8 research outputs found

    Local tests of global entanglement and a counterexample to the generalized area law

    Get PDF
    We introduce a technique for applying quantum expanders in a distributed fashion, and use it to solve two basic questions: testing whether a bipartite quantum state shared by two parties is the maximally entangled state and disproving a generalized area law. In the process these two questions which appear completely unrelated turn out to be two sides of the same coin. Strikingly in both cases a constant amount of resources are used to verify a global property.Comment: 21 pages, to appear FOCS 201

    Exponential Separation of Quantum Communication and Classical Information

    Full text link
    We exhibit a Boolean function for which the quantum communication complexity is exponentially larger than the classical information complexity. An exponential separation in the other direction was already known from the work of Kerenidis et. al. [SICOMP 44, pp. 1550-1572], hence our work implies that these two complexity measures are incomparable. As classical information complexity is an upper bound on quantum information complexity, which in turn is equal to amortized quantum communication complexity, our work implies that a tight direct sum result for distributional quantum communication complexity cannot hold. The function we use to present such a separation is the Symmetric k-ary Pointer Jumping function introduced by Rao and Sinha [ECCC TR15-057], whose classical communication complexity is exponentially larger than its classical information complexity. In this paper, we show that the quantum communication complexity of this function is polynomially equivalent to its classical communication complexity. The high-level idea behind our proof is arguably the simplest so far for such an exponential separation between information and communication, driven by a sequence of round-elimination arguments, allowing us to simplify further the approach of Rao and Sinha. As another application of the techniques that we develop, we give a simple proof for an optimal trade-off between Alice's and Bob's communication while computing the related Greater-Than function on n bits: say Bob communicates at most b bits, then Alice must send n/exp(O(b)) bits to Bob. This holds even when allowing pre-shared entanglement. We also present a classical protocol achieving this bound.Comment: v1, 36 pages, 3 figure

    Universality of EPR Pairs in Entanglement-Assisted Communication Complexity, and the Communication Cost of State Conversion

    Get PDF
    In this work we consider the role of entanglement assistance in quantum communication protocols, focusing, in particular, on whether the type of shared entangled state can affect the quantum communication complexity of a function. This question is interesting because in some other settings in quantum information, such as non-local games, or tasks that involve quantum communication between players and referee, or simulating bipartite unitaries or communication channels, maximally entangled states are known to be less useful as a resource than some partially entangled states. By contrast, we prove that the bounded-error entanglement-assisted quantum communication complexity of a partial or total function cannot be improved by more than a constant factor by replacing maximally entangled states with arbitrary entangled states. In particular, we show that every quantum communication protocol using Q qubits of communication and arbitrary shared entanglement can be epsilon-approximated by a protocol using O(Q/epsilon+log(1/epsilon)/epsilon) qubits of communication and only EPR pairs as shared entanglement. This conclusion is opposite of the common wisdom in the study of non-local games, where it has been shown, for example, that the I3322 inequality has a non-local strategy using a non-maximally entangled state, which surpasses the winning probability achievable by any strategy using a maximally entangled state of any dimension [Vidick and Wehner, 2011]. We leave open the question of how much the use of a shared maximally entangled state can reduce the quantum communication complexity of a function. Our second result concerns an old question in quantum information theory: How much quantum communication is required to approximately convert one pure bipartite entangled state into another? We give simple and efficiently computable upper and lower bounds. Given two bipartite states |chi> and |upsilon>, we define a natural quantity, d_{infty}(|chi>, |upsilon>), which we call the l_{infty} Earth Mover\u27s distance, and we show that the communication cost of converting between |chi> and |upsilon> is upper bounded by a constant multiple of d_{infty}(|chi>, |upsilon>). Here d_{infty}(|chi>, |upsilon>) may be informally described as the minimum over all transports between the log of the Schmidt coefficients of |chi> and those of |upsilon>, of the maximum distance that any amount of mass must be moved in that transport. A precise definition is given in the introduction. Furthermore, we prove a complementary lower bound on the cost of state conversion by the epsilon-Smoothed l_{infty}-Earth Mover\u27s Distance, which is a natural smoothing of the l_{infty}-Earth Mover\u27s Distance that we will define via a connection with optimal transport theory

    A Direct Product Theorem for One-Way Quantum Communication

    Get PDF
    We prove a direct product theorem for the one-way entanglement-assisted quantum communication complexity of a general relation fX×Y×Zf\subseteq\mathcal{X}\times\mathcal{Y}\times\mathcal{Z}. For any ε,ζ>0\varepsilon, \zeta > 0 and any k1k\geq1, we show that Q1(1ε)Ω(ζ6k/logZ)1(fk)=Ω(k(ζ5Qε+12ζ1(f)loglog(1/ζ))), \mathrm{Q}^1_{1-(1-\varepsilon)^{\Omega(\zeta^6k/\log|\mathcal{Z}|)}}(f^k) = \Omega\left(k\left(\zeta^5\cdot\mathrm{Q}^1_{\varepsilon + 12\zeta}(f) - \log\log(1/\zeta)\right)\right), where Qε1(f)\mathrm{Q}^1_{\varepsilon}(f) represents the one-way entanglement-assisted quantum communication complexity of ff with worst-case error ε\varepsilon and fkf^k denotes kk parallel instances of ff. As far as we are aware, this is the first direct product theorem for quantum communication. Our techniques are inspired by the parallel repetition theorems for the entangled value of two-player non-local games, under product distributions due to Jain, Pereszl\'{e}nyi and Yao, and under anchored distributions due to Bavarian, Vidick and Yuen, as well as message-compression for quantum protocols due to Jain, Radhakrishnan and Sen. Our techniques also work for entangled non-local games which have input distributions anchored on any one side. In particular, we show that for any game G=(q,X×Y,A×B,V)G = (q, \mathcal{X}\times\mathcal{Y}, \mathcal{A}\times\mathcal{B}, \mathsf{V}) where qq is a distribution on X×Y\mathcal{X}\times\mathcal{Y} anchored on any one side with anchoring probability ζ\zeta, then ω(Gk)=(1(1ω(G))5)Ω(ζ2klog(AB)) \omega^*(G^k) = \left(1 - (1-\omega^*(G))^5\right)^{\Omega\left(\frac{\zeta^2 k}{\log(|\mathcal{A}|\cdot|\mathcal{B}|)}\right)} where ω(G)\omega^*(G) represents the entangled value of the game GG. This is a generalization of the result of Bavarian, Vidick and Yuen, who proved a parallel repetition theorem for games anchored on both sides, and potentially a simplification of their proof.Comment: 31 pages, 1 figur
    corecore