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SUMMARY

We consider a task graph to be executed on a set of processors. We assume that the
mapping is given, say by an ordered list of tasks to execute on each processor, and we
aim at optimizing the energy consumption while enforcing a prescribed bound on the
execution time. While it is not possible to change the allocation of a task, it is possible
to change its speed. Rather than using a local approach such as backfilling, we consider
the problem as a whole and study the impact of several speed variation models on its
complexity. For continuous speeds, we give a closed-form formula for trees and series-
parallel graphs, and we cast the problem into a geometric programming problem for
general directed acyclic graphs (DAGs). We show that the classical dynamic voltage and
frequency scaling (DVFS) model with discrete modes leads to a NP-complete problem,
even if the modes are regularly distributed (an important particular case in practice,
which we analyze as the incremental model). On the contrary, the Vdd-hopping model
that allows to switch between different supply voltages (VDD) while executing a task
leads to a polynomial solution. Finally, we provide an approximation algorithm for the
incremental model, which we extend for the general DVFS model.
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1. Introduction

The energy consumption of computational platforms has recently become a critical problem,
both for economic and environmental reasons [1]. As an example, the Earth Simulator requires
about 12 MW (Mega Watts) of peak power, and PetaFlop systems may require 100 MW of
power, nearly the output of a small power plant (300 MW). At $100 per MW.Hour, peak
operation of a PetaFlop machine may thus cost $10,000 per hour [2]. Current estimates state
that cooling costs $1 to $3 per watt of heat dissipated [3]. This is just one of the many
economical reasons why energy-aware scheduling has proved to be an important issue in the
past decade, even without considering battery-powered systems such as laptops and embedded
systems. As an example, the Green500 list (www.green500.org) provides rankings of the most
energy-efficient supercomputers in the world, therefore raising even more awareness about
power consumption.

To help reduce energy dissipation, processors can run at different speeds. Their power
consumption is the sum of a static part (the cost for a processor to be turned on) and a
dynamic part, which is a strictly convex function of the processor speed, so that the execution
of a given amount of work costs more power if a processor runs in a higher mode [4]. More
precisely, a processor running at speed s dissipates s3 watts [5, 6, 7, 8, 9] per time-unit, hence
consumes s3 × d joules when operated during d units of time. Faster speeds allow for a faster
execution, but they also lead to a much higher (supra-linear) power consumption.

Energy-aware scheduling aims at minimizing the energy consumed during the execution of
the target application. Obviously, it makes sense only if it is coupled with some performance
bound to achieve, otherwise, the optimal solution always is to run each processor at the slowest
possible speed.

In this paper, we investigate energy-aware scheduling strategies for executing a task graph on
a set of processors. The main originality is that we assume that the mapping of the task graph
is given, say by an ordered list of tasks to execute on each processor. There are many situations
in which this problem is important, such as optimizing for legacy applications, or accounting
for affinities between tasks and resources, or even when tasks are pre-allocated [10], for example
for security reasons. In such situations, assume that a list-schedule has been computed for the
task graph, and that its execution time should not exceed a deadline D. We do not have the
freedom to change the assignment of a given task, but we can change its speed to reduce
energy consumption, provided that the deadline D is not exceeded after the speed change.
Rather than using a local approach such as backfilling [11, 12], which only reclaims gaps in
the schedule, we consider the problem as a whole, and we assess the impact of several speed
variation models on its complexity. More precisely, we investigate the following models:

Continuous model. Processors can have arbitrary speeds, and can vary them continuously:
this model is unrealistic (any possible value of the speed, say

√
eπ , cannot be obtained)

but it is theoretically appealing [13]. A maximum speed, smax , cannot be exceeded.

Discrete model. Processors have a discrete number of predefined speeds (or frequencies),
which correspond to different voltages that the processor can be subjected to [14].
Switching frequencies is not allowed during the execution of a given task, but two different
tasks scheduled on a same processor can be executed at different frequencies.
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RECLAIMING THE ENERGY OF A SCHEDULE 3

Vdd-Hopping model. This model is similar to the Discrete one, except that switching
modes during the execution of a given task is allowed: any rational speed can be
simulated, by simply switching, at the appropriate time during the execution of a
task, between two consecutive modes [15]. Note that VDD usually represents the supply
voltage, hence the name Vdd-Hopping.

Incremental model. In this variant of the Discrete model, we introduce a value δ that
corresponds the minimum permissible speed increment, induced by the minimum voltage
increment that can be achieved when controlling the processor CPU. This new model
aims at capturing a realistic version of the Discrete model, where the different modes
are spread regularly instead of arbitrarily chosen.

Our main contributions are the following. For the Continuous model, we give a closed-
form formula for trees and series-parallel graphs, and we cast the problem into a geometric
programming problem [16] for general DAGs. For the Vdd-Hopping model, we show that the
optimal solution for general DAGs can be computed in polynomial time, using a (rational)
linear program. Finally, for the Discrete and Incremental models, we show that the
problem is NP-complete. Furthermore, we provide approximation algorithms that rely on the
polynomial algorithm for the Vdd-Hopping model, and we compare their solution with the
optimal Continuous solution.

The paper is organized as follows. We start with a survey of related literature in Section 2.
We then provide the formal description of the framework and of the energy models in Section 3,
together with a simple example to illustrate the different models. The next two sections
constitute the heart of the paper: in Section 4, we provide analytical formulas for continuous
speeds, and the formulation into the convex optimization problem. In Section 5, we assess
the complexity of the problem with all the discrete models: Discrete, Vdd-Hopping and
Incremental, and we discuss approximation algorithms. Finally we conclude in Section 6.

2. Related work

Reducing the energy consumption of computational platforms is an important research topic,
and many techniques at the process, circuit design, and micro-architectural levels have
been proposed [17, 18, 19]. The dynamic voltage and frequency scaling (DVFS) technique
has been extensively studied, since it may lead to efficient energy/performance trade-
offs [20, 2, 13, 21, 22, 23, 11]. Current microprocessors (for instance, from AMD [24] and
Intel [25]) allow the speed to be set dynamically. Indeed, by lowering supply voltage, hence
processor clock frequency, it is possible to achieve important reductions in power consumption,
without necessarily increasing the execution time. We first discuss different optimization
problems that arise in this context. Then we review energy models.
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2.1. DVFS and optimization problems

When dealing with energy consumption, the most usual optimization function consists in
minimizing the energy consumption, while ensuring a deadline on the execution time (i.e., a
real-time constraint), as discussed in the following papers.

In [14], Okuma et al. demonstrate that voltage scaling is far more effective than the shutdown
approach, which simply stops the power supply when the system is inactive. Their target
processor employs just a few discretely variable voltages. De Langen and Juurlink [26] discuss
leakage-aware scheduling heuristics that investigate both dynamic voltage scaling (DVS) and
processor shutdown, since static power consumption due to leakage current is expected to
increase significantly. Chen et al. [27] consider parallel sparse applications, and they show that
when scheduling applications modeled by a directed acyclic graph with a well-identified critical
path, it is possible to lower the voltage during non-critical execution of tasks, with no impact
on the execution time. Similarly, Wang et al. [11] study the slack time for non-critical jobs,
they extend their execution time and thus reduce the energy consumption without increasing
the total execution time. Kim et al. [22] provide power-aware scheduling algorithms for bag-
of-tasks applications with deadline constraints, based on dynamic voltage scaling. Their goal
is to minimize power consumption as well as to meet the deadlines specified by application
users.

For real-time embedded systems, slack reclamation techniques are used. Lee and Sakurai [17]
show how to exploit slack time arising from workload variation, thanks to a software feedback
control of supply voltage. Prathipati [12] discusses techniques to take advantage of run-time
variations in the execution time of tasks; it determines the minimum voltage under which each
task can be executed, while guaranteeing the deadlines of each task. Then, experiments are
conducted on the Intel StrongArm SA-1100 processor, which has eleven different frequencies,
and the Intel PXA250 XScale embedded processor with four frequencies. In [28], the goal of
Xu et al. is to schedule a set of independent tasks, given a worst case execution cycle (WCEC)
for each task, and a global deadline, while accounting for time and energy penalties when the
processor frequency is changing. The frequency of the processor can be lowered when some
slack is obtained dynamically, typically when a task runs faster than its WCEC. Yang and
Lin [23] discuss algorithms with preemption, using DVS techniques; substantial energy can be
saved using these algorithms, which succeed to claim the static and dynamic slack time, with
little overhead.

Since an increasing number of systems are powered by batteries, maximizing battery life
also is an important optimization problem. Battery-efficient systems can be obtained with
similar techniques of dynamic voltage and frequency scaling, as described by Lahiri et al.
in [18]. Another optimization criterion is the energy-delay product, since it accounts for a
trade-off between performance and energy consumption, as for instance discussed by Gonzalez
and Horowitz in [29]. We do not discuss further these latter optimization problems, since our
goal is to minimize the energy consumption, with a fixed deadline.

In this paper, the application is a task graph (directed acyclic graph), and we assume that
the mapping, i.e., an ordered list of tasks to execute on each processor, is given. Hence, our
problem is closely related to slack reclamation techniques, but instead on focusing on non-
critical tasks as for instance in [11], we consider the problem as a whole. Our contribution is
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RECLAIMING THE ENERGY OF A SCHEDULE 5

to perform an exhaustive complexity study for different energy models. In the next paragraph,
we discuss related work on each energy model.

2.2. Energy models

Several energy models are considered in the literature, and they can all be categorized in one
of the four models investigated in this paper, i.e., Continuous, Discrete, Vdd-Hopping or
Incremental.

The Continuous model is used mainly for theoretical studies. For instance, Yao et al. [30],
followed by Bansal et al. [13], aim at scheduling a collection of tasks (with release time, deadline
and amount of work), and the solution is the time at which each task is scheduled, but also,
the speed at which the task is executed. In these papers, the speed can take any value, hence
following the Continuous model.

We believe that the most widely used model is the Discrete one. Indeed, processors have
currently only a few discrete number of possible frequencies [24, 25, 14, 12]. Therefore, most
of the papers discussed above follow this model. Some studies exploit the continuous model
to determine the smallest frequency required to run a task, and then choose the closest upper
discrete value, as for instance [12] and [31].

Recently, a new local dynamic voltage scaling architecture has been developed, based on the
Vdd-Hopping model [15, 32, 33]. It was shown in [17] that significant power can be saved by
using two distinct voltages, and architectures using this principle have been developed (see for
instance [34]). Compared to traditional power converters, a new design with no needs for large
passives or costly technological options has been validated in a STMicroelectronics CMOS
65nm low-power technology [15].

To the best of our knowledge, this paper introduces the Incremental model for the first
time. The main rationale is that future technologies may well have an increased number of
possible frequencies, and these will follow a regular pattern. For instance, note that the SA-1100
processor, considered in [12], has eleven frequencies that are equidistant, i.e., they follow the
Incremental model. Lee and Sakurai [17] exploit discrete levels of clock frequency as f , f/2,
f/3, ..., where f is the master (i.e., the higher) system clock frequency. This model is closer
to the Discrete model, although it exhibits a regular pattern similarly to the Incremental
model.

Our work is the first attempt to compare these different models: on the one hand, we assess
the impact of the model on the problem complexity (polynomial vs NP-hard), and on the
other hand, we provide approximation algorithms building upon these results. The closest
work to ours is the paper by Zhang et al. [31], in which the authors also consider the mapping
of directed acyclic graphs, and compare the Discrete and the Continuous models. We go
beyond their work in this paper, with an exhaustive complexity study, closed-form formulas
for the continuous model, and the comparison with the Vdd-Hopping and Incremental
models.
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3. Framework

First we detail the optimization problem in Section 3.1. Then we describe the four energy
models in Section 3.2. Finally, we illustrate the models and motivate the problem with an
example in Section 3.3.

3.1. Optimization problem

Consider an application task graph G = (V, E), with n = |V | tasks denoted as V =
{T1, T2, . . . , Tn}, and where the set E denotes the precedence edges between tasks. Task Ti
has a cost wi for 1 ≤ i ≤ n. We assume that the tasks in G have been allocated onto a parallel
platform made up of identical processors. We define the execution graph generated by this
allocation as the graph G = (V,E), with the following augmented set of edges:
• E ⊆ E: if an edge exists in the precedence graph, it also exists in the execution graph;
• if T1 and T2 are executed successively, in this order, on the same processor, then

(T1, T2) ∈ E.
The goal is to the minimize the energy consumed during the execution while enforcing a

deadline D on the execution time. We formalize the optimization problem in the simpler case
where each task is executed at constant speed. This strategy is optimal for the Continuous
model (by a convexity argument) and for the Discrete and Incremental models (by
definition). For the Vdd-Hopping model, we reformulate the problem in Section 5.1. For
each task Ti ∈ V , bi is the starting time of its execution, di is the duration of its execution,
and si is the speed at which it is executed. We obtain the following formulation of the
MinEnergy(G,D) problem, given an execution graph G = (V,E) and a deadline D; the
si values are variables, whose values are constrained by the energy model (see Section 3.2).

Minimize
∑n
i=1 s

3
i × di

subject to (i) wi = si × di for each task Ti ∈ V
(ii) bi + di ≤ bj for each edge (Ti, Tj) ∈ E
(iii) bi + di ≤ D for each task Ti ∈ V
(iv) bi ≥ 0 for each task Ti ∈ V

(1)

Constraint (i) states that the whole task can be executed in time di using speed si.
Constraint (ii) accounts for all dependencies, and constraint (iii) ensures that the execution
time does not exceed the deadline D. Finally, constraint (iv) enforces that starting times
are non-negative. The energy consumed throughout the execution is the objective function.
It is the sum, for each task, of the energy consumed by this task, as we detail in the next
section. Note that di = wi/si, and therefore the objective function can also be expressed as∑n
i=1 s

2
i × wi.

Note that, whatever the energy model, there is a maximum speed that cannot be exceeded,
denoted smax . We point out that there is a solution to the minimization problem if and only
if there is a solution with si = smax for all 1 ≤ i ≤ n. Such a solution would correspond to
executing each task as early as possible (according to constraints (ii) and (iv)) and as fast as
possible. The optimal solution then slows down tasks to save as much energy as possible, while
enforcing the deadline constraint. There is no guarantee on the uniqueness of the solution,
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RECLAIMING THE ENERGY OF A SCHEDULE 7

since it may be possible to modify the beginning time of a task without affecting the energy
consumption, if some of the constraints (ii) are not tight.

3.2. Energy models

In all models, when a processor operates at speed s during d time-units, the corresponding
consumed energy is s3 × d, which is the dynamic part of the energy consumption, following
the classical models of the literature [5, 6, 7, 8, 9]. Note that we do not take static energy
into account, because all processors are up and alive during the whole execution. We now
detail the possible speed values in each energy model, which should be added as a constraint
in Equation (1).
• In the Continuous model, processors can have arbitrary speeds, from 0 to a maximum

value smax , and a processor can change its speed at any time during execution.
• In the Discrete model, processors have a set of possible speed values, or modes, denoted

as s1, ..., sm. There is no assumption on the range and distribution of these modes. The
speed of a processor cannot change during the computation of a task, but it can change
from task to task.

• In the Vdd-Hopping model, a processor can run at different speeds s1, ..., sm, as in
the previous model, but it can also change its speed during a computation. The energy
consumed during the execution of one task is the sum, on each time interval with constant
speed s, of the energy consumed during this interval at speed s.

• In the Incremental model, we introduce a value δ that corresponds to the minimum
permissible speed (i.e., voltage) increment. That means that possible speed values are
obtained as s = smin +i×δ, where i is an integer such that 0 ≤ i ≤ smax−smin

δ . Admissible
speeds lie in the interval [smin , smax ]. This new model aims at capturing a realistic
version of the Discrete model, where the different modes are spread regularly between
s1 = smin and sm = smax , instead of being arbitrarily chosen. It is intended as the
modern counterpart of a potentiometer knob!

3.3. Example

Consider an application with four tasks of costs w1 = 3, w2 = 2, w3 = 1 and w4 = 2, and
one precedence constraint T1 → T3. We assume that T1 and T2 are allocated, in this order,
onto processor P1, while T3 and T4 are allocated, in this order, on processor P2. The resulting
execution graph G is given in Figure 1, with two precedence constraints added to the initial
task graph. The deadline on the execution time is D = 1.5.

We set the maximum speed to smax = 6 for the Continuous model. For the Discrete

and Vdd-Hopping models, we use the set of speeds s
(d)
1 = 2, s

(d)
2 = 5 and s

(d)
3 = 6. Finally,

for the Incremental model, we set δ = 2, smin = 2 and smax = 6, so that possible speeds

are s
(i)
1 = 2, s

(i)
2 = 4 and s

(i)
3 = 6. We aim at finding the optimal execution speed si for each

task Ti (1 ≤ i ≤ 4), i.e., the values of si that minimize the energy consumption.
With the Continuous model, the optimal speeds are non rational values, and we obtain

s1 =
2

3
(3 + 351/3) ' 4.18; s2 = s1 ×

2

351/3
' 2.56; s3 = s4 = s1 ×

3

351/3
' 3.83.
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p1 T1 T2

p2 T3 T4

Figure 1: Execution graph for the example.

Note that all speeds are lower than the maximum smax . These values are obtained thanks

to the formulas derived in Section 4. The energy consumption is then E
(c)
opt =

∑4
i=1 wi × s2i =

3.s21+2.s22+3.s23 ' 109.6. The execution time is w1

s1
+max

(
w2

s2
, w3+w4

s3

)
, and with this solution,

it is equal to the deadline D (actually, both processors reach the deadline, otherwise we could
slow down the execution of one task).

For the Discrete model, if we execute all tasks at speed s
(d)
2 = 5, we obtain an energy

E = 8 × 52 = 200. A better solution is obtained with s1 = s
(d)
3 = 6, s2 = s3 = s

(d)
1 = 2 and

s4 = s
(d)
2 = 5, which turns out to be optimal: E

(d)
opt = 3× 36 + (2 + 1)× 4 + 2× 25 = 170. Note

that E
(d)
opt > E

(c)
opt, i.e., the optimal energy consumption with the Discrete model is much

higher than the one achieved with the Continuous model. Indeed, in this case, even though
the first processor executes during 3/6 + 2/2 = D time units, the second processor remains
idle since 3/6 + 1/2 + 2/5 = 1.4 < D. The problem turns out to be NP-hard (see Section 5.2),
and the solution has been found by performing an exhaustive search.

With the Vdd-Hopping model, we set s1 = s
(d)
2 = 5; for the other tasks, we run part of the

time at speed s
(d)
2 = 5, and part of the time at speed s

(d)
1 = 2 in order to use the idle time and

lower the energy consumption. T2 is executed at speed s
(d)
1 during time 5

6 and at speed s
(d)
2

during time 2
30 (i.e., the first processor executes during time 3/5 + 5/6 + 2/30 = 1.5 = D, and

all the work for T2 is done: 2× 5/6 + 5× 2/30 = 2 = w2). T3 is executed at speed s
(d)
2 (during

time 1/5), and finally T4 is executed at speed s
(d)
1 during time 0.5 and at speed s

(d)
2 during

time 1/5 (i.e., the second processor executes during time 3/5 + 1/5 + 0.5 + 1/5 = 1.5 = D,
and all the work for T4 is done: 2 × 0.5 + 5 × 1/5 = 2 = w4). This set of speeds turns out to
be optimal (i.e., it is the optimal solution of the linear program introduced in Section 5.1),

with an energy consumption E
(v)
opt = (3/5 + 2/30 + 1/5 + 1/5) × 53 + (5/6 + 0.5) × 23 = 144.

As expected, E
(c)
opt ≤ E

(v)
opt ≤ E

(d)
opt, i.e., the Vdd-Hopping solution stands between the optimal

Continuous solution, and the more constrained Discrete solution.
For the Incremental model, the reasoning is similar to the Discrete case, and the optimal

solution is obtained by an exhaustive search: all tasks should be executed at speed s
(i)
2 = 4,

with an energy consumption E
(i)
opt = 8 × 42 = 128 > E

(c)
opt. It turns out to be better than

Discrete and Vdd-Hopping, since it has different discrete values of energy that are more
appropriate for this example.
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RECLAIMING THE ENERGY OF A SCHEDULE 9

We conclude the study of this simple example with a short discussion on the energy savings
that can be achieved. All three models have a maximum speed smax = 6. Executing the
four tasks at maximum speed leads to consuming an energy Emax = 8 × 62 = 288. Such an
execution completes within a delay D = 1. We clearly see the trade-off between execution time
and energy consumption here, since we gain more than half the energy by slowing down the
execution from D = 1 to D = 1.5. Note that with D = 1, we can still slow down task T2 to
speed 4, and still gain a little over the brute force solution. Hence, even such a toy example
allows us to illustrate the benefits of energy-aware schedules. Obviously, with larger examples,
the energy savings will be even more dramatic, depending upon the range of available speeds
and the tightness of the execution deadline. In fact, the maximal energy gain that can be
achieved is not bounded: when executing each task as slow as possible (instead of as fast

as possible), we gain
(
smax

smin

)2
Wtotal, where Wtotal is the sum of all task weights, and this

quantity can be arbitrarily large. One of the main contributions of this paper is to provide
optimal energy-aware algorithms for each model (or guaranteed polynomial approximations
for NP-complete instances).

4. The Continuous model

With the Continuous model, processor speeds can take any value between 0 and smax . First
we prove that, with this model, the processors do not change their speed during the execution
of a task (Section 4.1). Then, we derive in Section 4.2 the optimal speed values for special
execution graph structures, expressed as closed form algebraic formulas, and we show that
these values may be irrational (as already illustrated in the example in Section 3.3). Finally,
we formulate the problem for general DAGs as a convex optimization program in Section 4.3.

4.1. Preliminary lemma

Lemma 1 (constant speed per task) In all optimal solution with the Continuous model,
each task is executed at constant speed, i.e., a processor does not change its speed during the
execution of a task.

Proof. Suppose that in the optimal solution, there is a task whose speed changes during the
execution. Consider the first time-step at which the change occurs: the computation begins at
speed s from time t to time t′, and then continues at speed s′ until time t′′. The total energy
consumption for this task in the time interval [t; t′′] is E = (t′ − t) × s3 + (t′′ − t′) × (s′)3.
Moreover, the amount of work done for this task is W = (t′ − t)× s+ (t′′ − t′)× s′.

If we run the task during the whole interval [t; t′′] at constant speed W/(t′′ − t), the same
amount of work is done within the same time. However, the energy consumption during this
interval of time is now E′ = (t′′ − t) × (W/(t′′ − t))3. By convexity of the function x 7→ x3,
we obtain E′ < E since t < t′ < t′′. This contradicts the hypothesis of optimality of the first
solution, which concludes the proof. ut
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4.2. Special execution graphs

4.2.1. Independent tasks

Consider the problem of minimizing the energy of n independent tasks (i.e., each task is
mapped onto a distinct processor, and there are no precedence constraints in the execution
graph), while enforcing a deadline D.

Proposition 1 (independent tasks) When G is composed of independent tasks {T1, . . . , Tn},
the optimal solution to MinEnergy(G,D) is obtained when each task Ti (1 ≤ i ≤ n) is
computed at speed si = wi

D . If there is a task Ti such that si > smax , then the problem has no
solution.

Proof. For task Ti, the speed si corresponds to the slowest speed at which the processor
can execute the task, so that the deadline is not exceeded. If si > smax , the corresponding
processor will never be able to complete its execution before the deadline, therefore there is
no solution. To conclude the proof, we note that any other solution would meet the deadline
constraint, and therefore the si’s should be such that wi

si
≤ D, which means that si ≥ wi

D .
These values would all be higher than the si’s of the optimal solution, and hence would lead
to a higher energy consumption. Therefore, this solution is optimal. ut

4.2.2. Linear chain of tasks

This case corresponds for instance to n independent tasks {T1, . . . , Tn} executed onto a single
processor. The execution graph is then a linear chain (order of execution of the tasks), with
Ti → Ti+1, for 1 ≤ i < n.

Proposition 2 (linear chain) When G is a linear chain of tasks, the optimal solution to
MinEnergy(G,D) is obtained when each task is executed at speed s = W

D , with W =
∑n
i=1 wi.

If s > smax , then there is no solution.

Proof. Suppose that in the optimal solution, tasks Ti and Tj are such that si < sj .
The total energy consumption is Eopt. We define s such that the execution of both tasks
running at speed s takes the same amount of time than in the optimal solution, i.e.,

(wi +wj)/s = wi/si +wj/sj : s =
(wi+wj)
wisj+wjsi

× sisj . Note that si < s < sj (it is the barycenter

of two points with positive mass).

We consider a solution such that the speed of task Tk, for 1 ≤ k ≤ n, with k 6= i and k 6= j,
is the same as in the optimal solution, and the speed of tasks Ti and Tj is s. By definition of s,
the execution time has not been modified. The energy consumption of this solution is E, where
Eopt −E = wis

2
i +wjs

2
j − (wi +wj)s

2, i.e., the difference of energy with the optimal solution
is only impacted by tasks Ti and Tj , for which the speed has been modified. By convexity of
the function x 7→ x2, we obtain Eopt > E, which contradicts its optimality. Therefore, in the
optimal solution, all tasks have the same execution speed. Moreover, the energy consumption is
minimized when the speed is as low as possible, while the deadline is not exceeded. Therefore,
the execution speed of all tasks is s = W/D. ut
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RECLAIMING THE ENERGY OF A SCHEDULE 11

Corollary 1. A linear chain with n tasks is equivalent to a single task of cost W =
∑n
i=1 wi.

Indeed, in the optimal solution, the n tasks are executed at the same speed, and they can be
replaced by a single task of cost W , which is executed at the same speed and consumes the
same amount of energy.

4.2.3. Fork and join graphs

Let V = {T1, . . . , Tn}. We consider either a fork graph G = (V ∪ {T0}, E), with E =
{(T0, Ti), Ti ∈ V }, or a join graph G = (V ∪ {T0}, E), with E = {(Ti, T0), Ti ∈ V }. T0 is
either the source of the fork or the sink of the join.

Theorem 1 (fork and join graphs) When G is a fork (resp. join) execution graph with
n+ 1 tasks T0, T1, . . . , Tn, the optimal solution to MinEnergy(G,D) is the following:

• the execution speed of the source (resp. sink) T0 is s0 =

(∑n
i=1 w

3
i

) 1
3 + w0

D
;

• for the other tasks Ti, 1 ≤ i ≤ n, we have si = s0 ×
wi

(
∑n
i=1 w

3
i )

1
3

if s0 ≤ smax .

Otherwise, T0 should be executed at speed s0 = smax , and the other speeds are si = wi
D′ , with

D′ = D − w0

smax
, if they do not exceed smax (Proposition 1 for independent tasks). Otherwise

there is no solution.

If no speed exceeds smax , the corresponding energy consumption is

minE(G,D) =

(
(
∑n
i=1 w

3
i )

1
3 + w0

)3
D2

.

Proof. Let t0 = w0

s0
. Then, the source or the sink requires a time t0 for execution. For

1 ≤ i ≤ n, task Ti must be executed within a time D − t0 so that the deadline is respected.
Given t0, we can compute the speed si for task Ti using Theorem 1, since the tasks are
independent: si = wi

D−t0 = wi · s0
s0D−w0

. The objective is therefore to minimize
∑n
i=0 wis

2
i ,

which is a function of s0:

n∑
i=0

wis
2
i = w0s

2
0 +

n∑
i=1

w3
i ·

s20
(s0D − w0)2

= s20

(
w0 +

∑n
i=1 w

3
i

(s0D − w0)2

)
= f(s0).

Let W3 =
∑n
i=1 w

3
i . In order to find the value of s0 that minimizes this function, we study the

function f(x), for x > 0. f ′(x) = 2x
(
w0 + W3

(xD−w0)2

)
− 2D · x2 · W3

(xD−w0)3
, and therefore

f ′(x) = 0 for x = (W
1
3
3 + w0)/D. We conclude that the optimal speed for task T0 is

s0 =
(
∑n
i=1 w

3
i )

1
3 +w0

D , if s0 ≤ smax . Otherwise, T0 should be executed at the maximum speed
s0 = smax , since it is the bottleneck task. In any case, for 1 ≤ i ≤ n, the optimal speed for
task Ti is si = wi

s0
s0D−w0

.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 00:1–20
Prepared using cpeauth.cls



12 G. AUPY, A. BENOIT, F. DUFOSSÉ, Y. ROBERT

Finally, we compute the exact expression of minE(G,D) = f(s0), when s0 ≤ smax :

f(s0) = s20

(
w0 +

W3

(s0D − w0)2

)
=

(
W

1
3
3 + w0

D

)2(
W3

W
2/3
3

+ w0

)
=

(
W

1
3
3 + w0

)3
D2

,

which concludes the proof. ut

Corollary 2 (equivalent tasks for speed) Consider a fork or join graph with tasks Ti,
0 ≤ i ≤ n, and a deadline D, and assume that the speeds in the optimal solution to
MinEnergy(G,D) do not exceed smax . Then, these speeds are the same as in the optimal

solution for n + 1 independent tasks T ′0, T
′
1, . . . , T

′
n, where w′0 =

(∑n
i=1 w

3
i

) 1
3 + w0, and, for

1 ≤ i ≤ n, w′i = w′0 · wi

(
∑n
i=1 w

3
i )

1
3

.

Corollary 3 (equivalent task for energy) Consider a fork or join graph G and a
deadline D, and assume that the speeds in the optimal solution to MinEnergy(G,D) do not
exceed smax . We say that the graph G is equivalent to the graph G(eq), consisting of a single

task T
(eq)
0 of weight w

(eq)
0 =

(∑n
i=1 w

3
i

) 1
3 + w0, because the minimum energy consumption of

both graphs are identical: minE(G,D)=minE(G(eq), D).

4.2.4. Trees

We extend the results on a fork graph for a tree G = (V,E) with |V | = n+ 1 tasks. Let T0 be
the root of the tree; it has k children tasks, which are each themselves the root of a tree. A
tree can therefore be seen as a fork graph, where the tasks of the fork are trees.

The previous results for fork graphs naturally lead to an algorithm that peels off branches
of the tree, starting with the leaves, and replaces each fork subgraph in the tree, composed
of a root T0 and k children, by one task (as in Corollary 3) that becomes the unique child of
T0’s parent in the tree. We say that this task is equivalent to the fork graph, since the optimal
energy consumption will be the same. The computation of the equivalent cost of this task is
done thanks to a call to the eq procedure, while the tree procedure computes the solution to
MinEnergy(G,D) (see Algorithm 1). Note that the algorithm computes the minimum energy
for a tree, but it does not return the speeds at which each task must be executed. However,
the algorithm returns the speed of the root task, and it is then straightforward to compute
the speed of each children of the root task, and so on.

Theorem 2 (tree graphs) When G is a tree rooted in T0 (T0 ∈ V , where V is the set of
tasks), the optimal solution to MinEnergy(G,D) can be computed in polynomial time O(|V |2).

Proof. Let G be a tree graph rooted in T0. The optimal solution to MinEnergy(G,D) is
obtained with a call to tree (G,T0, D), and we prove its optimality recursively on the depth
of the tree. Similarly to the case of the fork graphs, we reduce the tree to an equivalent task
that, if executed alone within a deadline D, consumes exactly the same amount of energy. The
procedure eq is the procedure that reduces a tree to its equivalent task (see Algorithm 1).
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RECLAIMING THE ENERGY OF A SCHEDULE 13

Algorithm 1: Solution to MinEnergy(G,D) for trees.

procedure tree (tree G, root T0, deadline D)
begin

Let w=eq (tree G, root T0);
if w

D ≤ smax then

return w3

D2 ;
else

if w0

smax
> D then

return Error:No Solution;
else

/* T0 is executed at speed smax */

return w0 × s2max +
∑

Gi subtree rooted in Ti∈children(T0)

tree

(
Gi, Ti, D −

w0

smax

)
;

end

end

end

procedure eq (tree G, root T0)
begin

if children(T0)=∅ then
return w0;

else

return

 ∑
Gi subtree rooted in Ti∈children(T0)

(eq(Gi, Ti))
3

 1
3

+ w0;

end

end

If the tree has depth 0, then it is a single task, eq (G,T0) returns the equivalent cost w0,
and the optimal execution speed is w0

D (see Proposition 1). There is a solution if and only if

this speed is not greater than smax , and then the corresponding energy consumption is
w3

0

D2 , as
returned by the algorithm.

Assume now that for any tree of depth i < p, eq computes its equivalent cost, and tree
returns its optimal energy consumption. We consider a tree G of depth p rooted in T0:
G = T0 ∪ {Gi}, where each subgraph Gi is a tree, rooted in Ti, of maximum depth p − 1.
As in the case of forks, we know that each subtree Gi has a deadline D − x, where x = w0

s0
,

and s0 is the speed at which task T0 is executed. By induction hypothesis, we suppose that
each graph Gi is equivalent to a single task, T ′i , of cost w′i (as computed by the procedure eq).

We can then use the results obtained on forks to compute w
(eq)
0 (see proof of Theorem 1):
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14 G. AUPY, A. BENOIT, F. DUFOSSÉ, Y. ROBERT

w
(eq)
0 =

(∑
i

(w′i)
3

) 1
3

+ w0.

Finally the tree is equivalent to one task of cost w
(eq)
0 , and if

w
(eq)
0

D ≤ smax , the energy

consumption is

(
w

(eq)
0

)3

D2 , and no speed exceeds smax .

Note that the speed of a task is always greater than the speed of its successors. Therefore, if
w

(eq)
0

D > smax , we execute the root of the tree at speed smax and then process each subtree Gi
independently. Of course, there is no solution if w0

smax
> D, and otherwise we perform the

recursive calls to tree to process each subtree independently. Their deadline is then D− w0

smax
.

To study the time complexity of this algorithm, first note that when calling tree (G,T0, D),
there might be at most |V | recursive calls to tree, once at each node of the tree. Without
accounting for the recursive calls, the tree procedure performs one call to the eq procedure,
which computes the cost of the equivalent task. This eq procedure takes a time O(|V |), since
we have to consider the |V | tasks, and we add the costs one by one. Therefore, the overall
complexity is in O(|V |2). ut

4.2.5. Series-parallel graphs

We can further generalize our results to series-parallel graphs (SPGs), which are built from a
sequence of compositions (parallel or series) of smaller-size SPGs. The smallest SPG consists
of two nodes connected by an edge (such a graph is called an elementary SPG). The first node
is the source, while the second one is the sink of the SPG. When composing two SGPs in
series, we merge the sink of the first SPG with the source of the second one. For a parallel
composition, the two sources are merged, as well as the two sinks, as illustrated in Figure 2.

We can extend the results for tree graphs to SPGs, by replacing step by step the SPGs by
an equivalent task (procedure cost in Algorithm 2): we can compute the equivalent cost for a
series or parallel composition.

However, since it is no longer true that the speed of a task is always larger than the speed
of its successor (as was the case in a tree), we have not been able to find a recursive property
on the tasks that should be set to smax , when one of the speeds obtained with the previous
method exceeds smax . The problem of computing a closed form for a SPG with a finite value
of smax remains open. Still, we have the following result when smax = +∞:

Theorem 3 (series-parallel graphs) When G is a SPG, it is possible to compute
recursively a closed form expression of the optimal solution of MinEnergy(G,D), assuming
smax = +∞, in polynomial time O(|V |), where V is the set of tasks.

Proof. Let G be a series-parallel graph. The optimal solution to MinEnergy(G,D) is
obtained with a call to SPG (G,D), and we prove its optimality recursively. Similarly to
trees, the main idea is to peel the graph off, and to transform it until there remains only
a single equivalent task that, if executed alone within a deadline D, would consume exactly
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RECLAIMING THE ENERGY OF A SCHEDULE 15

Tsrc A Tsnk T ′src B T ′snk

(a) Two SPGs before composition.

A

(Tsrc;T
′
src) (Tsnk;T ′snk)

B

(b) Parallel composition.

Tsrc A (Tsnk;T ′src) B T ′snk

(c) Series composition.

Figure 2: Composition of series-parallel graphs (SPGs).

the same amount of energy. The procedure cost is the procedure that reduces a tree to its
equivalent task (see Algorithm 2).

The proof is done by induction on the number of compositions required to build the
graph G, p. If p = 0, G is an elementary SPG consisting in two tasks, the source T0 and
the sink T1. It is therefore a linear chain, and therefore equivalent to a single task whose cost
is the sum of both costs, w0+w1 (see Corollary 1 for linear chains). The procedure cost returns
therefore the correct equivalent cost, and SPG returns the minimum energy consumption.

Let us assume that the procedures return the correct equivalent cost and minimum energy
consumption for any SPG consisting of i < p compositions. We consider a SPG G, with p
compositions. By definition, G is a composition of two smaller-size SPGs, G1 and G2, and
both of these SPGs have strictly fewer than p compositions. We consider G′1 and G′2, which
are identical to G1 and G2, except that the cost of their source and sink tasks are set to 0
(these costs are handled separately), and we can reduce both of these SPGs to an equivalent
task, of respective costs w′1 and w′2, by induction hypothesis. There are two cases:

• If G is a series composition, then after the reduction of G′1 and G′2, we have a linear chain
in which we consider the source T0 of G1, the sink T1 of G1 (which is also the source
of G2), and the sink T2 of G2. The equivalent cost is therefore w0 +w′1 +w1 +w′2 +w2,
thanks to Corollary 1 for linear chains.

• If G is a parallel composition, the resulting graph is a fork-join graph, and we can
use Corollaries 1 and 3 to compute the cost of the equivalent task, accounting for the

source T0 and the sink T1: w0 +
(
(w′1)3 + (w′2)3

) 1
3 + w1.
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16 G. AUPY, A. BENOIT, F. DUFOSSÉ, Y. ROBERT

Algorithm 2: Solution to MinEnergy(G,D) for series-parallel graphs.

procedure SPG (series-parallel graph G, deadline D)
begin

return
(cost(G))

3

D2 ;
end

procedure cost (series-parallel graph G)
begin

Let T0 be the source of G and T1 its sink;
if G is composed of only two tasks, T0 and T1 then

return w0 + w1;
else

/* G is a composition of two SPGs G1 and G2. */
For i = 1, 2, let G′i = Gi where the cost of source and sink tasks is set to 0;
w′1 = cost(G′1); w′2 = cost(G′2);
if G is a series composition then

Let T0 be the source of G1, T1 be its sink, and T2 be the sink of G2;
return w0 + w′1 + w1 + w′2 + w2;

else
/* It is a parallel composition. */
Let T0 be the source of G, and T1 be its sink;

return w0 +
(
(w′1)3 + (w′2)3

) 1
3 + w1;

end

end

end

Once the cost of the equivalent task of the SPG has been computed with the call to cost (G),

the optimal energy consumption is (cost(G))3

D2 .

Contrarily to the case of tree graphs, since we never need to call the SPG procedure again
because there is no constraint on smax , the time complexity of the algorithm is the complexity
of the cost procedure. There is exactly one call to cost for each composition, and the number
of compositions in the SPG is in O(|V |). All operations in cost can be done in O(1), hence a
complexity in O(|V |). ut
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RECLAIMING THE ENERGY OF A SCHEDULE 17

4.3. General DAGs

For arbitrary execution graphs, we can rewrite the MinEnergy(G,D) problem as follows:

Minimize
∑n
i=1 u

−2
i × wi

subject to (i) bi + wi × ui ≤ bj for each edge (Ti, Tj) ∈ E
(ii) bi + wi × ui ≤ D for each task Ti ∈ V
(iii) ui ≥ 1

smax
for each task Ti ∈ V

(iv) bi ≥ 0 for each task Ti ∈ V

(2)

Here, ui = 1/si is the inverse of the speed to execute task Ti. We now have a convex
optimization problem to solve, with linear constraints in the non-negative variables ui and bi. In
fact, the objective function is a posynomial, so we have a geometric programming problem [16,
Section 4.5] for which efficient numerical schemes exist. In addition, such an optimization
problem with a smooth convex objective function is known to be well-conditioned [35].

However, as illustrated on simple fork graphs, the optimal speeds are not expected to be
rational numbers but instead arbitrarily complex expressions (we have the cubic root of the
sum of cubes for forks, and nested expressions of this form for trees). From a computational
complexity point of view, we do not know how to encode such numbers in polynomial size of
the input (the rational task weights and the execution deadline). Still, we can always solve the
problem numerically and get fixed-size numbers that are good approximations of the optimal
values.

In the following, we show that the total power consumption of any optimal schedule is
constant throughout execution. While this important property does not help to design an
optimal solution, it shows that a schedule with large variations in its power consumption is
likely to waste a lot of energy.

We need a few notations before stating the result. Consider a schedule for a graph G = (V,E)
with n tasks. Task Ti is executed at constant speed si (see Lemma 1) and during interval [bi, ci]:
Ti begins its execution at time bi and completes it at time ci. The total power consumption P (t)
of the schedule at time t is defined as the sum of the power consumed by all tasks executing
at time t:

P (t) =
∑

1≤i≤n, t∈[bi,ci]

s3i .

Theorem 4. Consider an instance of Continuous, and an optimal schedule for this
instance, such that no speed is equal to smax . Then the total power consumption of the schedule
throughout execution is constant.

Proof. We prove this theorem by induction on the number of tasks of the graph. First we
prove a preliminary result:

Lemma 2. Consider a graph G = (V,E) with n ≥ 2 tasks, and any optimal schedule of
deadline D. Let t1 be the earliest completion time of a task in the schedule. Similarly, let t2 be
the latest starting time of a task in the schedule. Then, either G is composed of independent
tasks, or 0 < t1 ≤ t2 < D.
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Proof. Task Ti is executed at speed si and during interval [bi, ci]. We have t1 = min1≤i≤n ci
and t2 = max1≤i≤n bi. Clearly, 0 ≤ t1, t2 ≤ D by definition of the schedule. Suppose that
t2 < t1. Let T1 be a task that ends at time t1, and T2 one that starts at time t2. Then:

• @T ∈ V, (T1, T ) ∈ E (otherwise, T would start after t2), therefore, t1 = D;
• @T ∈ V, (T, T2) ∈ E (otherwise, T would finish before t1); therefore t2 = 0.

This also means that all tasks start at time 0 and end at time D. Therefore, G is only composed
of independent tasks. ut

Back to the proof of the theorem, we consider first the case of a graph with only one task. In
an optimal schedule, the task is executed in time D, and at constant speed (Lemma 1), hence
with constant power consumption.

Suppose now that the property is true for all DAGs with at most n − 1 tasks. Let G be
a DAG with n tasks. If G is exactly composed of n independent tasks, then we know that
the power consumption of G is constant (because all task speeds are constant). Otherwise,
let t1 be the earliest completion time, and t2 the latest starting time of a task in the optimal
schedule. Thanks to Lemma 2, we have 0 < t1 ≤ t2 < D.

Suppose first that t1 = t2 = t0. There are three kinds of tasks: those beginning at time 0
and ending at time t0 (set S1), those beginning at time t0 and ending at time D (set S2), and
finally those beginning at time 0 and ending at time D (set S3). Tasks in S3 execute during
the whole schedule duration, at constant speed, hence their contribution to the total power
consumption P (t) is the same at each time-step t. Therefore, we can suppress them from the
schedule without loss of generality. Next we determine the value of t0. Let A1 =

∑
Ti∈S1

w3
i ,

and A2 =
∑
Ti∈S2

w3
i . The energy consumption between 0 and t0 is A1

t20
, and between t0 and

D, it is A2

(D−t0)2 . The optimal energy consumption is obtained with t0 =
A

1
3
1

A
1
3
1 +A

1
3
2

. Then, the

total power consumption of the optimal schedule is the same in both intervals, hence at each

time-step: we derive that P (t) =

(
A

1
3
1 +A

1
3
2

D

)3

, which is constant.

Suppose now that t1 < t2. For each task Ti, let w′i be the number of operations executed
before t1, and w′′i the number of operations executed after t1 (with w′i + w′′i = wi). Let G′

be the DAG G with execution costs w′i, and G′′ be the DAG G with execution costs w′′i .
The tasks with a cost equal to 0 are removed from the DAGs. Then, both G′ and G′′ have
strictly fewer than n tasks. We can therefore apply the induction hypothesis. We derive that
the power consumption in both DAGs is constant. Since we did not change the speeds of
the tasks, the total power consumption P (t) in G is the same as in G′ if t < t1, hence a
constant. Similarly, the total power consumption P (t) in G is the same as in G′′ if t > t1,
hence a constant. Considering the same partitioning with t2 instead of t1, we show that the
total power consumption P (t) is a constant before t2, and also a constant after t2. But t1 < t2,
and the intervals [0, t2] and [t1, D] overlap. Altogether, the total power consumption is the
same constant throughout [0, D], which concludes the proof. ut

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2011; 00:1–20
Prepared using cpeauth.cls



RECLAIMING THE ENERGY OF A SCHEDULE 19

5. Discrete models

In this section, we present complexity results on the three energy models with a finite number
of possible speeds. The only polynomial instance is for the Vdd-Hopping model, for which we
write a linear program in Section 5.1. Then, we give NP-completeness results in Section 5.2,
and approximation results in Section 5.3, for the Discrete and Incremental models.

5.1. The Vdd-Hopping model

Theorem 5. With the Vdd-Hopping model, MinEnergy(G,D) can be solved in polynomial
time.

Proof. Let G be the execution graph of an application with n tasks, and D a deadline. Let
s1, ..., sm be the set of possible processor speeds. We use the following rational variables: for
1 ≤ i ≤ n and 1 ≤ j ≤ m, bi is the starting time of the execution of task Ti, and α(i,j) is the
time spent at speed sj for executing task Ti. There are n+ n×m = n(m+ 1) such variables.
Note that the total execution time of task Ti is

∑m
j=1 α(i,j). The constraints are:

• ∀1 ≤ i ≤ n, bi ≥ 0: starting times of all tasks are non-negative numbers;
• ∀1 ≤ i ≤ n, bi +

∑m
j=1 α(i,j) ≤ D: the deadline is not exceeded by any task;

• ∀1 ≤ i, i′ ≤ n such that Ti → Ti′ , bi +
∑m
j=1 α(i,j) ≤ bi′ : a task cannot start before its

predecessor has completed its execution;
• ∀1 ≤ i ≤ n,

∑m
j=1 α(i,j) × sj ≥ wi: task Ti is completely executed.

The objective function is then min
(∑n

i=1

∑m
j=1 α(i,j)s

3
j

)
.

The size of this linear program is clearly polynomial in the size of the instance, all n(m+ 1)
variables are rational, and therefore it can be solved in polynomial time [36]. ut

5.2. NP-completeness results

Theorem 6. With the Incremental model (and hence the Discrete model),
MinEnergy(G,D) is NP-complete.

Proof. We consider the associated decision problem: given an execution graph, a deadline,
and a bound on the energy consumption, can we find an execution speed for each task such
that the deadline and the bound on energy are respected? The problem is clearly in NP: given
the execution speed of each task, computing the execution time and the energy consumption
can be done in polynomial time.

To establish the completeness, we use a reduction from 2-Partition [37]. We consider an
instance I1 of 2-Partition: given n strictly positive integers a1, . . . , an, does there exist a
subset I of {1, . . . , n} such that

∑
i∈I ai =

∑
i/∈I ai? Let T = 1

2

∑n
i=1 ai.

We build the following instance I2 of our problem: the execution graph is a linear chain
with n tasks, where:

• task Ti has size wi = ai;
• the processor can run at m = 2 different speeds;
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• s1 = 1 and s2 = 2, (i.e., smin = 1, smax = 2, δ = 1);
• L = 3T/2;
• E = 5T .

Clearly, the size of I2 is polynomial in the size of I1.

Suppose first that instance I1 has a solution I. For all i ∈ I, Ti is executed at speed 1,
otherwise it is executed at speed 2. The execution time is then

∑
i∈I ai+

∑
i/∈I ai/2 = 3

2T = D,
and the energy consumption is E =

∑
i∈I ai +

∑
i/∈I ai × 22 = 5T = E. Both bounds are

respected, and therefore the execution speeds are a solution to I2.

Suppose now that I2 has a solution. Since we consider the Discrete and Incremental
models, each task run either at speed 1, or at speed 2. Let I = {i | Ti is executed at speed 1}.
Note that we have

∑
i/∈I ai = 2T −

∑
i∈I ai.

The execution time is D′ =
∑
i∈I ai +

∑
i/∈I ai/2 = T + (

∑
i∈I ai)/2. Since the deadline is

not exceeded, D′ ≤ D = 3T/2, and therefore
∑
i∈I ai ≤ T .

For the energy consumption of the solution of I2, we have E′ =
∑
i∈I ai +

∑
i/∈I ai × 22 =

2T + 3
∑
i/∈I ai. Since E′ ≤ E = 5T , we obtain 3

∑
i/∈I ai ≤ 3T , and hence

∑
i/∈I ai ≤ T .

Since
∑
i∈I ai +

∑
i/∈I ai = 2T , we conclude that

∑
i∈I ai =

∑
i/∈I ai = T , and therefore

I1 has a solution. This concludes the proof. ut

5.3. Approximation results

Here we explain, for the Incremental and Discrete models, how the solution to the NP-
hard problem can be approximated. Note that, given an execution graph and a deadline, the
optimal energy consumption with the Continuous model is always lower than that with the
other models, which are more constrained.

Theorem 7. With the Incremental model, for any integer K > 0, the MinEnergy(G,D)
problem can be approximated within a factor (1 + δ

smin
)2(1 + 1

K )2, in a time polynomial in the
size of the instance and in K.

Proof. Consider an instance Iinc of the problem with the Incremental model. The execution
graph G has n tasks, D is the deadline, δ is the minimum permissible speed increment, and
smin , smax are the speed bounds. Moreover, let K > 0 be an integer, and let Einc be the
optimal value of the energy consumption for this instance Iinc.

We construct the following instance Ivdd with the Vdd-Hopping model: the execution graph
and the deadline are the same as in instance Iinc, and the speeds can take the values{

smin ×
(

1 +
1

K

)i}
0≤i≤N

,

where N is such that smax is not exceeded: N =
⌊
(ln(smax )− ln(smin))/ ln

(
1 + 1

K

)⌋
. As N is

asymptotically of order O(K ln(smax )), the number of possible speeds in Ivdd, and hence the
size of Ivdd, is polynomial in the size of Iinc and K.

Next, we solve Ivdd in polynomial time thanks to Theorem 5. For each task Ti, let s
(vdd)
i

be the average speed of Ti in this solution: if the execution time of the task in the solution
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is di, then s
(vdd)
i = wi/di; Evdd is the optimal energy consumption obtained with these speeds.

Let s
(algo)
i = minu{smin + u × δ | smin + u × δ ≥ s

(vdd)
i } be the smallest speed in Iinc that

is larger than s
(vdd)
i . There exists such a speed since, because of the values chosen for Ivdd,

s
(vdd)
i ≤ smax . The values s

(algo)
i can be computed in time polynomial in the size of Iinc and K.

Let Ealgo be the energy consumption obtained with these values.

In order to prove that this algorithm is an approximation of the optimal solution, we need

to prove that Ealgo ≤ (1+ δ
smin

)2(1+ 1
K )2×Einc. For each task Ti, s

(algo)
i −δ ≤ s(vdd)i ≤ s(algo)i .

Since smin ≤ s(vdd)i , we derive that s
(algo)
i ≤ s(vdd)i × (1 + δ

smin
). Summing over all tasks, we get

Ealgo =
∑
i wi

(
s
(algo)
i

)2
≤
∑
i wi

(
s
(vdd)
i × (1 + δ

smin
)
)2
≤ Evdd ×

(
1 + δ

smin

)2
.

Next, we bound Evdd thanks to the optimal solution with the Continuous model, Econ.
Let Icon be the instance where the execution graph G, the deadline D, the speeds smin and
smax are the same as in instance Iinc, but now admissible speeds take any value between smin

and smax . Let s
(con)
i be the optimal continuous speed for task Ti, and let 0 ≤ u ≤ N be the

value such that:

smin ×
(
1 + 1

K

)u ≤ s(con)i ≤ smin ×
(
1 + 1

K

)u+1
= s∗i .

In order to bound the energy consumption for Ivdd, we assume that Ti runs at speed s∗i , instead

of s
(vdd)
i . The solution with these speeds is a solution to Ivdd, and its energy consumption is

E∗ ≥ Evdd. From the previous inequalities, we deduce that s∗i ≤ s
(con)
i ×

(
1 + 1

K

)
, and by

summing over all tasks,

Evdd ≤ E∗ =
∑
i wi (s∗i )

2 ≤
∑
i wi

(
s
(con)
i ×

(
1 + 1

K

))2
≤ Econ ×

(
1 + 1

K

)2 ≤ Einc × (1 + 1
K

)2
. ut

Proposition 3.

• For any integer δ > 0, any instance of MinEnergy(G,D) with the Continuous model can
be approximated within a factor (1+ δ

smin
)2 in the Incremental model with speed increment δ.

• For any integer K > 0, any instance of MinEnergy(G,D) with the Discrete model can
be approximated within a factor (1 + α

s1
)2(1 + 1

K )2, with α = max1≤i<m{si+1 − si}, in a time
polynomial in the size of the instance and in K.

Proof. For the first part, let s
(con)
i be the optimal continuous speed for task Ti in instance

Icon; Econ is the optimal energy consumption. For any task Ti, let si be the speed of

Iinc such that si − δ < sconi ≤ si. Then, s
(con)
i ≤ si ×

(
1 + δ

smin

)
. Let E be the energy

with speeds si. Econ ≤ E ×
(

1 + δ
smin

)2
. Let Einc be the optimal energy of Iinc. Then,

Econ ≤ Einc ×
(

1 + δ
smin

)2
.

For the second part, we use the same algorithm as in Theorem 7. The same proof leads to
the approximation ratio with α instead of δ. ut
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6. Conclusion

In this paper, we have assessed the tractability of a classical scheduling problem, with
task preallocation, under various energy models. We have given several results related to
Continuous speeds. However, while these are of conceptual importance, they cannot be
achieved with physical devices, and we have analyzed several models enforcing a bounded
number of achievable speeds, a.k.a. modes. In the classical Discrete model that arises from
DVFS techniques, admissible speeds can be irregularly distributed, which motivates the Vdd-
Hopping approach that mixes two consecutive modes optimally. While computing optimal
speeds is NP-hard with discrete modes, it has polynomial complexity when mixing speeds.
Intuitively, the Vdd-Hopping approach allows for smoothing out the discrete nature of the
modes. An alternate (and simpler in practice) solution to Vdd-Hopping is the Incremental
model, where one sticks with unique speeds during task execution as in the Discrete model,
but where consecutive modes are regularly spaced. Such a model can be made arbitrarily
efficient, according to our approximation results.

Altogether, this paper has laid the theoretical foundations for a comparative study of energy
models. In the recent years, we have observed an increased concern for green computing, and
a rapidly growing number of approaches. It will be very interesting to see which energy-saving
technological solutions will be implemented in forthcoming future processor chips.

Regardless of the (future) energy model, there are two important future research directions
that can already be envisioned:

• For those situations where the optimal solutions or approximation algorithms provided
in this paper would be too costly, fast heuristics can easily be introduced. Typically, such
heuristics would greedily perform local changes in the schedule until a local optimum
has been reached. It would be very interesting to assess the energy savings achieved by
such “fast” solutions with respect to the gain provided by the optimal solution.

• This paper has dealt with a fixed (given) mapping of the task graph. In some situations,
the user may well have the possibility to choose, say, the list-schedule that assigns tasks to
physical resources. Given a deadline, the problem is already NP-complete without energy
considerations. Introducing variable speeds together with an energy-oriented objective
dramatically increases the combinatorial difficulty of the problem. Still, designing and
evaluating fast yet efficient heuristics would be of great practical significance.
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