜̂s.

Remark 3: In the proof of Lemma 3.1, we handled absolute
values of decision variables pj and qj as follows:

|pj | = pcj + pgj , |qj | = qcj + qgj .

This is a natural choice, since we have introduced the notation:

pj = pcj − pgj , qj = qcj − qgj ,

pcj , p
g
j , q

c
j , q

g
j ≥ 0,

earlier. However, this way of handling absolute values is only
correct if, for each j, at least one of the values pcj and pgj , and
at least one of the values qcj and qgj is zero. In other words,
for each j, we need: pcjp

g
j = 0 and qcjq

g
j = 0.

Consider the set P (as defined in Theorem 3.1) as the
constraint set in a certain optimization problem. If the op-
timization problem yields a solution where at least one of
the values pcj and pgj , and at least one of the values qcj and
qgj is zero, we handled the absolute values correctly. Thus,
suppose that this is not the case, i.e.; suppose there exists
at least one combination of variables pcj and pgj , or qcj and qgj
which are both strictly positive. In what follows, we show that
there exists another solution p′j

c
, p′j

g
, q′j

c
, q′j

g with the property
that for every j, p′j

c
p′j

g
= 0 and q′j

c
q′j

g
= 0, and satisfies the

constraints and has the same value for the objective function.
Therefore, let

p′j
c
, p′j

g
=


pcj , pgj if pcjp

g
j = 0,

pcj − pgj , 0 if pcjp
g
j ̸= 0, pcj ≥ pgj ,

0, pgj − pcj if pcjp
g
j ̸= 0, pcj < pgj ,

and in a similar way, let,

q′j
c
, q′j

g
=


qcj , qgj if qcjq

g
j = 0,

qcj − qgj , 0 if qcjq
g
j ̸= 0, qcj ≥ qgj ,

0, qgj − qcj if qcjq
g
j ̸= 0, qcj < qgj .
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and denote p′c = (p′1
c
, . . . , p′N

c
)T , p′g = (p′1

g
, . . . , p′N

g
)T ,

q′c = (q′1
c
, . . . , q′N

c
)T , q′g = (q′1

g
, . . . , q′N

g
)T and s̃′ =

(p′c,q′c,p′g,q′g)T . Thus, the solution p′j
c
, p′j

g
, q′j

c
, q′j

g has
the property that for every j, p′j

c
p′j

g
= 0 and q′j

c
q′j

g
= 0 by

construction.
To see that the solution p′j

c
, p′j

g
, q′j

c
, q′j

g satisfies the con-
straints, we show that

(A+∆B)(s̃′ − s̃) ≤ 0.

This is sufficient, since s̃ ∈ P . Notice that, for each j, p′j
c −

pcj = p′j
g−pgj ≤ 0 and q′j

c−qcj = q′j
g−qgj ≤ 0, which implies

that,

s̃′ − s̃ =


p′c − pc

q′c − qc

p′g − pg

q′g − qg

 =


p′c − pc

q′c − qc

p′c − pc

q′c − qc

 ≤ 0.

In other words, the vector s̃′ − s̃ has rows 1, . . . , N equal
to rows 2N + 1, . . . , 3N and rows N + 1, . . . , 2N equal to
rows 3N +1, . . . , 4N , and all of its entries are values smaller
than zero. However, since, for each j, p′j

c − pcj = p′j
g − pgj ,

and q′j
c − qcj = q′j

g − qgj we also have, for each j, p′j
c −

p′j
g
= pcj − pgj , and q′j

c − q′j
g
= qcj − qgj which assures that

the objective function has the same value. Furthermore, notice
that the matrix A also has a particular structure, see (15),
namely, A has columns which have opposite signs. The matrix
A has columns 1, . . . , N which are identical to columns 2N+
1, . . . , 3N , but with opposite signs, and has columns N +
1, . . . , 2N which are identical to columns 3N + 1, . . . , 4N ,
but with opposite signs. Hence,

(A+∆B)(s̃′ − s̃) = A(s̃′ − s̃) + ∆B(s̃′ − s̃)

= 0+∆B(s̃′ − s̃) ≤ 0,

since ∆ ≥ 0 and the matrix B only contains non-negative
elements.

B. Proof of Lemma 3.2

Proof: Let V ∈ D. We show (1 − ∆)|V̂j | ≤ |Vj | ≤
(1 + ∆)|V̂j |. First, by the triangle inequality we have

|Vj | = |Vj − V̂j + V̂j | ≤ |Vj − V̂j |+ |V̂j |.

Since V ∈ D, we have for all j ∈ N\{0}, |Vj − V̂j | ≤ ∆|V̂j |.
Hence,

|Vj | ≤ ∆|V̂j |+ |V̂j | = (1 +∆)|V̂j |. (46)

Second, by the reverse triangle inequality we have

|Vj | = | − Vj | = |(V̂j − Vj)− V̂j | ≥ |V̂j | − |V̂j − Vj |.

Again, since V ∈ D, we have for all j ∈ N\{0}, |Vj − V̂j | ≤
∆|V̂j | or equivalently, −|Vj − V̂j | ≥ −∆|V̂j , which yields

|Vj | ≥ |V̂j | −∆V̂j = (1−∆)|V̂j |. (47)

Combining (46) and (47) gives the desired result.

C. Proof of Lemma 3.3
Proof: Let V ∈ D. First, we discuss the inequalities in

(17). By the law of cosines, we have

|Vj − V̂j |2 = |Vj |2 + |V̂j |2 − 2|Vj ||V̂j | cos(θj − θ̂j).

Therefore, we can equivalently write the constraint |Vj −
V̂j |2 ≤ ∆2|V̂j |2 as

|Vj |2 + |V̂j |2 − 2|Vj ||V̂j | cos(θj − θ̂j) ≤ ∆2|V̂j |2. (48)

By definition of the cosine and Lemma 3.2, we get the
inequalities

|Vj | cos(θj − θ̂j) ≤ |Vj | ≤ (1 + ∆)|V̂j |. (49)

Combining (48) and (49) then yields

|Vj |2

2|V̂j |
+

(1−∆2)|V̂j |
2

=
|Vj |2 + |V̂j |2 −∆2|V̂j |2

2|V̂j |
≤ |Vj | cos(θj − θ̂j) ≤ (1 + ∆)|V̂j |.

(50)

By Lemma 3.2, we have that the first term on the left-hand
side of (50) is bounded by

(1−∆)|V̂j | ≤
|Vj |2

2|V̂j |
+

(1−∆2)|V̂j |
2

.

Hence, we have

(1−∆)|V̂j | ≤ |Vj | cos(θj − θ̂j) ≤ (1 + ∆)|V̂j |.

Second, we discuss the inequalities in (18). The scalar projec-
tion of Vj on V̂j is given by v1 := |Vj | cos(θj − θ̂j). Then,
define the scalar rejection of the vector Vj on the vector V̂j

as v2 := Vj − v1 = |Vj | sin(θj − θ̂j). From the Pythagorean
theorem, we know

|Vj − V̂j |2 = |v2|2 + |v1 − V̂j |2.

As |Vj−V̂j |2 is the sum of two positive quantities, it can never
be smaller than either |v2|2 or |v1 − V̂j |2, so the same holds
true for |v2|, |v1 − V̂j | and |Vj − V̂j |. Since V ∈ D, it follows

||Vj | sin(θj − θ̂j)| = |v2| ≤ |Vj − V̂j | ≤ ∆|V̂j |.

D. Proof of Lemma 3.4
Proof: Let s̃ ∈ P and V ∈ D. By assumption, ∆ < 1,

so we have |Vj | > 0. The function x 7→ 1/x∗ is continuous
on C\{0}, and therefore the components of G are continuous
on D. Thus, G is a continuous operator on D.
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