106 research outputs found

    Optimal Morphs of Planar Orthogonal Drawings

    Get PDF
    We describe an algorithm that morphs between two planar orthogonal drawings Gamma_I and Gamma_O of a connected graph G, while preserving planarity and orthogonality. Necessarily Gamma_I and Gamma_O share the same combinatorial embedding. Our morph uses a linear number of linear morphs (linear interpolations between two drawings) and preserves linear complexity throughout the process, thereby answering an open question from Biedl et al. [Biedl et al., 2013]. Our algorithm first unifies the two drawings to ensure an equal number of (virtual) bends on each edge. We then interpret bends as vertices which form obstacles for so-called wires: horizontal and vertical lines separating the vertices of Gamma_O. We can find corresponding wires in Gamma_I that share topological properties with the wires in Gamma_O. The structural difference between the two drawings can be captured by the spirality of the wires in Gamma_I, which guides our morph from Gamma_I to Gamma_O

    Optimal Morphs of Convex Drawings

    Get PDF
    We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.Comment: To appear in SoCG 201

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Morphing Planar Graph Drawings Optimally

    Full text link
    We provide an algorithm for computing a planar morph between any two planar straight-line drawings of any nn-vertex plane graph in O(n)O(n) morphing steps, thus improving upon the previously best known O(n2)O(n^2) upper bound. Further, we prove that our algorithm is optimal, that is, we show that there exist two planar straight-line drawings Γs\Gamma_s and Γt\Gamma_t of an nn-vertex plane graph GG such that any planar morph between Γs\Gamma_s and Γt\Gamma_t requires Ω(n)\Omega(n) morphing steps

    Upward Planar Morphs

    Full text link
    We prove that, given two topologically-equivalent upward planar straight-line drawings of an nn-vertex directed graph GG, there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O(1)O(1) morphing steps if GG is a reduced planar stst-graph, O(n)O(n) morphing steps if GG is a planar stst-graph, O(n)O(n) morphing steps if GG is a reduced upward planar graph, and O(n2)O(n^2) morphing steps if GG is a general upward planar graph. Further, we show that Ω(n)\Omega(n) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an nn-vertex path.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) The current version is the extended on

    Morphing Contact Representations of Graphs

    Get PDF
    We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the "top-most" triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set

    Graph Morphing via Orthogonal Box Drawings

    Get PDF
    Abstract: A graph is a set of vertices, with some pairwise connections given by a set of edges. A graph drawing, such as a node-link diagram, visualizes a graph with geometric features. One of the most common forms of a graph drawings are straight-line point drawings, which represent each vertex with a point and each edge with a line segment connecting its relevant points, and poly-line point drawings, which more generally allow edges to be represented by poly-lines. Of particular interest to this work are planar straight-line drawings and planar poly-line drawings, in which no two vertices share a location, and no two edges cross (except at shared endpoints). We study the morphing problem for planar drawings: Given two planar drawings of the same graph, can we output a continuous transformation (a “morph”) from one to the other, such that each intermediate drawing is also a planar drawing? It is quite easy to test if a morph exists, but the test is non-constructive. We are interested in the problem of constructing morphs with simple representations. Specifically, we study sequences of linear morphs, which represent the overall morph with a sequence of drawings, so that each pair of adjacent drawings in the sequence can be linearly interpolated. Each drawing in the sequence is called an “explicit” intermediate drawing, since it given explicitly in the output. Previous work has shown that a pair of straight-line drawings of an n-vertex graph can be morphed using O(n) linear morphs, so that every explicit intermediate drawing is a straight-line drawing. We show that an additional constraint can be added, at the cost of a small tradeoff: We further restrict the explicit intermediate drawings to lie on an O(n)×O(n) grid, while allowing them to be poly-line drawings with O(1) bends per edge. Additionally, we give an algorithm that computes this sequence in O(n^2) time, which is known to be tight. Our methods involve morphing another class of drawings—orthogonal box drawings—which represent each vertex with an axis-aligned rectangle, and each edge with an orthogonal poly-line. Our methods for morphing orthogonal box drawings make use of methods known for morphing orthogonal point drawings, which are poly-line drawings that restrict each poly-line to use only axis-aligned line segments
    • …
    corecore