71 research outputs found

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA

    Network Optimisation for Robotic Aerial Base Stations

    Get PDF
    One attractive application of unmanned aerial vehicles (UAVs) is to provide wireless coverage when acting as aerial base stations (ABSs). Compared to terrestrial small cells, ABSs have the benefit of flexible deployment, controllable mobility, and dominant line-of-sight channels, so they are expected to play a significant role in next-generation cellular networks. However, introducing this novel non-terrestrial communication device would also bring new challenges, such as requiring different evaluation criteria and being restricted by unexpected resource constraints. With this in mind, this thesis mainly focuses on the network optimisation problems of ABS-assisted networks.Specifically, we first investigate two contradictory metrics, i.e., the information freshness and energy consumption, when an ABS is employed to collect data from ground terminals. A novel multi-return-allowed serving mode is proposed to explore the Pareto optimal trade-off between these two metrics. Secondly, to overcome the functional endurance issue of conventional ABSs, we propose a novel prototype named robotic aerial base stations (RABSs) with grasping capabilities, which can attach autonomously in lampposts or land on other tall urban landforms to serve as small cells with prolonged endurance. By employing this novel ABS prototype, we first study the optimal deployment and operation strategy for RABSs when the mobile traffic demand shows heterogeneity in both spatial and temporal domains. Afterwards, to further explore the use of RABSs in the upcoming 6G era, we investigate two novel application scenarios, that is, an RABS-assisted integrated sensing and communication (ISAC) system and an RABS-aided millimetre-wave (mmWave) backhaul network.The proposed scenarios are formulated as various non-convex problems. By analyzing their constructions, we propose a variety of algorithms to solve them in a reasonable time. A wide set of simulation results shows that the proposed novel prototypes and serving schemes have immense potential in future cellular networks.<br/

    New challenges in wireless and free space optical communications

    Get PDF
    AbstractThis manuscript presents a survey on new challenges in wireless communication systems and discusses recent approaches to address some recently raised problems by the wireless community. At first a historical background is briefly introduced. Challenges based on modern and real life applications are then described. Up to date research fields to solve limitations of existing systems and emerging new technologies are discussed. Theoretical and experimental results based on several research projects or studies are briefly provided. Essential, basic and many self references are cited. Future researcher axes are briefly introduced
    • …
    corecore