18,744 research outputs found

    Minimally Invasive Mitral Valve Surgery II: Surgical Technique and Postoperative Management.

    Get PDF
    Techniques for minimally invasive mitral valve repair and replacement continue to evolve. This expert opinion, the second of a 3-part series, outlines current best practices for nonrobotic, minimally invasive mitral valve procedures, and for postoperative care after minimally invasive mitral valve surgery

    Management of Forehead Scars

    Get PDF
    This article provides an overview of scar management within the forehead region. It addresses the unique challenges specific to the treatment of forehead wounds. A logical, stepwise approach is used. A subsite based treatment algorithm is provided along with a review of current best practices. Pertinent case examples are included for demonstration purposes

    Single top-quark production by strong and electroweak supersymmetric flavor-changing interactions at the LHC

    Full text link
    (Abridged) We report on a complete study of the single top-quark production by direct supersymmetric flavor-changing neutral-current (FCNC) processes at the LHC. The total cross section for pp(gg)->t\bar{c}+\bar{t}c is computed at the 1-loop order within the unconstrained Minimal Supersymmetric Standard Model (MSSM). The present study extends the results of the supersymmetric strong effects (SUSY-QCD), which were advanced by some of us in a previous work, and includes the computation of the full supersymmetric electroweak corrections (SUSY-EW). Our analysis of pp(gg)->t\bar{c}+\bar{t}c in the MSSM has been performed in correspondence with the stringent low-energy constraints from b->s gamma. In the most favorable scenarios, the SUSY-QCD contribution can give rise to production rates of around 10^5 events per 100 fb^{-1} of integrated luminosity. Furthermore, we show that there exist regions of the MSSM parameter space where the SUSY-EW correction becomes sizeable. In the SUSY-EW favored regions, one obtains lower, but still appreciable, event production rates that can reach the 10^3 level for the same range of integrated luminosity. We study also the possible reduction in the maximum event rate obtained from the full MSSM contribution if we additionally include the constraints from B^0_s-\bar{B}^0_s. In view of the fact that the FCNC production of heavy quark pairs of different flavors is extremely suppressed in the SM, the detection of a significant number of these events could lead to evidence of new physics -- of likely supersymmetric origin.Comment: LaTex, 35 pages, typos corrected. Version accepted in JHE

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Knock-in of Human BACE1 Cleaves Murine APP and Reiterates Alzheimer-like PhenoTypes

    Get PDF
    Footnotes We thank Roemex and the College for Life Science and Medicine at the University of Aberdeen for their generous support. The authors declare no competing financial interests.Peer reviewedPublisher PD
    • …
    corecore