2,031 research outputs found

    Energy-Efficient Scheduling for Homogeneous Multiprocessor Systems

    Get PDF
    We present a number of novel algorithms, based on mathematical optimization formulations, in order to solve a homogeneous multiprocessor scheduling problem, while minimizing the total energy consumption. In particular, for a system with a discrete speed set, we propose solving a tractable linear program. Our formulations are based on a fluid model and a global scheduling scheme, i.e. tasks are allowed to migrate between processors. The new methods are compared with three global energy/feasibility optimal workload allocation formulations. Simulation results illustrate that our methods achieve both feasibility and energy optimality and outperform existing methods for constrained deadline tasksets. Specifically, the results provided by our algorithm can achieve up to an 80% saving compared to an algorithm without a frequency scaling scheme and up to 70% saving compared to a constant frequency scaling scheme for some simulated tasksets. Another benefit is that our algorithms can solve the scheduling problem in one step instead of using a recursive scheme. Moreover, our formulations can solve a more general class of scheduling problems, i.e. any periodic real-time taskset with arbitrary deadline. Lastly, our algorithms can be applied to both online and offline scheduling schemes.Comment: Corrected typos: definition of J_i in Section 2.1; (3b)-(3c); definition of \Phi_A and \Phi_D in paragraph after (6b). Previous equations were correct only for special case of p_i=d_

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    MORA: an Energy-Aware Slack Reclamation Scheme for Scheduling Sporadic Real-Time Tasks upon Multiprocessor Platforms

    Full text link
    In this paper, we address the global and preemptive energy-aware scheduling problem of sporadic constrained-deadline tasks on DVFS-identical multiprocessor platforms. We propose an online slack reclamation scheme which profits from the discrepancy between the worst- and actual-case execution time of the tasks by slowing down the speed of the processors in order to save energy. Our algorithm called MORA takes into account the application-specific consumption profile of the tasks. We demonstrate that MORA does not jeopardize the system schedulability and we show by performing simulations that it can save up to 32% of energy (in average) compared to execution without using any energy-aware algorithm.Comment: 11 page

    Reclaiming the energy of a schedule: models and algorithms

    Get PDF
    We consider a task graph to be executed on a set of processors. We assume that the mapping is given, say by an ordered list of tasks to execute on each processor, and we aim at optimizing the energy consumption while enforcing a prescribed bound on the execution time. While it is not possible to change the allocation of a task, it is possible to change its speed. Rather than using a local approach such as backfilling, we consider the problem as a whole and study the impact of several speed variation models on its complexity. For continuous speeds, we give a closed-form formula for trees and series-parallel graphs, and we cast the problem into a geometric programming problem for general directed acyclic graphs. We show that the classical dynamic voltage and frequency scaling (DVFS) model with discrete modes leads to a NP-complete problem, even if the modes are regularly distributed (an important particular case in practice, which we analyze as the incremental model). On the contrary, the VDD-hopping model leads to a polynomial solution. Finally, we provide an approximation algorithm for the incremental model, which we extend for the general DVFS model.Comment: A two-page extended abstract of this work appeared as a short presentation in SPAA'2011, while the long version has been accepted for publication in "Concurrency and Computation: Practice and Experience

    Multiprocessor Global Scheduling on Frame-Based DVFS Systems

    Full text link
    In this ongoing work, we are interested in multiprocessor energy efficient systems, where task durations are not known in advance, but are know stochastically. More precisely, we consider global scheduling algorithms for frame-based multiprocessor stochastic DVFS (Dynamic Voltage and Frequency Scaling) systems. Moreover, we consider processors with a discrete set of available frequencies

    Approximation Algorithms for Energy Minimization in Cloud Service Allocation under Reliability Constraints

    Get PDF
    We consider allocation problems that arise in the context of service allocation in Clouds. More specifically, we assume on the one part that each computing resource is associated to a capacity constraint, that can be chosen using Dynamic Voltage and Frequency Scaling (DVFS) method, and to a probability of failure. On the other hand, we assume that the service runs as a set of independent instances of identical Virtual Machines. Moreover, there exists a Service Level Agreement (SLA) between the Cloud provider and the client that can be expressed as follows: the client comes with a minimal number of service instances which must be alive at the end of the day, and the Cloud provider offers a list of pairs (price,compensation), this compensation being paid by the Cloud provider if it fails to keep alive the required number of services. On the Cloud provider side, each pair corresponds actually to a guaranteed success probability of fulfilling the constraint on the minimal number of instances. In this context, given a minimal number of instances and a probability of success, the question for the Cloud provider is to find the number of necessary resources, their clock frequency and an allocation of the instances (possibly using replication) onto machines. This solution should satisfy all types of constraints during a given time period while minimizing the energy consumption of used resources. We consider two energy consumption models based on DVFS techniques, where the clock frequency of physical resources can be changed. For each allocation problem and each energy model, we prove deterministic approximation ratios on the consumed energy for algorithms that provide guaranteed probability failures, as well as an efficient heuristic, whose energy ratio is not guaranteed
    • …
    corecore