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The need to de-carbonize the current energy infrastructure, and the increasing integration of renewables pose a number of
difficult control and optimization problems. Among those, the optimal power flow (OPF) problem—i.e., the task to minimize
power system operation costs while maintaining technical and network limitations—is key for operational planning of power
systems. The influx of inherently volatile renewable energy sources calls for methods that allow to consider stochasticity
directly in the OPF problem. Here, we present recent results on uncertainty quantification for OPF problems. Modeling uncer-
tainties as second-order continuous random variables, we will show that the OPF problem subject to stochastic uncertainties
can be posed as an infinite-dimensional L2-problem. A tractable reformulation thereof can be obtained using polynomial
chaos expansion (PCE), under mild assumptions. We will show advantageous features of PCE for OPF subject to stochastic
uncertainties. For example, multivariate non-Gaussian uncertainties can be considered easily. Finally, we comment on recent
progress on a Julia package for PCE.
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1 Introduction

We are witnessing a paradigm shift in the production of electrical energy: the tremendous effort to generate electricity from
renewable energy sources is unprecedented. This modification in energy generation brings about change in the way power
systems are operated. The traditional modus operandi of power systems assumes and has been designed for an infrastructure
consisting of a handful of large power plants that deliver energy to consumers. With the influx of renewable energy sources
and production of electrical energy at lower-scale voltage levels the traditional modus calls for a critical assessment.

Mathematically, the task of delivering electrical energy to consumers in a cost-optimal way whilst respecting engineering
limits such as generation limits and line limits is posed as a nonlinear optimization problem, the so-called optimal power flow
problem (OPF) [1]. These problems are used for planning, dispatching, and operating the electric power system. It is a steady-
state optimization problem that accounts for the so-called power flow equations, a set of nonlinear algebraic equations derived
from Kirchhoff’s laws that models the steady-state of an AC electrical network. Traditionally, the OPF problem is solved
for fixed and presumably known values of uncontrollable active and reactive power demands. In other words, the demand
is assumed to be deterministic. With the advent of renewable energy sources such as solar panels mounted in residential
households, and so-called smart homes, the forecast power demand becomes more volatile and less predictable; a single
point forecast may be insufficient. Rather, probabilistic forecasts are used that model the value to be forecast as a random
variable [2]. This in turn affects the way the OPF problem is solved. Whereas traditionally OPF is solved for a single point
forecast it must now be solved with probabilistic forecasts. The fact that the power demand is not known precisely must be
accounted for. We show how the OPF problem can be formulated in the presence of uncertainties and how it can be solved in
terms of a deterministic proxy problem.

2 Problem Formulation

We study an N -bus electrical network. Its set of bus indices isN = {1, . . . , N}, and its set of line indices reads L ⊆ N ×N .
Each bus i ∈ N is described by its net active power pi, net reactive power qi, its real voltage vre

i , and imaginary voltage vim
i .

We assume each bus i ∈ N connects to one controllable generation unit pg
i and one uncontrollable power injection pu

i ,

∀i ∈ N : pi = pg
i + pu

i , qi = qg
i + qu

i . (1)

To model the effects of uncertainty we replace the deterministic description of (1) by random variables. To this end, let
L2(Ω,P; R) be the space of all random variables of finite variance for the set of outcomes Ω and an associated probability
measure P.1 This allows to introduce the N -valued random vectors pu, qu where every element pu

i , q
u
i ∈ L2(Ω,P; R) is a
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real-valued random variable of finite variance. The OPF problem may then be formulated as [3, 4]

min
pg
i,q

g
i,v

re
i ,v

im
i

E
[∑

i∈N
fi(p

g
i )
]

subject to (2a)

pi = pg
i + pu

i =
∑

j∈N
Gij(v

re
i v

re
j + vim

i vim
j ) + Bij(v

im
i vim

j − vre
i v

im
j ), (2b)

qi = qg
i + qu

i =
∑

j∈N
Gij(v

im
i vim

j − vre
i v

im
j )−Bij(v

re
i v

re
j + vim

i vim
j ), (2c)

P
(
x ≥ xmin) ≥ 1− ε, P(x ≤ xmax) ≥ 1− ε, ∀x ∈ {pg

i , q
g
i , vi}, (2d)

P(ii−j ≤ imax
i−j ) ≥ 1− ε, (2e)

vim
iθV

= 0, ∀i ∈ N , ∀ij ∈ L, (2f)

which minimizes the sum of the expected generation costs fi in (2a), treats the power flow equations as a nonlinear system of
algebraic equations in terms of random variables (2b), (2c), considers engineering limits with respect to generation limits and
voltage magnitude limits (2d), and line flow limits (2e), each as chance constraints. The formulation as a chance constraint
reduces conservatism as constraints are satisfied only up to a prescribed level of 1 − ε ∈ (0, 1). The matrix Y = G + jB ∈
CN×N is the bus admittance matrix that collects physical parameters of the network. Problem (2) is an infinite-dimensional
optimization problem. One possibility to render the problem finite-dimensional is to use polynomial chaos expansion (PCE),
a Hilbert space technique for random variables of finite variance. Polynomial chaos has been applied to (optimal) power flow
problems before [3, 5–8]. The advantages of PCE for Problem (2) are threefold: i) we are not restricted to a specific family of
random variables such as Gaussians, ii) we can compute moments of random variables from the PCE coefficients alone, and
iii) we can propagate uncertainties through the full power flow equations. If Problem (2) is solved with PCE, there is another
post-processing advantage: knowing the realization of the uncertainty, the realization of the corresponding optimal generation
is obtained instantaneously, simply by evaluating the PCE. To tame the computational burden associated with polynomial
chaos there exist several software packages. Recently, an open source implementation in the Julia programming language [9]
has been made available [10], which allows to construct orthogonal polynomials starting from the definition of the underlying
probability density function.

3 Summary

Optimal power flow problems make up a cornerstone of the power system operations. In the presence of uncertainties
(stemming for instance from renewable energy sources), the optimal power flow problem can be formulated as an infinite-
dimensional optimization problem in terms of random variables. To render the problem finite-dimensional, polynomial chaos
can be applied.

References
[1] T. Faulwasser, A. Engelmann, T. Mühlpfordt, and V. Hagenmeyer. “Optimal power flow: an introduction to predictive, distributed and

stochastic control challenges”. In: at-Automatisierungstechnik 66.7 (2018), pp. 573–589.
[2] J.A. González Ordiano, S. Waczowicz, M. Reischl, R. Mikut, and V. Hagenmeyer. “Photovoltaic power forecasting using simple

data-driven models without weather data”. In: Computer Science - Research and Development 32.1 (2017), pp. 237–246. DOI:
10.1007/s00450-016-0316-5.

[3] T. Mühlpfordt, T. Faulwasser, and V. Hagenmeyer. “Solving Stochastic AC Power Flow via Polynomial Chaos Expansion”. In: IEEE
International Conference on Control Applications. 2016, pp. 70–76.

[4] T. Mühlpfordt, L. Roald, V. Hagenmeyer, T. Faulwasser, and S. Misra. “Chance-Constrained AC Optimal Power Flow - A Polynomial
Chaos Approach”. In: arXiv/1903.11337 (2019).

[5] R.R. Appino, T. Mühlpfordt, T. Faulwasser, and V. Hagenmeyer. “On Solving Probabilistic Load Flow for Radial Grids Using Poly-
nomial Chaos”. In: 2017 IEEE Manchester PowerTech. 2017, pp. 1–6. DOI: 10.1109/PTC.2017.7981264.

[6] T. Mühlpfordt, T. Faulwasser, L. Roald, and V. Hagenmeyer. “Solving Optimal Power Flow with non-Gaussian Uncertainties via
Polynomial Chaos Expansion”. In: IEEE Conference on Decision and Control (CDC). Dec. 2017, pp. 4490–4496.

[7] T. Mühlpfordt, T. Faulwasser, and V. Hagenmeyer. “A Generalized Framework for Chance-constrained Optimal Power Flow”. In:
Sustainable Energy, Grids and Networks 16 (2018), pp. 231–242. DOI: https://doi.org/10.1016/j.segan.2018.08.002.

[8] T. Mühlpfordt, V. Hagenmeyer, and T. Faulwasser. “The Price of Uncertainty: Chance-Constrained OPF vs. in-Hindsight OPF”. In:
2018 Power Systems Computation Conference (PSCC). 2018, pp. 1–7. DOI: 10.23919/PSCC.2018.8442162.

[9] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. “Julia: A Fresh Approach to Numerical Computing”. In: SIAM Review 59.1
(2017), pp. 65–98. DOI: 10.1137/141000671.

[10] T. Mühlpfordt, F. Zahn, F. Becker, T. Faulwasser, and V. Hagenmeyer. PolyChaos.jl – A Julia package for orthogonal polynomials,
quadrature, and polynomial chaos expansion. doi:10.5281/zenodo.2592031. 2019.

c© 2019 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim www.gamm-proceedings.com


